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Abstract

Superconductive single-flux-quantum (SFQ) circuit technology attracts attention as a next

generation technology of integrated circuits because of its ultra-fast computation speed

and low power consumption. In SFQ digital circuits, unlike CMOS digital circuits, a

pulse is used as a carrier of information and the representation of the logic values is

different from that in CMOS digital circuits. Therefore, design automation algorithms and

structure of arithmetic circuits suitable for SFQ digital circuits are different from those

for CMOS digital circuits. In addition, design of SFQ circuits has been carried out largely

manually. For advancing studies of SFQ digital circuits, design automation algorithms

which can design high-performance SFQ circuits are important. Furthermore, studies

of circuit structure suitable for SFQ arithmetic circuits are also important for designing

high-performance circuits. In this dissertation, several design automation algorithms and

design of a multiplier which is one of the most important arithmetic circuits are proposed

for SFQ digital circuits.

In Chapter 1, the background and the outline of the dissertation are described.

In Chapter 2, the basis of SFQ circuits and the representation of logic values for SFQ

digital circuits are described. There are two methods of representation of the logic values.

One is ‘dual-rail representation’ in which “1” and “0” lines are used and the other is

‘synchronous clocking representation’ in which synchronizing clocks are used.

In Chapter 3, a new method of logic synthesis for dual-rail SFQ digital circuits are pro-

posed. For representing logic functions, a root-shared binary decision diagram (RSBDD)
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ii ABSTRACT

which is a directed acyclic graph constructed from binary decision diagrams is proposed.

In the method, first an RSBDD is constructed from given logic functions, and then the

number of nodes in the constructed RSBDD is reduced by variable re-ordering. Finally, a

dual-rail SFQ digital circuit is synthesized from the reduced RSBDD. The experimental

results on benchmark circuits show that the proposed method synthesizes dual-rail SFQ

digital circuits that consist of about 27.1% fewer logic elements than those synthesized by

a Transduction-based method on average.

In Chapter 4, an algorithm for clock scheduling of synchronous clocking SFQ digital

circuits is proposed. In synchronous clocking SFQ digital circuits, all logic gates are driven

by clock pulses. Appropriate clock scheduling makes clock frequency of the circuits higher.

Given a clock period, the proposed algorithm determines the arrival time of clock pulses of

each gate and the delay that should be inserted. The experimental results on benchmark

circuits show that inserted delay elements by the proposed algorithm are 59.0% fewer and

the height of clock trees are 40.4% shorter on average than those by a straightforward

algorithm. The proposed algorithm can also be used to minimize the clock period, thus

obtaining 19.0% shorter clock periods on average.

In Chapter 5, a synthesis method of sequential circuits is proposed for synchronous

clocking SFQ digital circuits. Since all logic gates of synchronous clocking SFQ digital

circuits are driven by a clock signal, synthesis methods of sequential circuits for CMOS

digital circuits cannot derive the full power of high-throughput computation of SFQ circuit

technology. In the method, a ‘state module’ consisting of a D flip-flop (DFF) and several

AND gates is used. First, states of a sequential machine are encoded by one-hot encoding

and state modules are assigned to the states one by one, and then, the modules are

connected with each other according to the state transition. For the connection, confluence

buffers (CBs), i.e., merger gates without clock signals are used. Consequently, gates

driven by a clock signal are removed from its feedback loops, and therefore, a high-

throughput SFQ sequential circuit is achieved. The experimental results on benchmark

circuits show that compared with a conventional method for CMOS digital circuits, the
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proposed method synthesizes circuits that work with 4.9 times higher clock frequency and

have 17.3% more gates on average.

In Chapter 6, an integer multiplier with systolic array structure is proposed for syn-

chronous clocking SFQ digital circuits. The systolic array is a circuit structure for VLSIs

and consists of regularly arranged simple processing elements (PEs). For evaluating the

proposed multiplier, a 4-bit systolic multiplier and a 4-bit array multiplier which is one

of the most typical parallel multipliers are designed and compared with each other. The

results of the design and a digital simulation show that the circuit area of the 4-bit systolic

multiplier is almost the half of that of the 4-bit array multiplier, and the latency is about

1.5 times longer. Our estimation of the performance of larger scale multipliers shows that

the proposed systolic multiplier achieves comparable latency to the array multiplier with

extremely smaller circuit area when the bit-width of input is large. A 1-bit PE of the

systolic multiplier is fabricated using NEC standard Nb process and successfully tested

at low speed.

In Chapter 7, conclusion and future works are stated. The knowledge obtained through

the design automation algorithms will be bases of the development of computer-aided

design (CAD) systems for SFQ digital circuits. The result obtained through the study

of the systolic multiplier is valuable knowledge for designing SFQ arithmetic circuits.

Development of SFQ-specific algorithms and methods makes the performance of SFQ

digital circuits higher.
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Chapter 1

Introduction

1.1 Background

Recent advances in information and communication technology have been supported by

the continuous progress of CMOS integrated circuits. However, the progress faces difficul-

ties because of the limit of miniaturization, the heat dissipation, the increase of intercon-

nect delay and so on. To overcome the difficulties, many technologies have been studied.

Superconductive single-flux-quantum (SFQ) circuit technology[1] is one of such technolo-

gies. In the report of International Technology Roadmap for Semiconductor (ITRS) pub-

lished in 2003, SFQ circuit technology was ranked at the highest position for the next

generation technology of integrated circuits[2]. Various studies on SFQ circuit technology

have been carried out[3–24].

SFQ circuits consist of Josephson junctions (JJs) and inductances. An SFQ pulse

which is generated at a JJ is used as a carrier of information. The width of an SFQ pulse

is several picoseconds and the height is about 1 mV. Switching energy of a gate of SFQ cir-

cuits is much smaller than that of CMOS circuits and switching speed is faster. By using

SFQ circuits, ultra-fast computation unachievable by CMOS circuits is expected. Un-

til now, process technologies[4], cell libraries[5, 6], processor architectures[7–12], network

switches[13], arithmetic circuits[14, 15], interconnection technologies[16–18], cryocooled
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2 CHAPTER 1. INTRODUCTION

systems[19] and so on have been studied using tiny prototype circuits. In addition, design

of the circuits has been carried out largely by manually placing and routing optimized

parts called cells. It is expected that relatively large integrated circuits will be achieved

in the near future by the advance of process technology. To design larger scale circuits,

computer-aided design (CAD) including design automation is indispensable and studies

on design automation algorithms suitable for SFQ circuits are important.

In SFQ digital circuits, pulses are used for representing the logic values “1” and “0.”

When the presence and the absence of a pulse are simply assigned to the logic values “1”

and “0,” the logic value “0” and the state of “no signal” is indistinguishable. Therefore,

in SFQ digital circuits, two methods are used for representing the logic values[3]. One is

‘dual-rail representation’ in which “1” and “0” lines are used and the other is ‘synchronous

clocking representation’ in which synchronizing clocks are used. Since these representation

methods are different from those of CMOS digital circuits, circuit structure suitable for

arithmetic circuits is different.

As interconnections in SFQ digital circuits, Josephson-transmission-lines (JTLs)[1]

have been used. JTLs consist of JJs and the transmission delay of unit length is com-

parable with that of logic gates. Now, transmission lines without JJs are developed as

next generation interconnections of SFQ circuits[16–18]. The transmission lines are called

passive-transmission-lines (PTLs) and can transmit pulses at almost the speed of light.

Since many studies have been carried out on designs using JTLs, the potential of PTLs

is not derived.

In this dissertation, we propose design automation algorithms and design of an arith-

metic circuit for SFQ digital circuits. Advancement of SFQ circuit technology largely

relies on the development of CAD systems which can achieve high-performance (e.g.,

small-area, high-throughput) circuits and can design circuits systematically. There are

many study topics such as logic synthesis, clock scheduling, clock tree synthesis, place-

ment and routing and verification. In addition, studies on circuit structure of arithmetic

circuits suitable for SFQ digital circuits are also important for the advancement of SFQ
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circuit technology because suitable circuit structure of SFQ arithmetic circuits is different

from that of CMOS arithmetic circuits. Several studies have been carried out[20, 23, 24].

For design automation algorithms, we focus on logic synthesis and clock scheduling.

For dual-rail SFQ digital circuits, we propose a new method of logic synthesis. Although

dual-rail representation has some advantages in comparison with synchronous clocking

representation, it has not been used because circuit area tends to be larger. It is important

to develop a method of logic synthesis which can reduce circuit area. For synchronous

clocking SFQ digital circuits with PTLs, we propose an algorithm of clock scheduling.

Clock scheduling becomes important when PTLs are used as interconnections because it

largely affects the performance of circuits. For synchronous clocking SFQ digital circuits,

we propose a synthesis method of sequential circuits. Since all logic gates are driven

by clock pulses, conventional synthesis methods of sequential circuits spoil the power of

high-throughput computation of an SFQ digital circuit. It is important to develop a new

method which can utilize the power. As an SFQ arithmetic circuit, we focus on multipli-

cation and propose a multiplier suitable for SFQ digital circuits because multiplication is

one of the most important arithmetic operations.

Using the design automation algorithms to be proposed, we can design high-performance

SFQ digital circuits systematically. The knowledge obtained through the studies about

design automation algorithms will be bases of the development of CAD systems for SFQ

digital circuits. In addition, the result obtained through the study of the multiplier is

valuable knowledge to design SFQ arithmetic circuits. Development of SFQ-specific algo-

rithms and methods makes the performance of SFQ digital circuits higher.

1.2 Outline of the Dissertation

In Chapter 2, we describe the basis of SFQ circuits and the representation of logic values

for SFQ digital circuits.

In Chapter 3, we propose a method of logic synthesis for dual-rail SFQ digital circuits.
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Dual-rail representation has some advantages in comparison with synchronous clocking

representation. However, since circuit area using dual-rail representation usually becomes

larger, dual-rail representation has not been used. If small-area can be achieved using dual-

rail representation, adoption of dual-rail representation becomes a promising approach for

designing SFQ digital circuits. The experimental results on benchmark circuits show that

the proposed method can synthesize dual-rail SFQ digital circuits which consist of about

27.1% fewer logic elements than those synthesized by a Transduction-based method on

average.

In Chapter 4, we propose a clock scheduling algorithm for synchronous clocking SFQ

digital circuits with PTLs. Clock scheduling becomes important when PTLs are used as

interconnections because it largely affects the performance (e.g., clock frequency and/or

area) of circuits. Development of good clock scheduling algorithms leads synchronous

clocking SFQ digital circuits to high-throughput and small-area circuits. The experimental

results on benchmark circuits show that for a given clock period, the proposed algorithm

can obtain near optimal solutions in which inserted delay elements are 59.0% fewer and

the height of clock trees are 40.4% shorter on average than those by a straightforward

algorithm. The minimum clock periods are 19.0% shorter on average than those by the

straightforward algorithm.

In Chapter 5, we propose a synthesis method of sequential circuits (circuits with feed-

back loops) for synchronous clocking SFQ digital circuits. Since all logic gates are driven

by clock pulses, conventional synthesis methods of sequential circuits spoil the power of

high-throughput computation of an SFQ digital circuit. For achieving high-performance

SFQ sequential circuits, it is important to develop a new method which can utilize the

power. The experimental results on benchmark circuits show that compared with a con-

ventional method for CMOS digital circuits, the proposed method synthesizes circuits

that work with 4.9 times higher clock frequency and have 17.3% more gates on average.

In Chapter 6, we propose an integer multiplier suitable for synchronous clocking SFQ

digital circuits based on the systolic array scheme. Since SFQ digital circuits work by



1.2. OUTLINE OF THE DISSERTATION 5

pulse logic, logic gates of SFQ digital circuits have different features from those of CMOS

digital circuits. Suitable circuit structure of SFQ arithmetic circuits is different from

that of CMOS arithmetic circuits. Therefore, the importance of studies on such suitable

circuit structure is increasing. The design of 4-bit multipliers and our estimation of the

performance of larger scale multipliers show that the proposed systolic multiplier achieves

comparable latency to an array multiplier with extremely smaller circuit area when the

bit-width of input is large.

In Chapter 7, we conclude this dissertation and state future works.





Chapter 2

Preliminaries

2.1 Single-Flux-Quantum (SFQ) Circuits

2.1.1 Josephson Junction

A Josephson junction (JJ) consists of two weakly coupled superconductors which are

separated by a very thin insulator or normal conductor as shown in Fig. 2.1. A Josephson

junction has the following characteristics called the Josephson effects.

• When a DC current I < IC (IC is the critical current of the Josephson junction) is

applied to the Josephson junction, no voltage is present on the junction though the

current flows. This is the DC Josephson effect.

• When a DC current I ≥ IC is applied, a voltage is present and the junction switches

to a finite voltage state. In this case, the phase varies with the voltage that is present

superconductor superconductor

insulator
or

normal 
conductor

Figure 2.1: A structure of a Josephson junction.

7



8 CHAPTER 2. PRELIMINARIES

bias current bias current bias current

IC0 IC1 IC2

L0 L1 L2

J0 J1 J2

Figure 2.2: A general structure of an SFQ circuit.
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L1IC1 < Φ0 L2IC2 > Φ0

SFQ

J0 J1 J2

Figure 2.3: A behavior of an SFQ circuit.

on the junction and an AC current whose frequency is proportional to the changes

of the phase flows. This is the AC Josephson effect.

2.1.2 SFQ Circuits

An SFQ circuit consists of Josephson junctions and inductances as shown in Fig. 2.2. Here,

L indicates an inductance of superconductive loops, J indicates a Josephson junction and

IC indicates the critical current of the Josephson junction. When a Josephson junction of

a superconductive loop switches, a flux quantum, i.e., an SFQ, Φ0 moves to its adjacent

loop. In addition, when the junction switches, a very short voltage pulse V (t) called an
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SFQ pulse is present. Then,

∫

V (t)dt = Φ0 ≃ 2.07 [mV × ps] (2.1)

holds.

In SFQ circuits, an SFQ can be stored in the loop or transmitted to its adjacent loop

according to the values of L and IC . If

LIC < Φ0

holds, an SFQ is transmitted to its adjacent loop. On the other hand, if

LIC > Φ0

holds, an SFQ is stored in the loop. When the next SFQ is input, the stored SFQ is

transmitted to its adjacent loop. We show a behavior of an SFQ circuit in Fig. 2.3. An

SFQ input from the left edge is transmitted from the superconductive loop J0-L1-J1 to

J1-L2-J2 because L1IC1 < Φ0 holds. In J1-L2-J2, since L2IC2 > Φ0 holds, the SFQ is

stored in the loop.

2.2 Representation of Logic Values for SFQ Digital Circuits

In SFQ digital circuits, SFQ pulses are used for representing the logic values “1” and “0.”

When the presence and the absence of a pulse are simply assigned to the logic values “1”

and “0,” the logic value “0” and the state of “no signal” is indistinguishable. Therefore,

in SFQ digital circuits, two methods are used for representing the logic values. One is

‘dual-rail representation’ and the other is ‘synchronous clocking representation.’

2.2.1 Dual-Rail Representation

In dual-rail representation, two signal lines are used for representing two logic values “1”

and “0.” If there is a pulse on the signal line “1,” it represents the logic value “1,” while if
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data

data
1 0 0 1

data logic
gate

logic
gatedata

Figure 2.4: A representation of logic values and a general circuit structure using dual-rail rep-

resentation.

there is a pulse on the signal line “0,” it represents the logic value “0.” Data can be input

with the restriction that the data do not overtake previous data in all paths. Therefore,

to achieve high operating frequency, arrangement of the delay of all paths is necessary.

Process variation, timing jitters and so on may vary the delay. A circuit using dual-rail

representation always works correctly by lowering its operating frequency even if such

delay variation occurs. However, since two signal lines are necessary for representing the

two logic values “1” and “0” of one signal, the circuit area using dual-rail representation

tends to be larger. A representation of logic values and a general circuit structure are

shown in Fig. 2.4. A circuit using dual-rail representation is called dual-rail circuits.

2.2.2 Synchronous Clocking Representation

In synchronous clocking representation, synchronizing clocks are introduced in order to

represent the logic values. The two logic values, i.e., “1” and “0,” are represented by

the presence and the absence of a pulse on a data line in a clock period, respectively. A

representation of logic values and a general circuit structure are shown in Fig. 2.5. For a

gate with clock input (clocked gate), similar to flip-flops (FFs) of CMOS digital circuits,

there are constraints between input timing of data and clock signals. One is hold time

constraint and the other is setup time constraint. For a clocked gate a, we let tclk(a) be

the time of clock input, tdata(a) be the time of data input, δS(a) be the setup time, δH(a)
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logic
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logic
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Figure 2.5: A representation of logic values and a general circuit structure using synchronous

clocking representation.

be the hold time and TCP be the clock period. Then, the following inequalities have to

hold for working the gate correctly.

tdata(a) ≥ tclk(a) + δH(a) (2.2)

tdata(a) ≤ tclk(a) + TCP − δS(a) (2.3)

Ineq. (2.2) is the hold time constraint and indicates that input of data pulses is prohibited

for a certain period, i.e., δH(a), after the input of a clock pulse. Ineq. (2.3) is the setup

time constraint and indicates that input of data pulses is prohibited for a certain period,

i.e., δS(a), before the input of a clock pulse.

In synchronous clocking representation, there are the following four methods of clock

supply[3].

Zero-skew clocking A clock signal is provided for all clocked gates simultaneously. This

method is widely used in CMOS digital circuits. A circuit structure with zero-skew

clocking is shown in Fig. 2.6. We let d(i, j) be the data delay between gates i and j.

Then, the minimum clock period TMIN

zero-skew
that is achievable using zero-skew clocking is

represented by the following equation:

TMIN

zero-skew = max
i,j
{d(i, j) + δS(j)}.
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Figure 2.6: A circuit structure with zero-skew clocking.
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Figure 2.7: A circuit structure with counter-flow clocking.

Counter-flow clocking The direction of clock flow is opposite to that of data flow. A

clock signal is input from the output side of the circuit. Since the direction is opposite,

no collision occurs between the data of present time and that of former time. In addition,

violations on the hold time constraint are not likely to occur in comparison with zero-skew

clocking. However, it is difficult to achieve high clock frequency. A circuit structure with

counter-flow clocking is shown in Fig. 2.7. We let c(i, j) be the clock delay between gates

i and j. Then, the minimum clock period TMIN

counter
that is achievable using counter-flow

clocking is represented by the following equation:

TMIN

counter
= max

i,j
{c(i, j) + d(i, j) + δS(j)}.

Concurrent-flow clocking The direction of clock flow is the same as that of data flow. A

clock signal has to arrive at each clocked gate before the arrival of the corresponding data.
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Figure 2.8: A circuit structure with concurrent-flow clocking.

It is possible to make clock frequency high in comparison with zero-skew or counter-flow

clocking. However, timing design is difficult. A circuit structure with concurrent-flow

clocking is shown in Fig. 2.8. The minimum clock period TMIN

concurrent
that is achievable

using concurrent-flow clocking is represented by the following equation:

TMIN

concurrent
= max

j
{δH(j) + δS(j)}.

Clock-follow-data clocking Similar to concurrent-flow clocking, the direction of clock

flow is the same as that of data flow. The different point is that data have to arrive at each

clocked gate before the arrival of the corresponding clock signal. One clock pulse carries

data from the circuit input to the output. The minimum clock period that is achievable

using clock-follow-data clocking is the same as that in concurrent-flow clocking.

Now, concurrent-flow clocking is widely used in SFQ digital circuits because it is

possible to make clock frequency high. Malfunction may occur when delays of each path

in the circuit vary because of process variation, timing jitters and so on. Therefore, careful

timing design is necessary. A circuit using synchronous clocking representation is called

synchronous clocking circuits.





Chapter 3

Design Method for

Dual-Rail SFQ Digital Circuits

3.1 Introduction

In this chapter, we propose a new method of logic synthesis for dual-rail SFQ digital

circuits. Dual-rail circuits have some advantages in comparison with synchronous clocking

circuits. For example, timing design of dual-rail SFQ digital circuits is easy in comparison

with synchronous clocking SFQ digital circuits. This feature is favorable for developing

CAD systems. In addition, since dual-rail circuits always works correctly by lowering those

operating frequency even if delay variation occurs, the robustness of circuits is higher.

However, the circuit area of dual-rail SFQ digital circuits tends to be larger because two

signal lines are necessary for representing the two logic values, i.e., “1” and “0,” and dual-

rail representation has not been used. If small-area circuits can be achieved, adoption of

dual-rail representation becomes a promising approach for designing SFQ digital circuits.

Therefore, it is important to develop logic elements and design methods which can reduce

signal lines and circuit area. As a logic element suitable for this aim, a 2×2-Join has

been proposed[21, 22]. By using a 2×2-Join, some confluence buffers (CBs)[1] and some

splitters (SPLs)[1], we can achieve arbitrary logic operations. An SPL is an element which

15
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splits an input pulse to two outputs, while a CB is an elements which merges pulses from

two input terminals into one. A 2×2-Join is a universal logic element with a small area

for dual-rail SFQ digital circuits.

In the new method to be proposed, we use the 2×2-Join as a logic element. For repre-

sentation of logic functions, we propose a root-shared binary decision diagram (RSBDD)

which is a directed acyclic graph constructed from binary decision diagrams (BDDs)[25,

26]. For reduction of the circuit area, we also propose a new element called resettable

1×2-Join. In the method of logic synthesis, first we construct an RSBDD from given logic

functions, and then reduce the number of nodes in the constructed RSBDD by a variable

re-ordering technique. Finally, we synthesize a circuit with 2×2-Joins and resettable 1×2-

Joins from the reduced RSBDD. For synthesizing larger scale digital circuits, the number

of nodes in an RSBDD is an important factor because the number of logic elements in-

cluded in a synthesized circuit is affected by the number of nodes in the RSBDD. In the

variable re-ordering technique, we search for good variable ordering by exchanging nodes

in adjacent levels.

For the evaluation of the proposed method, we have implemented the method and have

synthesized some benchmark circuits. The experimental results show that the proposed

method can synthesize dual-rail SFQ digital circuits which consist of about 27.1% fewer

logic elements than those synthesized by a Transduction-based method.

This chapter is organized as follows. In Section 3.2, we describe dual-rail SFQ circuits

with 2×2-Joins and propose a new logic element, i.e., resettable 1×2-Join, for reduction

of the circuit area. In Section 3.3, we propose a root-shared binary decision diagrams

(RSBDDs) and in Section 3.4, we propose a method of logic synthesis. In Section 3.5, we

show experimental results. Finally, in Section 3.6, we give the summary of this chapter.
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Figure 3.1: Notations of basic elements: (a) 2×2-Join, (b) CB, (c) SPL.
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Figure 3.2: 2×2-Join: (a) JJ schematic, (b) input-output relations.

3.2 Dual-Rail SFQ Circuits with 2×2-Joins

3.2.1 Dual-Rail SFQ Circuits with 2×2-Joins

In dual-rail representation, two signal lines are used for representing a logic signal. If

there is a pulse on the signal line “0” (“false-line”), it represents the logic value “0,” while

if there is a pulse on the signal line “1” (“true-line”), it represents the logic value “1.”

We can input data with the restriction that the data do not overtake previous data in all

paths. Therefore, we can achieve high operating frequency by arranging the delay time of

all paths.

A 2×2-Join[21, 22] is a logic element for dual-rail SFQ digital circuits. By using a

2×2-Join, some confluence buffers (CBs)[1] and some splitters (SPLs)[1], we can achieve

arbitrary logic operations. An SPL is an element which splits an input pulse to two

outputs, while a CB is an elements which merges pulses from two input terminals into

one. Two input pulses for a CB are not allowed to arrive at the same time. In Fig. 3.1,
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Figure 3.3: Two design examples of a full adder using 2×2-Joins: (a) the circuit with the fewest

number of 2×2-Joins, (b) the circuit consists of AND, OR and XOR using 2×2-Joins and CBs.

we show notations of the basic elements that we use in this chapter.

In Fig. 3.2, we show a JJ schematic and input-output relations of a 2×2-Join. Each

cross in Fig. 3.2 shows a JJ. Dual-rail data are fed into inputs A and B of a 2×2-Join,

and according to the combination of the input values, a pulse is generated at one of the 4

outputs (00, 01, 10, 11). For example, if pulses are fed into At and Bt, a pulse is generated

at output 11. A 2×2-Join is a universal logic element with a small area.

As an example of dual-rail SFQ circuits with 2×2-Joins, we show full adders (S =
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Figure 3.4: A 2×2-Join where two of 4 outputs are not used.
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Figure 3.5: Resettable 1×2-Join: (a) JJ schematic, (b) input-output relations.

X ⊕ Y ⊕Z, C = X · Y + Y ·Z + Z ·X) in Fig. 3.3. Figure 3.3 (a) shows the circuit with

the fewest number of 2×2-Joins. On the other hand, Fig. 3.3 (b) shows the circuit that

consists of AND, OR and XOR using 2×2-Joins and CBs. The smallest circuit shown in

Fig. 3.3 (a) consists of only two 2×2-Joins, while the circuit shown in Fig. 3.3 (b) consists

of 5. By using 2×2-Joins effectively, we can design small-area dual-rail circuits.

3.2.2 Resettable 1×2-Join

In a circuit synthesized with 2×2-Joins, CBs and SPLs, there are 2×2-Joins whose two

of 4 outputs are not used as is shown in Fig. 3.4. For reduction of the circuit area, we

propose a new logic element called resettable 1×2-Join by removing 2 outputs from a

2×2-Join.

A resettable 1×2-Join is a logic element with 4 inputs and 2 outputs. We show a JJ

schematic and input-output relations, and a notation of a resettable 1×2-Join in Fig. 3.5

and Fig. 3.6, respectively. A resettable 1×2-Join consists of only 12 JJs in comparison

with 16 JJs of a 2×2-Join. When pulses are fed into At and Bt, a pulse is generated
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Figure 3.6: Notation of a resettable 1×2-Join.

at output 11 and when pulses are fed into At and Bf, a pulse is generated at output 10.

Different from a 2×2-Join, when pulses are fed into Af and Bf/Bt of a resettable 1×2-Join,

no pulse is generated and the resettable 1×2-Join is reset.

We have confirmed that a 2×2-Join and a resettable 1×2-Join have almost the same

physical characteristics (delay time, operation margins and so on) by an analog circuit

simulation.

3.3 Root-Shared Binary Decision Diagram

3.3.1 Binary Decision Diagram (BDD)

A binary decision diagram (BDD) on a variable set X = {x1, . . . , xv} is a directed acyclic

graph and represents a logic function f : {0, 1}v → {0, 1}. As nodes, there are non-

terminal nodes labeled by variable xi and terminal nodes labeled by the constant “0” or

“1.” The non-terminal nodes are called variable nodes and the terminal nodes are called

leaves. Among variable nodes, there is a root node whose indegree is zero. The outdegree

of a variable node is two, while that of a leaf is zero. Each of the two outgoing edges of a

variable node has a label. An edge labeled by “0” is called 0-edge and one labeled by “1”

is called 1-edge. For an input values of the logic function a = (a1, . . . , av) ∈ {0, 1}
v, we

can trace the BDD from the root node in accordance with the values of the input. From

a node labeled by xi, we trace the 0-edge of the node when ai = 0, while we trace the

1-edge when ai = 1. The value of the leaf that we reach is the value of the logic function

with the input values. The BDD can be constructed by applying Shannon expansion to
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Figure 3.7: An example of an RSBDD.

the logic function.

We can represent a logic function uniquely using a BDD when variable ordering is

fixed, redundant nodes are removed and equivalent nodes are merged. A redundant node

is a node whose 0-edge and 1-edge point to the same node. Two nodes are equivalent when

they have the same label, the 0-edges of them point to the same node and the 1-edges of

them point to the same node. Such BDD is called reduced ordered BDD (ROBDD)[26].

BDDs are widely used in electronic design automation (EDA) fields.

3.3.2 Root-Shared Binary Decision Diagram (RSBDD)

An RSBDD on a variable set X = {x1, . . . , xv} is a directed acyclic graph and represents

a set of logic functions F = {f1, . . . , fm} (fi : {0, 1}vi → {0, 1}, vi ≤ v). As nodes, there

are variable nodes and leaves. Among variable nodes, there are root nodes. Each edge

has two labels F ′ (F ′ ⊆ F ) and c (c ∈ {0, 1}). We call the former label ‘f-label’ and the

latter ‘c-label.’ For a function fi and an input values a = (a1, . . . , av) ∈ {0, 1}
v, we can

trace the RSBDD from one of the root nodes. We trace the edges whose f-labels contain

fi. From a node labeled by xi, we trace the 0-edge of the node when ai = 0, while we

trace the 1-edge when ai = 1. The value of the leaf that we reach is the value of fi with

the input values.
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We show an example of an RSBDD in Fig. 3.7. The RSBDD represents functions

S(X, Y, Z) = X ⊕ Y ⊕ Z, C(X, Y, Z) = X · Y + Y · Z + Z ·X and P (Y, Z) = Y · Z. In

Fig. 3.7, dashed edges show that c-labels of the edges are 0 and solid edges show that

c-labels are 1. “{S, C},” “{S},” “{C}” and “{P}” are f-labels. The RSBDD consists of

two connected parts. The left side part represents {P} and the right side part represents

{S, C}.

An RSBDD is constructed by the following rule from BDDs. Variable ordering of all

the BDDs is identical. For given variable ordering, if labels of root nodes of the BDDs

are not unique, a disconnected graph is constructed.

[The rule for constructing an RSBDD of a set of functions F ]

• If the size of F is one, the RSBDD of F is obtained by adding f-labels to the BDD

representing the function.

• For F = F1 ∪ F2, the RSBDD of F is obtained by merging nodes and edges of the

RSBDDs of F1 and F2 that satisfy the followings.

– Node u1 of the RSBDD of F1 and node u2 of the RSBDD of F2 are mergeable

when their labels are identical and either of the following conditions holds.

1. They are root nodes, or

2. There is one-to-one relation between the sets of parent nodes of nodes u1

and u2 and, all the corresponding parent nodes are mergeable and the c-

labels of the outgoing edges from the related parent nodes to nodes u1 and

u2 are identical.

– Edges e1 and e2 are mergeable when their start nodes are identical, their end

nodes are identical and their c-labels are identical. e1 and e2 are to be merged

by taking the union of their f-labels.

We define the depth of a root node as 0 and the depth of a variable node except root

nodes as the largest depth of its parent nodes plus 1 and the level of a node as the position
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Figure 3.8: Flow of logic synthesis.

of the variable of the node in the variable ordering. In the right side part of Fig. 3.7, the

depths of the nodes labeled by X, Y and Z are 0, 1 and 2, respectively and in the left side

part, the depths of the nodes labeled by Y and Z are 0 and 1, respectively. The levels of

the nodes labeled by X, Y and Z are 0, 1 and 2, respectively. We define the size of an

RSBDD as the total number of variable nodes and also define the width of a level as the

number of nodes in the level. In Fig. 3.7, the size is 7 and the width of level 0, 1 and 2

are 1, 3 and 3, respectively.

3.4 Method of Logic Synthesis

3.4.1 Flow of Logic Synthesis

Now, we propose a method of logic synthesis. We show the flow of the proposed method

in Fig. 3.8. We first construct an RSBDD from given logic functions, and then reduce

the size of the constructed RSBDD by a variable re-ordering technique. We synthesize a

circuit that uses only 2×2-Joins, CBs and SPLs from the reduced RSBDD. Finally, we
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replace 2×2-Joins with resettable 1×2-Joins if possible for reduction of the circuit area.

Variable ordering of an RSBDD is important because the number of nodes in the

RSBDD is affected by the variable ordering of it. Exact minimization of an RSBDD

is almost impossible because the computation cost of exact minimization is very high.

Therefore, we apply the variable re-ordering technique in [27] to an RSBDD to reduce its

size.

3.4.2 Construction of an RSBDD

Method of RSBDD Construction

When functions are given by logic expressions, we can construct an RSBDD according to

the given functions incrementally.

First, we select one logic function and construct the RSBDD representing the function.

Then, we select unprocessed functions one by one and construct the RSBDD from the

selected function. If there is a node which is newly created or one whose number of parent

nodes varies or one whose parent nodes are merged with other nodes, we check whether

mergeable pairs exist and merge all mergeable pairs.

Example of RSBDD Construction

As an example of RSBDD construction, we show the process of constructing an RSBDD

of the full adder function S(X, Y, Z) = X⊕Y ⊕Z and C(X, Y, Z) = X ·Y +Y ·Z +Z ·X

in Fig. 3.9. We assume the variable ordering is X-Y -Z. In Fig. 3.9, for explanation, we

numbered the nodes. We process the functions sequentially.

First, we construct the BDD of function S and label all edges of the BDD “{S}” as

f-labels. Figure 3.9 (a) is the RSBDD of {S}. Then, we process function C = X · Y +

Y · Z + Z ·X. Figure 3.9 (b) shows an intermediate step of processing X. Here, nodes 0

and 5 are root nodes and labels of these two nodes are identical. Therefore, we can merge

these two nodes. By merging them, we can obtain the RSBDD shown in Fig. 3.9 (c). We
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Figure 3.9: Process of constructing RSBDD of the full adder function.

have shown Fig. 3.9 (b) for explanation, although the RSBDD shown in Fig. 3.9 (b) is not

constructed actually and the RSBDD shown in Fig. 3.9 (c) is directly constructed from
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Fig. 3.9 (a).

Figure 3.9 (d) shows an intermediate step of processing X ·Y . Nodes 2 and 6 have the

same label. Furthermore, c-labels of the edges between these two nodes and node 0, that

is their parent node, are both 1. Therefore, nodes 2 and 6 are mergeable. By merging

them, we can obtain the RSBDD shown in Fig. 3.9 (e).

Figure 3.9 (f) shows an intermediate step of processing X · Y + Y ·Z. In this step, we

can merge nodes 1 and 7, and can obtain the RSBDD shown in Fig. 3.9 (g).

Figure 3.9 (h) shows an intermediate step of processing X · Y + Y · Z + Z · X. In

this step, nodes 4 and 8 are mergeable. Their labels are the same, i.e., Z, and c-labels

of the edges between these two nodes and node 1 which is one of the parent nodes are

the same, i.e., 1, and the edges between these two nodes and node 2 are the same, i.e., 0.

By merging these two nodes, we can obtain the RSBDD shown in Fig. 3.9 (i). Similar to

Fig. 3.9 (b), the RSBDDs shown in Fig. 3.9 (d), (f) and (h) are not constructed, but the

RSBDDs shown in Fig. 3.9 (e), (g) and (i) are directly constructed.

Computational Complexity of RSBDD Construction

Now, we consider the computational complexity of constructing an RSBDD. When we

check whether two nodes are mergeable, we have to check all parent nodes of the two

nodes. The number of parent nodes of a node is the indegree of it. The summation of the

number of parent nodes of the nodes in an RSBDD is the summation of their indegrees,

which is the number of edges in the RSBDD. For a connected part of the RSBDD, a node

is checked at most for all nodes in the same level of the part. Therefore, the computational

complexity of constructing an RSBDD is O(f · e · wmax) where f is the number of given

logic functions, e is the number of edges in the RSBDD, and wmax is the maximum width

of the connected part of the RSBDD. The computational complexity is O(fe2).
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3.4.3 Reduction of the Size of an RSBDD

Method of Size Reduction

By searching for good variable ordering and changing variable ordering, we can reduce

the size of an RSBDD. The number of root nodes in an RSBDD may vary when variable

ordering of it changes. In the proposed method of logic synthesis, we apply the variable

re-ordering technique in [27], that is originally proposed for conventional BDDs, to the

RSBDD constructed in Section 3.4.2 and reduce the size. We exchange all nodes in

adjacent levels by level exchange. We determine strategies of level exchange and reduce

the size of the RSBDD.

When nodes in adjacent levels are exchanged, all the nodes have to be shared by the

same set of functions. If the nodes are shared by a different set of functions, we cancel the

sharing. Furthermore, if we exchange nodes in levels i and i + 1, we have to split nodes

in level i + 1 whose parent nodes are in levels lower than i. After these processes are

carried out, the nodes in level i and those in level i+1 can be exchanged. After exchange

of the nodes, we check whether mergeable pairs exist and if such pairs exist, merge them

pairwise.

Example of Size Reduction

As an example, we show the level exchange of an RSBDD in Fig. 3.10. Figure 3.10 (a)

shows the original RSBDD. We exchange the nodes in level i and those in level i + 1,

that is, the nodes labeled by Y and those labeled by Z. First, we cancel the sharing of

functions F and G because the right side node in level i + 1 is not shared by F and G.

Furthermore, since a parent node of the right side node in level i + 1 is in level i− 1, we

split the right side node. We show the RSBDD after the cancellation and the splitting

in Fig. 3.10 (b). Then, we exchange the nodes in level i and those in level i + 1. Figure

3.10 (c) shows the RSBDD after the exchange. Finally, we check whether mergeable pairs

exist and merge all mergeable pairs. Figure 3.10 (d) shows the RSBDD after the merging.
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Figure 3.10: Example of level exchange: (a) an original RSBDD, (b) after splitting a node and

cancellation of sharing functions, (c) after exchange of level i and level i + 1, (d) after merging

of mergeable pairs.

As a strategy of level exchange, we adopt sifting[27]. We briefly describe sifting here.

We assume that variables of a BDD are (x1,. . .,xi,. . .,xv). When we fix variable ordering

except xi, we can insert xi into v different positions. We search for the position that the

size of the BDD is the minimum and move the variable to the position. We select all

variables one by one and reduce the size.

Computational Complexity of Size Reduction

Here, we consider the computational complexity of the level exchange for a connected

part of an RSBDD and sifting.
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First, we consider the computational complexity of the level exchange of level i and

level i + 1. We assume the width of level i in an original RSBDD to be wi, the width of

level i+1 to be wi+1 and the number of variables to be v. The computational complexity

of splitting nodes is O(pi+1) where pi+1 is the number of parent nodes of nodes in level

i + 1, and the computational complexity of exchanging nodes is O(f · (wi + wi+1)). The

computational complexity of the cancellation of sharing functions is O(f
∑v

x=i nx) where

ni is the number of nodes in level i. The computational complexity of the merging is

O(f ·wmax
∑v

x=i ex) where ei is the number of edges in level i. Therefore, the computational

complexity of level exchange of level i and i+1 is O(f ·wmax
∑v

x=i ex). The computational

complexity is O(fe2).

In sifting, selection of variables are carried out v times. The number of level exchange

for each selection is 3(v − 1) in the worst case. Therefore, in the worst case, the number

of level exchange is 3v(v − 1).

3.4.4 Synthesis of a Circuit

Method of Circuit Synthesis

We synthesize a circuit from the RSBDD constructed up to Section 3.4.3. We select

connected parts from the RSBDD one by one and synthesize the circuit. Here, we describe

a method for synthesizing a circuit block from a connected part of the RSBDD. We

describe an example of circuit synthesis later using Fig. 3.11.

We process sequentially from the root node to the leaves. We construct the first stage

of the block from the root node and the nodes of depth 1 using 2×2-Joins. Then, we

construct the i-th (i ≥ 2) stage from the nodes of depth i. Finally, we derive circuit

outputs from the leaves.

To select an appropriate signal from the 4 outputs of a 2×2-Join, we label a number

‘0’ or ‘1’ to nodes of the RSBDD. We call the number ‘output-selection-number.’ When

the output-selection-number is 0, we select output 00 or 01 of the corresponding 2×2-Join
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Figure 3.11: Process of synthesizing a full adder.

according to the c-label of the edge of the corresponding node. For example if the c-label

of the edge is 0, we select 00. Similarly, when the output-selection-number is 1, we select

output 10 or 11.

We construct the first stage from the root node and the nodes of depth 1. For nodes

of depth 1 that have the same label, we place a 2×2-Join. We connect the true-line of

the root variable to input At of the 2×2-Join, the false-line of the root variable to Af, the

true-line of the variable of depth 1 to Bt and the false-line of the variable of depth 1 to
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Bf. We mark the root node and the processed nodes of depth 1 with “processed.” We let

the output-selection-number of the node of depth 1 be 0 or 1 according to the edge of the

root node that points to the node being 0 or 1, respectively.

We construct the i-th (i ≥ 2) stage from the nodes of depth i. For a node of depth i,

we place a 2×2-Join and connect the true-line and the false-line of the variable of depth i

to input Bt and Bf of the 2×2-Join, respectively. We connect intermediate circuit outputs

that are constructed up to the previous stages to input At and Af as follows.

To input At, we connect lines that correspond to edges pointing to the processing

node. We merge these lines to one line using CBs and connect it to At. When a parent

node of the processing node is the root node, we select the false-line or the true-line of

the root variable according to the edge between the parent node and the processing node

being a 0-edge or a 1-edge, respectively. When the parent node of the processing node

is not the root node, we select an output of the 2×2-Join that corresponds to the parent

node according to the output-selection-number and the c-label of the edge. From the 4

outputs (00, 01, 10, 11), we select an output whose label is identical to the concatenation

of the output-selection-number and the c-label of the edge.

To input Af, we connect lines corresponding to edges that are outgoing from nodes

included in paths from the root node to the processing node and are not included in the

paths. Selection of lines is carried out in the same way as the case of At. We check

whether there are edges that point to an unprocessed node of the same level and that

are identical to the edges selected for connecting to Af. If such edges exist, we set the

output-selection-number of the unprocessed node to 0 and mark the unprocessed node

with “processed.” When such an unprocessed node exists, a 2×2-Join is shared by two

nodes.

We set the output-selection-number of the processing node to 1 and mark the node

with “processed.” We apply these processes to all unprocessed nodes.

We derive circuit outputs from the leaves of the connected part of the RSBDD. The

false-lines are derived from 0-leaves and the true-lines are derived from 1-leaves. We select
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lines in the same way as the case of At.

The number of stages of 2×2-Joins in the synthesized circuit block is the maximum

depth of the connected part of the RSBDD and the number of 2×2-Joins is less than

or equal to the number of nodes except the root node. In the best case, the number of

2×2-Joins is half of the number of nodes in the connected part of the RSBDD.

Example of Circuit Synthesis

As an example of circuit synthesis, we consider a full adder. The RSBDD of a full adder is

shown in Fig. 3.9 (i). It consists of one connected part. We show process of the synthesis

in Fig. 3.11.

First, we construct the 2×2-Join of the first stage from the root node and the two

nodes of depth 1. We prepare one 2×2-Join and connect the true-line (Xt) and the false-

line (Xf) of the root variable to input At and Af, respectively and, the true-line (Yt) and

the false-line (Yf) of the variable of depth 1 to Bt and Bf, respectively. We mark the root

node and the two nodes of depth 1 with “processed.” We set the output-selection-number

of node 1 and node 2 to “0” and “1,” respectively. We show the circuit that is synthesized

up to this step in Fig. 3.11 (a).

Then, we construct the 2×2-Joins of the second stage from nodes of depth 2. Here, we

process left side node (node 3) first. We prepare a new 2×2-Join and connect the true-line

(Zt) and the false-line (Zf) of the variable of depth 2 to input Bt and Bf, respectively.

We mark the node with “processed” and set the output-selection-number to “1.”

To input At, we connect lines that correspond to edges pointing to the node (0-edge

of node 1 and 1-edge of node 2). Since the output-selection-number of node 1 is 0 and

the output-selection-number of node 2 is 1, output 00 and 11 of the 2×2-Join of the first

stage are the corresponding lines. We merge these two lines to one line using a CB and

connect the merged line to At. The circuit shown in Fig. 3.11 (b) is synthesized up to

this step.

To input Af, we connect lines corresponding to edges that are outgoing from nodes
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included in the paths from the root node to the processing node and are not included in

the paths (1-edge of node 1 and 0-edge of node 2). Therefore, we connect output 01 and

10 of the 2×2-Join of the first stage to Af. These lines are identical to lines corresponding

to edges pointing to node 4. We set the output-selection-number of node 4 to “0” and

mark node 4 with “processed.” We complete processing of the nodes of depth 2. The

circuit shown in Fig. 3.11 (c) is synthesized up to this step. In this example, we can

construct the second stage by using only one 2×2-Join.

We derive circuit outputs from the leaves. By constructing circuit outputs of function

S (St, Sf), we can synthesize the circuit shown in Fig. 3.11 (d). We also derive circuit

outputs of function C (Cf, Ct) and can synthesize a full adder shown in Fig. 3.11 (e).

The number of 2×2-Joins in the full adder is 2 and the number of stages of 2×2-Joins

is 2 because the maximum depth of the RSBDD is 2.

Computational Complexity of Circuit Synthesis

First, we consider the computational complexity of synthesizing a circuit block from a

connected part of an RSBDD. When we search for signal lines that are connected to Af,

we have to check all ancestor nodes of the processing node. However, by preserving all

intermediate results, that is, edges that are included in the paths from the root node to

the processing node and edges that are not in the paths, we can search for the signal

lines by only checking the parent nodes of the processing node. The number of edges that

are preserved in the processing node is less than or equal to the number of all edges in

the connected part. Therefore, the computational complexity of searching for the signal

lines that are connected to Af is O(econnected-part · qa) where econnected-part is the number of

edges in the connected part and qa is the number of parent nodes of the processing node.

The summation of the number of all parent nodes that are included in a connected part

is identical to the number of edges in the connected part. Therefore, the computational

complexity of searching for all signals is O(e2
connected-part), and this is the computational

complexity of synthesizing the circuit block.



34 CHAPTER 3. DESIGN METHOD FOR DUAL-RAIL SFQ DIGITAL CIRCUITS

At

Af

Bt

Bf

00

01

10

11

2x
2-

Jo
in

Xt

Xf

Yt

Yf

Ct

Cf

C’t

C’f

At

Af

Bt

Bf

00

01

10

11

2x
2-

Jo
in

(a)

At

Af

Bt

Bf

00

01

10

11

2x
2-

Jo
in

At

Af

Bt

Bf

11

10
R

es
et

ta
bl

e 
1x

2-
Jo

in

Xt

Xf

Yt

Yf

Ct

Cf

C’t

C’f

(b)

Figure 3.12: Example of replacement with a resettable 1×2-Join: (a) before replacement, (b)

after replacement with a resettable 1×2-Joins.

When we synthesize a circuit from an RSBDD, the computational complexity is pro-

portional to the summation of the computational complexity of synthesizing each circuit

block, i.e., O(
∑g

c=1 e2
connected-part c) where g is the number of connected parts of the RSBDD.

The computational complexity is O(e2).

3.4.5 Replacement of 2×2-Joins with Resettable 1×2-Joins

In a circuit synthesized up to Section 3.4.4, there can be 2×2-Joins where two of the 4

outputs are not used, as shown in Fig. 3.4. By replacing such 2×2-Joins with resettable

1×2-Joins, we can reduce the circuit area. Since a resettable 1×2-Join has almost the same

physical characteristics as a 2×2-Join, we can reduce the circuit area by simply replacing
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the 2×2-Joins shown in Fig. 3.4 with resettable 1×2-Joins. We show an example of the

replacement in Fig. 3.12.

3.5 Experimental Results

3.5.1 Evaluation of Variable Re-ordering techniques

For evaluating the employed method of variable re-ordering, we have implemented the

method by programming language C. In the program, we construct an RSBDD from

given logic functions and reduce the size by level exchange with sifting. We show the

experimental results on some benchmark circuits of LGSynth’91[28] in Table 3.1. For

comparison of the method, we have also implemented other strategies “random” and

“window permutation[27].” In the random and window permutation, we have selected

a level at random 1,000 times. In addition, we set window size as 3 in the window

permutation. The experimental environment is a SunBlade2000 with UltraSPARC-III+

1.2 GHz CPU and 2 GByte memory.

The experimental results show that sifting is the best among the three strategies.

Execution time of the sifting is short in comparison with other strategies and in many

cases, the size of the RSBDDs with sifting is the best.

3.5.2 Evaluation of the Proposed Method of Logic Synthesis

For evaluating the proposed method of logic synthesis, we have implemented the method

by programming language C. We have synthesized some benchmark circuits in LGSynth’91

benchmark set[28]. In the program, we construct an RSBDD from given logic functions

first. Then, we reduce the size of the constructed RSBDD by level exchange with sifting

and synthesize a circuit using the reduced RSBDD. In the program, since the number of

logic elements does not vary, we have used only 2×2-Joins as logic elements.

In [20], a BDD-based design method was proposed as another design method of dual-

rail SFQ circuits. In the design method, a binary switch called Bina[20] is used as a logic
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Table 3.1: Experimental results of variable re-ordering.

sifting random window

circuit # of # of initial permutation

name inputs outputs size size CPU size CPU size CPU

time (s) time (s) time (s)

alu2 10 6 200 150 9.9 139 40.1 158 160.5

alu4 14 8 1363 355 105.9 1151 449.9 535 475.7

cmb 16 4 35 27 6.9 27 18.4 35 110.4

f51m 8 8 35 35 3.9 34 31.4 34 97.8

lal 26 19 77 57 24.2 57 24.9 59 127.4

term1 34 10 734 82 74.2 200 82.1 83 187.2

ttt2 24 21 179 106 25.0 139 31.2 140 126.3

x3 135 99 2154 497 1185.2 1942 547.0 1677 2532.9

z4ml 7 4 13 13 2.4 13 21.7 13 154.1

Bina

data

data
clk

out

out

Figure 3.13: Bina.

element. We show a notation of Bina in Fig. 3.13. If a clock pulse is input to clk after

input of a pulse to data, a pulse is generated at out. Similarly, if a clock pulse is input to

clk after input of a pulse to data, a pulse is generated at out. A set of BDDs is constructed

by given logic functions and the set of BDDs are merged. Then, each node of the merged

BDDs is replaced by Bina one by one. As an example, we show a full adder with Binas[20]

in Fig. 3.14. There are 4 Binas in the circuit. On the other hand, we can construct a full

adder with only 2 2x2-Joins (Fig. 3.3). Furthermore, a 2x2-Join cell included in the SFQ

cell library[5] consists of 20 JJs in comparison with 27 JJs of a Binas. A 2x2-Join is a
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Figure 3.14: A full adder using Binas.

smaller logic element than a Bina.

In [24], a Transduction-based method was proposed as another method of logic synthe-

sis for dual-rail SFQ circuits with 2×2-Joins. In the design method, a new logic element

called 2x2-AND/XOR[24] shown in Fig. 3.15 is constructed from a 2x2-Join and initial

circuits are constructed by the 2x2-AND/XOR. Then, the circuits are optimized by using

a transformation-based heuristic method based on the Transduction Method.

We have compared the proposed method with the above methods. In [20], a merging

method of BDDs is not described. We have used the constructing method of RSBDDs for

merging BDDs. We show the experimental results in Table 3.2. The numbers of 2×2-Joins

of the method in [24] is the values described in [24].

From the experimental results, our method can synthesize circuits with fewer 2×2-
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Table 3.2: Experimental results of logic synthesis.

our method method ratio (%) method

circuit # of # of in [24] (our / in [20]

name inputs outputs # of # of # of CPU # of in [24]) # of

2×2-Joins CBs SPLs time (s) 2×2-Joins Binas

alu2 10 6 144 1013 1287 10.9 236 61.0 147

alu4 14 8 349 3170 3850 123.9 479 72.9 352

cmb 16 4 25 26 50 7.2 25 100.0 26

f51m 8 8 29 131 177 4.3 64 45.3 34

lal 26 19 54 101 193 25.9 61 88.5 54

term1 34 10 78 202 306 77.3 116 67.2 79

ttt2 24 21 103 274 472 30.8 127 81.1 104

x3 135 99 494 1406 2322 1320.1 548 90.1 494

z4ml 7 4 6 18 12 2.8 12 50.0 12

Joins than the method in [24]. We can synthesize a circuit with only 45.3% of the number

of 2×2-Joins in the best case and with 72.9% on average. Furthermore, our method can

synthesize circuits with slightly fewer logic elements than the method in [20]. By using

our method, we can synthesize small-area dual-rail SFQ circuits. Most of the execution

time of our method is expended in reduction of the size of RSBDDs. Once we can obtain

reduced RSBDDs, we can synthesize circuits fast.
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3.6 Summary of the Chapter

We have proposed a new method of logic synthesis for dual-rail SFQ digital circuits. In

the method, we construct a root-shared binary decision diagram (RSBDD) from given

logic functions and reduce the size of the constructed RSBDD by a variable re-ordering

technique. Then, we construct a dual-rail SFQ circuit using the reduced RSBDD. We

have implemented the proposed method and have synthesized some benchmark circuits.

The experimental results show that the proposed method can synthesize dual-rail SFQ

digital circuits which consist of about 27.1% fewer logic elements than those synthesized

by a Transduction-based method.

Using the proposed method, we can design small-area dual-rail SFQ digital circuits.

This study is a valuable step for CAD systems using dual-rail representation.





Chapter 4

Clock Scheduling for Synchronous

Clocking SFQ Digital Circuits

4.1 Introduction

In this chapter, we propose an algorithm for clock scheduling of concurrent-flow clocking

SFQ digital circuits with passive-transmission-lines (PTLs). Now, PTLs are developed

as next generation interconnections of SFQ circuits[16–18]. Clock scheduling becomes

important when PTLs are used as interconnections. PTLs can transmit pulses at almost

the speed of light. However, an active splitter called SPL, which has much larger delay

than a PTL, is required for splitting a pulse. The number of SPLs in a path is the key

factor of the delay of data and clock pulses, and therefore, adjustment of the number of

SPLs is the key factor for the performance (e.g., clock frequency and/or circuit area) of

circuits. Furthermore, by combining delay insertion on data paths, clock frequency can

become much higher. The amount of delays to be inserted is largely affected by clock

scheduling. Therefore, studies of clock scheduling algorithms is important for designing

high-performance circuits.

For CMOS digital circuits, several clock scheduling algorithms have been proposed[29,

30]. However, these algorithms are designed for circuits with an assumption that arbitrary

41
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delays are achievable. In SFQ circuits, since generation of SFQ pulses by JJs requires a

fixed period, delays of paths take discrete values. Therefore, a new algorithm is necessary

for SFQ digital circuits.

Given a clock period, the algorithm to be proposed determines the number of SPLs on

each clock path and the delay that should be inserted on each data path. By restricting

the solution space to be searched, the computation time of the proposed algorithm is

polynomial of the number of gates. In addition, the algorithm can also be used to minimize

the clock period by carrying out binary search.

Experimental results on smaller benchmark circuits show that the proposed algorithm

can obtain the optimum solutions, i.e., the same results with an integer linear program-

ming (ILP) solver. Experimental results on larger benchmark circuits show that the

proposed algorithm can obtain near optimal solutions in which inserted delay elements

are 59.0% fewer and the height of clock trees are 40.4% shorter on average than those

by a straightforward algorithm. The minimum clock periods obtained by the proposed

algorithm are 19.0% shorter on average than those by the straightforward algorithm.

The rest of this chapter is organized as follows. In Section 4.2, we describe concurrent-

flow clocking SFQ digital circuits. Then, in Section 4.3, we propose an algorithm for clock

scheduling. In Section 4.4, we show experimental results. In Section 4.5, we give the

summary of this chapter.

4.2 Concurrent-flow Clocking SFQ Digital Circuits

When we construct concurrent-flow clocking SFQ digital circuits, we have to provide

clock pulses to all logic gates and have to insert buffers with clock input (D flip-flops)

into appropriate positions of data paths for constructing a micropipeline. We show an

example of a concurrent-flow clocking circuit in Fig. 4.1. The circuit is a full adder. Clock

pulses are provided for all logic gates and buffers, and a micropipeline is constructed. By

arranging the timing of clock input, i.e., by utilizing clock skew, we can achieve high clock
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Figure 4.1: An example of a concurrent-flow clocking circuit.

frequency.

In this chapter, we consider the following gates and elements.

• 2-AND,

• 2-OR,

• 2-XOR,

• NOT,

• BUF (buffer),

• SPL (splitter)[1],

• JTL (Josephson-transmission-line)[1],

• PTL (passive-transmission-line)[16–18].

2-AND, 2-OR and 2-XOR gates are AND, OR and XOR gates with two fan-in, respec-

tively. All logic gates and BUFs are driven by clock pulses. An SPL splits an input pulse

to two outputs. JTLs and PTLs are elements for 1-to-1 interconnection.

PTLs are transmission lines for SFQ circuits and can transmit pulses very fast. Since

SPLs have much larger delay than PTLs, adjustment of the number of SPLs on clock

paths, i.e., scheduling the arrival time of clock pulses, is important for achieving high
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(a) A circuit with zero-skew clocks. (Clock period: 44 ps)
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(b) A circuit with skewed clocks. (Clock period: 24 ps)
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(c) A circuit with skewed clocks and inserted delays. (Clock period: 17 ps)

Figure 4.2: An example of clock scheduling.
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clock frequency. As an example of clock scheduling, we show three full adders in Fig.

4.2. Each number between gates indicates the data delay between them and each number

above an arrow indicates the clock delay between the clock source and the corresponding

gate. The unit is picosecond. The clock delay is the product of the number of SPLs and

the delay of an SPL. The delay of an SPL is 20 ps. These delays are estimated from the

SFQ circuit technology[5]. Figure 4.2 (a) is a full adder using zero-skew clocks. Namely,

all clock delays are the same. In this case, the minimum clock period is determined by

the largest data delay, and is 44 ps. On the other hand, Fig. 4.2 (b) is a full adder using

skewed clocks. By delaying the arrival time of clock pulses toward the output side, the

period usable for data transmission becomes longer than the clock period. In this example,

by inserting clock skew of 20 ps, the clock period can be shortened to 44− 20 = 24 ps.

Not only the adjustment of the number of SPLs on clock paths, but also delay insertion

on data paths improves the clock frequency. Improvement of clock frequency using clock

skew could be restricted by the occurrence of malfunctions, i.e., double-clocking and zero-

clocking[31]. Delay insertion between gates relaxes the restriction. Figure 4.2 (c) shows

an example of clock scheduling with delay insertion. Bold oblique numbers indicate the

inserted data delays. A JTL of unit length is used as a delay element and its delay is 18 ps

in this example. By inserting the JTLs appropriately on data paths, the clock period can

be shortened to 17 ps. Thus, appropriate clock scheduling makes clock frequency higher.

However, clock scheduling may make circuit area larger and clock delays longer. There is

a trade-off between clock frequency and the two mentioned.

4.3 Clock Scheduling for

Concurrent-flow Clocking SFQ Digital Circuits

We consider a circuit with no feed-back loop. If a circuit has feed-back loops, we can

apply the algorithm to be proposed to the combinational parts (the parts that calculates

the next state and the output functions) of the circuit.
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Figure 4.3: A part of a circuit with the assumptions.

4.3.1 Assumptions for Clock Scheduling

The assumptions that we consider for clock scheduling are as follows.

• All logic gates, BUFs, SPLs and JTLs are interconnected with PTLs.

• A JTL of unit length is used for timing adjustment.

• Clock trees consist of PTLs and SPLs.

• The delay of PTLs is 0.

To simplify clock scheduling, we construct clock trees using PTLs and SPLs only. There

may be SPLs such that one of the two outputs is not used. Such an SPL is used as a

delay element. Since the delay of PTLs is small, we assume that the delay is 0 in the

clock scheduling phase and deal with the errors in the placement and routing phase. In

addition, we assume that circuits work with ideal conditions. Namely, we do not consider

effects of timing jitters, process variation and so on.

We show a part of a circuit with the above assumptions in Fig. 4.3. In the figure, a

solid or a bold line indicates a PTL, JTL indicates a JTL of unit length and a black circle
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indicates an SPL. The JTLs are used for timing adjustment. By determining appropriate

number of SPLs on the paths between the clock source and the clock input of gates and

appropriate number of JTLs on the paths between adjacent gates driven by clock pulses

(in the figure, between gates 1 and 2, and between gates 1 and 3), we can design circuits

with higher clock frequency. Hereafter, we call a JTL of unit length ‘JTL,’ a gate driven

by clock pulses ‘clocked gate,’ a path between the clock source and the clock input of a

clocked gate ‘clock path’ and a path between adjacent clocked gates ‘data path.’ A clock

path consists of SPLs and PTLs, and a data path consists of SPLs, JTLs and PTLs.

4.3.2 Clock Scheduling Problem

We first formulate the clock scheduling problem. The input of the problem is a circuit

without clock trees nor JTLs on data paths and a given clock period. The output is the

number of SPLs on each clock path and the number of JTLs on each data path. We

denote the delay of an SPL by DSPL and the delay of a JTL by DJTL.

Here, we consider an ordered pair of adjacent clocked gates i and j, (i, j), e.g. (1, 2)

and (1, 3) in Fig. 4.3. Hereafter, we use the term ‘pair’ for adjacent clocked gates. We

let tcd(i) and tcd(j) be the delays of a clock pulse from the clock source to gates i and j,

respectively, d(i, j) be the delay of a data pulse from gate i to gate j, δH(j) and δS(j)

be the hold time and the setup time of gate j, respectively, and TCP be the given clock

period. Here, tcd(i), tcd(j) and d(i, j) are the values that we want to determine, while

δH(j) and δS(j) are the values given by the specification of gates. TCP is the value given

by a designer.

We show the timing diagram for correct operation in Fig. 4.4. Double-clocking arises

when data from gate i arrives at gate j before tcd(j) + δH(j), while zero-clocking arises

when data arrives at gate j after tcd(j) + TCP − δS(j)[31]. Therefore, the condition for

pair (i, j) to be free from double-clocking is inequality (4.1) and that to be free from
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Figure 4.4: Timing diagram of a gate pair.

zero-clocking is inequality (4.2).

tcd(i) + d(i, j) ≥ tcd(j) + δH(j), (4.1)

tcd(i) + d(i, j) ≤ tcd(j) + TCP − δS(j). (4.2)

Let Tskew(i, j) = tcd(i)− tcd(j). Since the delay of PTLs is 0, the delay on a clock path

is the summation of that of SPLs on it. We let bi be the number of SPLs on the path

from the clock source to gate i. Then Tskew = DSPL · (bi − bj). Here, bi and bj are the

values we want to determine.

d(i, j) consists of the delay of gate i, that of the SPLs and that of the JTLs on the

path between gates i and j. The delay of gate i and that of SPLs are given by the circuit

structure. We let dg(i, j) be the sum of the delay of gate i and that of SPLs, and c(i,j) be

the number of JTLs between gates i and j, then d(i, j) = dg(i, j)+DJTL · c(i,j). Here, c(i,j)

is the value we want to determine. Inequalities (4.1) and (4.2) are rewritten as follows.

Note that, bi, bj and c(i,j) are nonnegative integers.

DSPL · (bi − bj) ≥ −dg(i, j) + δH(j)− DJTL · c(i,j), (4.3)
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DSPL · (bj − bi) ≥ dg(i, j) + δS(j)− TCP + DJTL · c(i,j). (4.4)

By calculating bi’s and c(i,j)’s that satisfy inequalities (4.3) and (4.4) for all pairs in

the circuit, we can determine clock scheduling for the given clock period. Here, DSPL,

DJTL, dg(i, j)’s, δH(j)’s and δS(j)’s are the values given by the specification of gates and

elements, and the circuit structure, and TCP is the value given by a designer. bi’s and

c(i,j)’s are the values we want to determine.

For designing circuits with higher performance, calculating smaller bi’s and c(i,j)’s is

important. Smaller bi’s make the delay of the circuit shorter and smaller c(i,j)’s make

the area of the circuit smaller. As a method for solving the clock scheduling problem,

formulation of integer linear programming (ILP) exists. By setting
∑# of clocked gates

n=1 bn or

bthe-last-gate as a cost function, we can solve the clock scheduling problem by ILP solvers.

However, as shown in the experimental results later, the computation cost is very high.

Therefore, in this chapter, by restricting the solution space to be searched, we solve the

problem approximately. First, we describe a straightforward algorithm and then propose

an improved algorithm.

4.3.3 Straightforward Algorithm

The fundamental idea is delaying the arrival time of clock pulses for clocked gates in latter

stages. Here, the stage of a clocked gate is the number of clocked gates on data paths

from the circuit input to it. First, we give a definition for a possible value of (bj − bi).

Definition 1: An integer bij = bj − bi is a possible value if there is a nonnegative

integer c(i,j) such that inequalities (4.3) and (4.4) hold.

We number all clocked gates so that for each pair (i, j), i is smaller than j. We deal

with all input ports as a single clocked input gate and all output ports as a single clocked

output gate, and number the input gate 0. To restrict the solution space to be searched,

we determine an upper bound for the difference of the arrival time of clock pulses between
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Step 1:

for each (i, j),

A[(i, j)] = {possible values of (bj − bi) under the given upper bound};

b0 = 0;

Step 2:

for s = 1 to max stage do

a = the minimum value that is common in all A[(i, j)] such that j is in stage s;

for all (i, j) such that j is in stage s do

bj = bi + a;

end for

end for

Step 3:

for each (i, j), calculate c(i,j);

Figure 4.5: Straightforward algorithm.

adjacent clocked gates, i.e., an upper bound for DSPL · |bi − bj |, in advance. We show a

straightforward algorithm in Fig. 4.5. Here, A[(i, j)] is a set of possible values of (bj − bi).

If A[(i, j)] becomes an empty set, feasible solution does not exist under the given clock

period and the given upper bound. By determining the upper bound, we can obtain A’s

as finite sets. We set b0 = 0 and calculate other bi’s as the relative values to b0.

First, we perform initialization in Step 1. We calculate possible values of (bj − bi)

as A[(i, j)]. In Step 2, for a stage, we select the minimum value that is common in all

A[(i, j)] such that j is in the stage and calculate bi’s. Finally, we calculate c(i,j)’s in Step

3. If there is no common value in Step 2, feasible solution does not exist. We show an

illustration of the straightforward algorithm in Fig. 4.6.

The straightforward algorithm is a backtrack-free algorithm, and therefore, we can

determine clock scheduling fast. However, since all bi’s in a stage are set to the same

value, the performance of the solution is not high. In the new algorithm to be proposed,

by setting each bi in a stage independently, we improve the performance.
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Figure 4.6: An illustration of the straightforward algorithm.

4.3.4 Proposed Algorithm

Since A’s may contain non-continuous integers, simple selection of a value from A’s does

not give a correct solution. Therefore, we calculate sets of candidate values of bi’s and

update them sequentially.

We show the proposed algorithm in Fig. 4.7. We begin the steps with pairs including

the input gate. B[i] is a set of candidate values of bi. In the proposed algorithm, initial

B’s are calculated using A’s under the given upper bound. Then, all candidates of bi’s

which do not satisfy inequalities (4.3) and (4.4) are removed. By confirming whether the

consequently obtained bi’s and c(i,j)’s satisfy inequalities (4.3) and (4.4), the correctness

of the obtained solution is guaranteed.

For the given clock period, the proposed algorithm can find a solution when the clock

scheduling problem has a solution such that max(i,j){DSPL · |bi − bj |} is less than or equal

to the given upper bound, because it searches for the solution from all of the candidates

under the given upper bound. By setting the upper bound large enough, the proposed

algorithm can find a solution for all problems.
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Step 1:

for each (i, j),

A[(i, j)] = {possible values of (bj − bi) under the

given upper bound};

for each i, B[i] = ∅;

B[0] = {0};

initialize Q as empty;

Step 2:

for all (i, j) do

candidate B = {x + y | ∀x, y, x ∈ B[i], y ∈

A[(i, j)]};

if B[j] == ∅ then

B[j] = candidate B;

else if B[j] ⊂ candidate B then

B[j] = B[j]∩ candidate B;

append pair ((i, j),←) to Q;

else if B[j] ⊃ candidate B then

B[j] = B[j]∩ candidate B;

for each (i′, j) such that i′ < i,

append pair ((i′, j),←) to Q;

else if B[j] 6= candidate B then

B[j] = B[j]∩ candidate B;

for each (i′, j) such that i′ ≤ i,

append pair ((i′, j),←) to Q;

end if

end for

Step 3:

while Q 6= ∅ do

select the top element of Q ((i, j), d) and remove

it;

if d ==← then

temp B = {x− y |∀x, y, x ∈ B[j], y ∈ A[(i, j)]};

if B[i] 6⊇ temp B then

B[i] = B[i]∩ temp B;

for each (i, p) such that p 6= j,

append ((i, p),→) to Q;

for each (q, i), append ((q, i),←) to Q;

end if

else

temp B = {x + y |∀x, y, x ∈ B[i], y ∈ A[(i, j)]};

if B[j] 6⊇ temp B then

B[j] = B[j]∩ temp B;

for each (q, j) such that q 6= i,

append ((q, j),←) to Q;

for each (j, p), append ((j, p),→) to Q;

end if

end if

end while

Step 4:

if for (i, j), there are values in B[i] that cannot be

produced from A[(i, j)] and the minimum value of

B[j] then

remove the values from B[i];

for each (i, p), append ((i, p),→) to Q;

for each (q, i), append ((q, i),←) to Q;

goto Step 3;

end if

Step 5:

for each i, bi = the minimum value in B[i];

Step 6:

for each (i, j), calculate c(i,j);

Figure 4.7: Proposed algorithm.

First, we perform initialization in Step 1. Then we produce initial B’s from the

circuit input to output unidirectionally in Step 2 and remove all candidates which do not

satisfy inequalities (4.3) and (4.4) in Steps 3 and 4. Finally, we select bi’s in Step 5 and

calculate c(i,j)’s in Step 6. We prepare a queue Q for Steps 3 and 4. In the queue, we
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(a) The values in B[r] change.
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(b) B[r] is different from the candidate.

Figure 4.8: Examples requiring Step 3.

store pairs of adjacent clocked gates and the direction of the update (← or →). When a

pair is (i, j) and the direction is ←, we update B[i] using B[j], while when the direction

is →, we update B[j] using B[i]. If B[i] becomes an empty set in the execution of the

algorithm, feasible solution does not exist under the given clock period and the given

upper bound, and the algorithm terminates.

When B[i] is updated in Step 2, candidates which do not satisfy the inequalities may

be produced in other B’s. Step 3 is carried out for removing such candidates. Here, we

consider two examples. Figure 4.8 shows two intermediate results of Step 2. We update

B[r] using B[q] and A[(q, r)]. In the case of Fig. 4.8 (a), B[r] changes, and therefore, B[p]

may change. We append ((p, r),←) to Q and update B[p] by Step 3. On the other hand,

in the case of Fig. 4.8 (b), B[r] does not change. However, the candidate of B[r] that is

produced from B[q] and A[(q, r)] is different from the updated B[r]. This may cause the

change of B[q], and therefore, we append ((q, r),←) to Q and update B[q] by Step 3.

For selecting smaller bi’s, we want to select the minimum value in B[i] as bi. However,

A’s may contain non-continuous integers and therefore, such selection may cause an incor-
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Figure 4.9: An example requiring Step 4.

rect solution. We have to remove the values that cannot be produced from the minimum

values of B’s and A’s. Here, we consider an example shown in Fig. 4.9. It is a part of

a circuit which is obtained by applying Steps 1 to 3. In the circuit, we cannot obtain

appropriate values of bi’s by selecting the minimum values of B’s from input or output.

Here, we consider the case that we select values from output. First, we select 7 for gates

s and t. Then, we select values for gates p, q and r. From A[(q, s)], the value for gate q is

4, while from A[(q, t)], the value is 3. For removing this contradiction, we carry out Step

4.

Now we consider the computation time of the proposed algorithm. We let the number

of clocked gates and the largest stage be g and s, respectively. Since fan-in of each gate is

at most two, the number of pairs is O(g). The computation time of Steps 1, 5 and 6 is all

O(g). The computation time of Step 2 is O(g(g + s)) because that of the production of

candidate B is O(s), that of the appending of pairs in a for-loop is O(g) and the number of

for-loops is O(g). Similarly, the computation time of a while-loop of Step 3 is O(g + s).

Since the maximum number of elements in all B’s is O(gs), the maximum repetitions of

while-loops required in Step 3 are O(gs). Therefore, the computation time of Step 3 is

O(gs(g+s)). The computation time of Step 4 is also O(gs(g+s)). Since the largest stage

is smaller than the number of gates, i.e., s < g, the computation time of the proposed

algorithm is O(g3).
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Figure 4.10: A full adder.

Table 4.1: The parameters of gates and elements (ps).

delay δH δS

BUF 20 2 −2

AND 27 8 −7

XOR 22 −1 2

OR 21 −1 14

NOT 22 10 19

SPL 20 - -

JTL 18 - -

We can obtain the minimum clock period using the proposed algorithm. For simplicity,

we assume that for all pairs, −dg(i, j) + δH(j) ≤ 0. By adding delays to dg(i, j), we can

always satisfy the assumption. When we set the clock period to max(i,j){dg(i, j) + δS(j)},

the circuit always works correctly. Therefore, by carrying out binary search on a clock

period, we can determine the minimum clock period. We set the maximum value as an

initial value and search for the minimum clock period that is schedulable. The number of

SPLs on data paths between adjacent clocked gates is at most the number of gates and

the maximum delay of data pulses is O(g). Therefore, the computation time of calculating

the minimum clock period is O(g4).
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4.3.5 An Example: Clock Scheduling of a Full Adder

Here, as an example, we consider clock scheduling of a full adder shown in Fig. 4.10. We

show the delay, hold time (δH) and setup time (δS) of the gates in Table 4.1[5]. DSPL = 20

and DJTL = 18.

We introduce an input gate for all input ports (gate number 0) and an output gate for

all output ports (gate number 9). We set TCP = 14 and the upper bound of DSPL · |bi− bj |

to 5DSPL. The following inequalities are obtained.

(0, 1) : 20(b0 − b1) ≥ −20 + 8− 18c(0,1),

20(b1 − b0) ≥ 20− 7− 14 + 18c(0,1),

(0, 2) : 20(b0 − b2) ≥ −20− 1− 18c(0,2),

20(b2 − b0) ≥ 20 + 2− 14 + 18c(0,2),

(0, 3) : 20(b0 − b3) ≥ 0 + 2− 18c(0,3),

20(b3 − b0) ≥ 0− 2− 14 + 18c(0,3),

(1, 4) : 20(b1 − b4) ≥ −27 + 2− 18c(1,4),

20(b4 − b1) ≥ 27− 2− 14 + 18c(1,4),

(2, 5) : 20(b2 − b5) ≥ −42 + 8− 18c(2,5),

20(b5 − b2) ≥ 42− 7− 14 + 18c(2,5),

(2, 6) : 20(b2 − b6) ≥ −42− 1− 18c(2,6),

20(b6 − b2) ≥ 42 + 2− 14 + 18c(2,6),

(3, 5) : 20(b3 − b5) ≥ −40 + 8− 18c(3,5),

20(b5 − b3) ≥ 40− 7− 14 + 18c(3,5),

(3, 6) : 20(b3 − b6) ≥ −40− 1− 18c(3,6),

20(b6 − b3) ≥ 40 + 2− 14 + 18c(3,6),

(4, 7) : 20(b4 − b7) ≥ −20− 1− 18c(4,7),
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20(b7 − b4) ≥ 20 + 14− 14 + 18c(4,7),

(5, 7) : 20(b5 − b7) ≥ −27− 1− 18c(5,7),

20(b7 − b5) ≥ 27 + 14− 14 + 18c(5,7),

(6, 8) : 20(b6 − b8) ≥ −22 + 2− 18c(6,8),

20(b8 − b6) ≥ 22− 2− 14 + 18c(6,8),

(7, 9) : 20(b7 − b9) ≥ −21− 18c(7,9),

20(b9 − b7) ≥ 21− 14 + 18c(7,9),

(8, 9) : 20(b8 − b9) ≥ −20− 18c(8,9),

20(b9 − b8) ≥ 20− 14 + 18c(8,9).

We apply the proposed algorithm to the inequalities. The following A’s are obtained.

A[(0, 1)] = {0, 1, 2, 3, 4, 5},

A[(0, 2)] = {1, 4, 5},

A[(0, 3)] = {1, 2, 3, 4, 5},

A[(1, 4)] = {1, 2, 3},

A[(2, 5)] = {2, 3, 4, 5},

A[(2, 6)] = {2, 3},

A[(3, 5)] = {1, 2, 3, 4, 5},

A[(3, 6)] = {2, 5},

A[(4, 7)] = {1},

A[(5, 7)] = {5},

A[(6, 8)] = {1, 3, 4, 5},

A[(7, 9)] = {1, 4, 5},
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A[(8, 9)] = {1, 3, 4, 5}.

As an example, we consider a calculation of A[(0, 2)]. In this example, the given

predetermined upper bound is 5DSPL and therefore, the allowed |b0 − b2| is less than or

equal to 5. In this condition, we search for possible values of (b2−b0). When (b2−b0) = 1,

inequalities about (0, 2) hold with c(0,2) = 0. However, when (b2 − b0) = 2, no c(0,2) exists

such that the inequalities hold. We check other (b2 − b0)’s in the same way and obtain

A[(0, 2)] = {1, 4, 5}.

Consequently, the initial B’s are obtained from A’s by Step 2. We show the values in

Fig. 4.11(a).

B[1] = {0, 1, 2, 3, 4, 5},

B[2] = {1, 4, 5},

B[3] = {1, 2, 3, 4, 5},

B[4] = {1, 2, 3, 4, 5, 6, 7, 8},

B[5] = {3, 4, 5, 6, 7, 8, 9, 10},

B[6] = {3, 4, 6, 7, 8},

B[7] = {8, 9},

B[8] = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13},

B[9] = {9, 10, 12, 13, 14}.

As an example, we consider a calculation of B[7]. First, we calculate B[7] by B[4]

and A[(4, 7)], and then, we update B[7] by B[5] and A[(5, 7)]. candidate B obtained from

B[4] and A[(4, 7)] is {x + y | ∀x, y, x ∈ B[4], y ∈ A[(4, 7)]} = {2, 3, 4, 5, 6, 7, 8, 9}. Since

the first B[7] is ∅, B[7] = candidate B = {2, 3, 4, 5, 6, 7, 8, 9}. candidate B obtained from

B[5] and A[(5, 7)] is {x + y | ∀x, y, x ∈ B[5], y ∈ A[(5, 7)]} = {8, 9, 10, 11, 12, 13, 14, 15}.

Since B[7] 6= candidate B, a new B[7] = B[7] ∩ candidate B = {2, 3, 4, 5, 6, 7, 8, 9} ∩
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Figure 4.11: Application for a full adder.
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{8, 9, 10, 11, 12, 13, 14, 15} = {8, 9}. Here, ((4, 7),←) and ((5, 7),←) are appended to the

queue Q.

Finally, in Q, there are elements:

((3, 5),←), ((3, 6),←), ((4, 7),←), ((5, 7),←), ((8, 9),←).

We update B’s using the elements in Q. As an example, we consider ((4, 7),←). We

update B[4] using B[7] and A[(4, 7)] because the direction is “←.” Since {x−y | ∀x, y, x ∈

B[7], y ∈ A[(4, 7)]} = {7, 8}, and intersection of the values and the original B[4], i.e.,

{7, 8} ∩ {1, 2, 3, 4, 5, 6, 7, 8} is {7, 8}, the new B[4] is {7, 8}. Here, ((1, 4),←) is appended

to Q. We show the values after this process in Fig. 4.11(b).

When we repeat these processes until Q becomes empty, we obtain the values shown

in Fig. 4.11(c). By selecting the minimum values in B’s, we obtain b1 = 4, b2 = 1, b3 = 1,

b4 = 7, b5 = 3, b6 = 3, b7 = 8, b8 = 4 and b9 = 9. By calculating c(i,j)’s, we obtain

c(0,1) = 4, c(0,2) = 0, c(0,3) = 2, c(1,4) = 2, c(2,5) = 1, c(2,6) = 0, c(3,5) = 1, c(3,6) = 0,

c(4,7) = 0, c(5,7) = 4, c(6,8) = 0, c(7,9) = 0 and c(8,9) = 5.

4.4 Evaluation of the Proposed Algorithm

We have implemented the proposed algorithm by using the C programming language and

have applied it to clock scheduling of several benchmark circuits in LGSynth’91[28]. The

experimental environment is a workstation with Itanium2 1.6 GHz CPU and 8 GByte

memory. We have used the parameters shown in Table 4.1.

4.4.1 Comparison with an ILP Solver

We have compared the proposed algorithm with lp solve which is an ILP solver[32]. We

have used
∑# of clocked gates

n=1 bn as the cost function and have set the clock period to 50 ps.

For the proposed algorithm, we have set the upper bound of DSPL · |bi − bj | to 10DSPL.

We have calculated the number of SPLs in each clock tree, the number of inserted JTLs
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Table 4.2: A comparison of the proposed algorithm with an ILP solver.

max. proposed algorithm ILP solver

# of # of # of delay # of # of height exe. exe.

gates pairs stages (ps) SPLs JTLs of c. t. time (s) time (s)

C17 26 32 6 60 27 2 7 0.001 0.005

b1 61 77 8 89 65 0 8 0.001 0.009

cc 338 433 8 109 344 124 15 0.001 122.007

cm138a 92 124 6 95 94 36 9 0.002 0.573

cm150a 258 333 18 109 264 138 13 0.002 50.487

cm151a 128 164 16 89 131 31 10 0.002 1.052

cm152a 89 119 10 89 95 5 9 0.002 0.045

cm162a 294 352 14 106 298 88 14 0.002 53.472

cm163a 272 328 13 106 278 39 11 0.002 6.549

cm42a 107 137 7 106 108 57 10 0.001 2.612

cm82a 72 95 8 80 73 4 8 0.002 0.024

cm85a 171 216 13 86 180 22 13 < 0.000 1.590

cmb 286 343 19 89 288 24 11 0.002 4.776

comp 417 563 20 86 419 51 13 0.003 16.879

cu 301 385 13 109 307 55 13 0.002 7.035

decod 95 159 4 109 101 34 10 0.001 1.726

ldd 468 627 14 109 473 244 14 0.004 130.075

majority 54 70 9 89 58 0 8 < 0.000 0.008

mux 535 670 23 109 543 268 15 0.005 738.279

parity 107 151 12 60 109 0 8 0.002 0.015

pm1 251 329 9 109 258 83 13 0.002 25.807

tcon 82 136 3 109 85 40 9 0.002 1.381

unreg 298 424 7 129 300 239 11 0.003 140.446

x2 187 254 9 109 192 92 11 0.002 17.080

and the height of each clock tree from the results of the execution. We have constructed

the clock trees so that the height is the minimum.

We show the experimental results in Table 4.2. “# of gates” is the number of clocked
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gates including BUFs that are inserted for constructing a micropipeline and “max. delay”

is max(i,j){dg(i, j) + δS(j)}. If we design circuits with zero-skew clocks, the maximum

value is the minimum clock period. “height of c. t.” is the height of clock tree. “exe.

time” is the user CPU time of the execution.

The experimental results show that for a given clock period, the proposed algorithm

can obtain the same results with the ILP solver. The execution time of the proposed

algorithm is much shorter than that of the ILP solver.

4.4.2 Comparison with the Straightforward Algorithm

We have compared the proposed algorithm with the straightforward algorithm described in

Section 4.3.3. We have set the clock period to 50 ps and have set the upper bound of DSPL ·

|bi− bj | to 10DSPL. We show the specification of the benchmark circuits that are used for

the comparison in Table 4.3 and the experimental results in Table 4.4. The experimental

results show that for a given clock period, the proposed algorithm can construct circuits

with 59.0% fewer JTLs on average and 40.4% shorter clock trees on average than those by

the straightforward algorithm. The number of SPLs required for constructing clock trees

by the proposed algorithm is comparable with that by the straightforward algorithm.

We can also use the straightforward algorithm to minimize the clock period in the

same way as the proposed algorithm. We have calculated the minimum clock periods.

Table 4.5 shows the results that are obtained by the algorithms when we change upper

bounds of DSPL · |bi − bj |. “u. b.” indicates upper bound and “c. p.” indicates clock

period. The experimental results show that clock periods have been 6.7% shorter when

we have changed the upper bound 10DSPL to 30DSPL and have been the same when we

have changed it 30DSPL to 50DSPL. From the results, we can see that by using only a

small value, e.g., 10DSPL for the upper bound, we can obtain good clock periods. Clock

periods have been 19.0% shorter on average than those by the straightforward algorithm.
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Table 4.3: Specification of the benchmark circuits.

# of gates # of pairs # of stages maximum delay (ps)

9symml 637 870 20 129

C1355 5142 5690 46 121

C432 2788 3005 55 141

C5315 22230 22430 72 149

C6288 54702 57116 242 86

C7552 20664 23402 66 189

alu4 9817 10989 75 169

apex6 3590 4353 19 149

b9 758 916 16 109

cht 842 1214 10 169

count 1396 1537 36 129

des 41551 48525 45 226

f51m 1233 1550 26 149

frg2 14507 16973 30 189

k2 31100 33789 196 189

lal 891 1095 17 109

my adder 3434 3705 52 100

rot 14631 16022 57 160

sct 925 1134 17 129

term1 4140 4998 32 149

too large 306909 321400 544 249

ttt2 3593 4264 39 149

vda 5624 6961 56 169

x1 16949 19095 100 169

x3 8305 9886 32 169

z4ml 997 1247 31 129

4.5 Summary of the Chapter

We have proposed an algorithm for clock scheduling of concurrent-flow clocking SFQ

digital circuits with PTLs. By using the algorithm, we can determine clock scheduling
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Table 4.4: A comparison of the proposed algorithm with the straightforward algorithm.

proposed algorithm straightforward algorithm

# of # of height exe. # of # of height exe.

SPLs JTLs of c. t. time (s) SPLs JTLs of c. t. time (s)

9symml 645 360 16 0.007 642 801 17 0.007

C1355 5159 2270 30 0.043 5162 1914 32 0.028

C432 2798 566 19 0.026 2804 1228 36 0.016

C5315 22244 9497 31 0.232 22282 42066 105 0.117

C6288 54719 6019 35 1.174 54817 48456 230 0.285

C7552 20679 14139 34 0.215 20719 45934 113 0.116

alu4 9837 12739 48 0.108 9869 18898 96 0.055

apex6 3598 2298 21 0.026 3603 7083 32 0.020

b9 762 169 15 0.005 768 987 23 0.004

cht 845 591 14 0.007 848 1417 15 0.006

count 1410 1085 33 0.012 1417 1466 39 0.005

des 41560 36632 31 0.389 41603 159955 114 0.249

f51m 1242 881 20 0.012 1239 1391 18 0.009

frg2 14525 13734 32 0.115 14557 64977 105 0.080

k2 31123 22455 42 0.611 31223 56177 217 0.176

lal 897 131 15 0.008 904 1079 26 0.005

my adder 3455 2385 44 0.028 3459 2970 55 0.020

rot 14652 9924 40 0.142 14688 36368 112 0.080

sct 927 166 15 0.009 932 809 16 0.006

term1 4149 2085 22 0.037 4176 9910 63 0.026

too large 306943 228086 83 13.602 306959 534403 119 1.741

ttt2 3608 2578 26 0.026 3609 6814 38 0.020

vda 5632 8208 30 0.060 5683 14977 122 0.029

x1 16959 4473 29 0.210 16970 25607 40 0.094

x3 8315 4338 23 0.064 8328 25072 59 0.053

z4ml 1008 733 19 0.006 1006 925 17 0.008
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for a given clock period in the computation time of O(g3) where g is the number of

clocked gates. Experimental results on smaller benchmark circuits show that the proposed

algorithm can obtain the optimum solutions, i.e., the same results with an ILP solver.

Experimental results on larger benchmark circuits show that for a given clock period, the

proposed algorithm can obtain near optimal solutions in which inserted delay elements

have been 59.0% fewer and clock trees have been 40.4% shorter on average than those

by a straightforward algorithm. The proposed algorithm can also be used to minimize

the clock period. The clock periods obtained by the proposed algorithm have been 19.0%

shorter on average than those by the straightforward algorithm.

Using the proposed algorithm, we can design high-throughput concurrent-flow clocking

SFQ digital circuits with fewer delay elements. In this chapter, we have assumed that

circuits work with ideal conditions and have set the delay of PTLs is 0. Evaluation of

timing jitters and errors of the delay of PTLs is left for future works.
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Table 4.5: The minimum clock periods.

proposed algorithm straightforward

algorithm

u. b. = 10DSPL u. b. = 30DSPL u. b. = 50DSPL u. b. = 10DSPL

minimum exe. minimum exe. minimum exe. minimum exe.

c. p. (ps) time (s) c. p. (ps) time (s) c. p. (ps) time (s) c. p. (ps) time (s)

9symml 29 0.013 29 0.062 29 0.156 37 0.003

C1355 30 0.098 30 0.551 30 1.377 32 0.030

C432 31 0.102 30 0.520 30 1.351 36 0.017

C5315 31 1.186 30 5.628 30 14.783 41 0.117

C6288 30 5.894 30 41.463 30 111.509 34 0.317

C7552 34 0.675 30 7.195 30 18.874 44 0.120

alu4 34 0.453 30 3.085 30 8.199 41 0.060

apex6 30 0.069 30 0.318 30 0.773 39 0.023

b9 30 0.015 30 0.067 30 0.179 38 0.006

cht 29 0.013 29 0.058 29 0.124 41 0.004

count 30 0.030 30 0.157 30 0.397 39 0.011

des 44 1.560 30 8.532 30 21.855 45 0.249

f51m 29 0.031 29 0.162 29 0.416 39 0.008

frg2 40 0.405 30 2.540 30 6.620 46 0.089

k2 29 3.692 29 24.931 29 66.034 45 0.176

lal 30 0.017 30 0.088 30 0.224 38 0.006

my adder 30 0.113 30 0.705 30 1.893 30 0.019

rot 36 0.500 30 2.071 30 5.321 41 0.078

sct 30 0.013 30 0.061 30 0.153 40 0.006

term1 34 0.116 30 0.522 30 1.324 42 0.020

too large 49 100.271 29 542.180 29 1447.116 49 1.923

ttt2 32 0.095 30 0.529 30 1.396 42 0.022

vda 29 0.196 29 1.268 29 3.360 41 0.031

x1 29 0.828 29 5.909 29 15.534 41 0.101

x3 34 0.228 30 1.218 30 3.093 44 0.051

z4ml 29 0.021 29 0.127 29 0.329 37 0.006



Chapter 5

Sequential Circuit Synthesis for

Synchronous Clocking SFQ Digital

Circuits

5.1 Introduction

In this chapter, we propose a new synthesis method of sequential circuits (circuits with

feedback loops) to achieve high-throughput SFQ sequential circuits. When we design

an SFQ sequential circuit using synchronous clocking representation, we have to provide

two kinds of clock signals of different periods. One is for the combinational blocks (the

blocks calculating the next state and the output functions), and the other is for the

registers of state variables. The throughput of such an SFQ sequential circuit is determined

by the period of the latter kind of clock signal that is usually much longer than the

former and the power of high-throughput computation of an SFQ digital circuit is spoilt.

Therefore, sequential circuits have been designed by transforming feedback loops smaller

or removing feedback loops from the circuits[14, 15]. However, these methods are circuit-

specific and cannot be applied to arbitrary types of sequential machines. For developing

CAD systems, a synthesis method of sequential circuits which is applicable for arbitrary

67
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types of sequential machines is important.

Using the new method to be proposed, we can construct an SFQ sequential circuits

without clocked gates in its feedback loops. In the method, we use a ‘state module’

consisting of a D flip-flop (DFF) and several AND gates. First, we encode states of a

sequential machine by one-hot encoding and assign state modules to the states one by

one, and then, connect the modules with each other according to the state transition. For

the connection, we use CBs, i.e., merger gates without clock signals.

We have implemented the proposed method and have synthesized several benchmark

circuits. The experimental results show that compared with a conventional method for

CMOS digital circuits, the proposed method synthesizes circuits that work with 4.9 times

higher clock frequency and have 17.3% more gates on average.

The rest of this chapter is organized as follows. In Section 5.2, we describe SFQ sequen-

tial circuits. Then, in Section 5.3, we propose a method of sequential circuit synthesis. In

Section 5.4, we show experimental results. Finally in Section 5.5, we give the summary

of this chapter.

5.2 SFQ Sequential Circuits

Using Synchronous Clocking Representation

In general, a sequential circuit has feedback loops and registers. The registers store state

variables. Since synchronizing clocks are necessary for all logic gates in a synchronous

clocking SFQ digital circuit, two kinds of clock signals are necessary. One is for combina-

tional blocks and the other is for registers of state variables. Hereafter, we call the clock

signal that drives combinational blocks the ‘local clock’ and the one that drives registers

of state variables the ‘system clock.’

In sequential circuit synthesis, there are two methods of state assignment. One is

binary encoding and the other is one-hot encoding. In the former method, n states are

assigned to ⌈log2 n⌉-bit registers. Note that ⌈log2 n⌉ is the minimum number of bits to
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Figure 5.1: An example of an SFQ sequential circuit with binary encoding.

represent n values. In the latter method, n-bit registers are assigned to n states. Namely,

one bit is assigned to each state.

We show an example of an SFQ sequential circuit synthesized by a method for CMOS

digital circuits with binary encoding in Fig. 5.1. In the circuit, clk1 is the local clock and

clk2 is the system clock. The throughput of the circuit is limited by the clock period of

clk2 which is much longer than that of clk1. By removing clocked gates, i.e., gates driven

by a clock signal, from feedback loops, we can drive all clocked gates in the combinational

blocks and the registers of state variables by a single clock signal and achieve a high-

throughput circuit.

5.3 Method for Synthesizing SFQ Sequential Circuit

Using One-hot Encoding

5.3.1 Flow of Sequential Circuit Synthesis

We propose a method of sequential circuit synthesis for SFQ digital circuits. We show

the flow of the proposed method in Fig. 5.2. In the method, first, we encode states of a

sequential machine by one-hot encoding, and then, assign a ‘state module,’ which will be

described in the next subsection, to each state. Finally, we connect the modules with each
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A sequential circuit

A sequential machine

Assignment of state modules

Synthesis of combinational blocks

Figure 5.2: Flow of the sequential circuit synthesis.

other according to the state transition and synthesize the combinational blocks, i.e., the

blocks calculating the next state and the output functions. For the connection, we use

CBs, i.e., merger gates without clock signals. In the synthesis of combinational blocks, we

insert buffers with clock input (DFFs) into appropriate positions for timing adjustment.

One-hot encoding and synthesis of combinational blocks can be performed in the same

way as design of CMOS digital circuits. Since CBs are merger gates without clock signals

and state modules are driven by a clock signal, a sequential circuit synthesized by the

proposed method has no clocked gates in its feedback loops. In the next subsections, we

describe assignment of state modules and connection of them.

5.3.2 Assignment of State Modules

We assign a ‘state module’ shown in Fig. 5.3 to each state of a sequential machine. A

state module consists of a DFF and n AND gates. Here, n is the number of next states

of the considered state. For example, when the state has three next states, n = 3. The
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Figure 5.3: State module.

module has din, clk and in 1, . . ., in n as input ports and dout and out 1, . . ., outn as

output ports. in 1, . . ., in n are used for construction of the block calculating the next

state functions, dout is used for construction of the block calculating the output functions

and din and out 1, . . . outn are used for connection of state modules.

Now, we consider an assignment of module Mi to state Si. When a pulse is input to

din of Mi, the current state is Si. A clock pulse is input to clk after data pulses are input

to din and in k, then a pulse is output from out k. Therefore, if the current state is Si, a

pulse is output from one of out 1, . . ., outn of Mi, while if the current state is not Si, no

pulse is output from the output ports of Mi. Since each AND gate has the function of a

latch, DFFs for storing the state variables are not necessary.

5.3.3 Connection of State Modules

We connect the assigned state modules with each other according to the state transition.

We use CBs for the connection. Here, we consider the state transition from state Si to

Sj by a signal corresponding to an input event. We input a pulse, which is generated by

the signal corresponding to the event, to one of in’s of Mi and connect its corresponding

out to din of Mj using CBs. In each state transition, there is a pulse in din of only one

module, and therefore, at most one pulse is input to each CB connecting to modules at a

time.
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x=1/z=0
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Figure 5.4: An example: state transition diagram.
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(n=2)
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Figure 5.5: An example: synthesized circuit.

5.3.4 An Example: Synthesis of A Sequential Circuit

As an example of synthesis of a sequential circuit, we consider the sequential machine

represented by the state transition diagram shown in Fig. 5.4. The machine has one input
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variable x, one output variable z and three states S0, S1 and S2. The state pointed by

an arrow with “start” indicates the initial state. We show the synthesized circuit by the

proposed method in Fig. 5.5. M0, M1 and M2 are state modules and correspond to states

S0, S1 and S2, respectively.

Now, we consider state S0 and its corresponding module M0. Since S0 has two next

states, i.e., S1 and S2, the number of in or out ports, i.e., n of M0 is two. We consider

the state transition from S0 to S2. The transition occurs when the input event is x = 0,

i.e., the input variable x is 0. We connect input x to in 2 via a NOT gate, that is, we

input a pulse to in 2 when x = 0. We connect its output, out 2, to din of M2 using a CB

because the state transition is S0 to S2. We use input start for the input of the initial

pulse. Output z becomes 1 when the state is S2 and x is 1. Therefore, we construct the

output block of the circuit by one AND gate. We insert buffers with clock input (DFFs)

to appropriate positions for timing adjustment.

5.3.5 Construction of State Modules

In the design of SFQ digital circuits, layout of a circuit is obtained by placing and rout-

ing optimized parts called cells[5]. For achieving a sequential circuit with shorter clock

periods, it is effective that we prepare a state module and CBs connecting to its din as an

optimized cell. However, preparing a large number of optimized cells may be difficult. By

preparing several optimized cells as basic cells and constructing state modules with the

basic cells, we can construct cells which are almost optimal with respect to clock periods.

Now, we consider a basic cell for a state, which has km previous states and kn next states,

shown in Fig. 5.6. We construct a state module for a state, which has m previous states

and n next states, using the basic cell.

A case of m > km and n ≤ kn

For convenience, we assume that m ≤ 2km. We can construct a state module for the

state using two basic cells as shown in Fig. 5.7. Since there is a pulse in either din of
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din1, ..., dinkm

out1, ..., outkn

...

dout

...

CBs

in1, ..., inkn

...

DFF ...

din

Figure 5.6: A basic cell.

two basic cells, we merge dout’s and out’s of the two basic cells by CBs. Compared with

the optimized cell designed for the state, extra CBs are needed for merging dout’s and

out’s. On the other hand, the number of CBs on the paths connecting to din decreases

by one. Therefore, the total number of CBs on the paths from the input to the output

of the module does not change. Splitters (SPLs) which are indicated by black circles in

the figure are necessary for splitting in 1, . . ., in n, and therefore, the delay of SPLs for

in 1, . . ., in n and the interconnections for the SPLs and the CBs merging dout’s and out’s

increases.

When m > 2km, we can construct the state module using three or more basic cells in

the same way.

A case of m ≤ km and n > kn

For convenience, we assume that n ≤ 2kn. We can construct a state module for the state

using two basic cells as shown in Fig. 5.8. We split signal lines connecting to din using

SPLs. Since there are pulses in both din’s of the basic cells, dout of one basic cell is not
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DFF ...

CB CB
...

out1, ..., outndout

in1, ..., inn

...

din1, ..., dinkm, din(km+1), ..., dinm

...

din din

Figure 5.7: A case of m = 2km and n = kn.

used. Compared with the optimized cell designed for the state, the delay of SPLs for

din 1, . . ., din m connecting to din and the interconnections increases.

When n > 2kn, we can also construct the state module using three or more basic cells

in the same way.

A case of m > km and n > kn

By combining the methods of former two cases, we can construct the state module using

basic cells.
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...

Figure 5.8: A case of m = km and n = 2kn.

Table 5.1: The delay of gates.

delay (ps)

AND 20

OR 10

NOT 15

DFF 10

SPL 10

CB 20

PTL 10

5.4 Experimental Results

We have implemented the proposed method by programing language C and have applied it

to synthesis of several sequential circuits in LGSynth’91 benchmark set[28]. We have also
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applied methods for CMOS digital circuits with binary encoding and one-hot encoding

to the benchmark circuits. We have used SIS[33] and Synopsys Design Compiler for

state minimization, state assignment and circuit synthesis. For timing adjustment, we

have inserted buffers with clock input (DFFs) to appropriate positions of the sequential

circuits. We have modified the method proposed in the previous chapter and have used

for clock scheduling. We have estimated the number of gates and the clock periods.

We show the delay of gates which is used in the experiment in Table 5.1. For estimation

of clock periods, we have assumed that gates are interconnected by PTLs[16–18]. Since

the delay of PTLs is much smaller than that of gates, we have assumed that the delay of

PTLs is a constant value regardless of their length and have approximated the delay by

the delay of drivers and receivers of PTLs. Furthermore, we have assumed that all state

modules and CBs connecting to their din are prepared as optimized cells (basic cells).

Tables 5.2 and 5.3 show the experimental results of synthesis of sequential circuits.

In the tables, “# of inputs,” “# of outputs” and “# of states” indicate the number

of inputs, the number of outputs and the number of states after state minimization of

each circuit, respectively. “proposed,” “binary” and “one-hot” indicate the results of the

proposed method, the method for CMOS digital circuits with binary encoding and that

with one-hot encoding, respectively. “# of gates” indicates the number of gates (logic

gates, DFFs and CBs) including buffers with clock input (DFFs) for timing adjustment.

In the proposed method, each DFF and AND gate in state modules is counted as one

gate. Since circuits synthesized by the proposed method work with a single clock signal,

local clock frequency equals system clock frequency.

The experimental results show that compared with the conventional method for CMOS

digital circuits with binary encoding, the proposed method synthesizes circuits that work

with 4.9 times higher clock frequency and have 17.3% more gates on average. Compared

with the conventional method for CMOS digital circuits with one-hot encoding, the pro-

posed method synthesizes circuits that work with 3.1 times higher clock frequency and

have 11.8% more gates on average.
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5.5 Summary of the Chapter

For achieving high-throughput SFQ sequential circuits, a new synthesis method has been

proposed. In the method, a state module consisting of a DFF and several AND gates

is used. First, the states of a sequential machine are encoded by one-hot encoding, and

then, a state module is assigned to each state. Finally, according to the state transition,

the state modules are connected with each other using CBs. Using the proposed method,

a sequential circuit without clocked gates in its feedback loops is constructed. The experi-

mental results show that compared with a conventional method for CMOS digital circuits,

the proposed method synthesizes circuits that work with 4.9 times higher clock frequency

and have 17.3% more gates on average.

In general, the number of gates in CMOS sequential circuits with one-hot encoding is

larger than that with binary encoding. However, in an SFQ sequential circuit, buffers with

clock input (DFFs) for timing adjustment are necessary, and therefore, the number of gates

in sequential circuits with one-hot encoding is comparable with that in sequential circuits

with binary encoding. The proposed method is a method applicable for arbitrary types of

sequential machines and high-throughput circuits are synthesized with comparable number

of gates with conventional methods.
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Table 5.2: Experimental results of sequential circuit synthesis (1).

Circuit # of # of # of # of Local clock System clock

name[28] inputs outputs states gates (GHz) (GHz)

proposed 206 8.70 8.70

dk15 3 5 4 binary 105 15.38 2.20

one-hot 132 13.33 2.22

proposed 299 7.41 7.41

dk16 2 3 27 binary 402 13.33 1.21

one-hot 300 18.18 2.60

proposed 547 6.90 6.90

ex1 9 19 18 binary 397 13.33 1.33

one-hot 376 15.38 2.20

proposed 132 8.00 8.00

ex2 2 2 11 binary 131 13.33 1.67

one-hot 110 18.18 3.03

proposed 56 8.00 8.00

ex5 2 2 4 binary 33 18.18 3.03

one-hot 47 18.18 3.64

proposed 428 5.71 5.71

keyb 7 2 19 binary 527 15.38 1.18

one-hot 383 18.18 1.82

proposed 515 6.06 6.06

kirkman 12 6 17 binary 347 13.33 1.33

one-hot 519 16.67 2.08

proposed 36 9.52 9.52

lion9 2 1 4 binary 33 18.18 3.03

one-hot 38 18.18 3.64

proposed 613 9.52 9.52

planet 7 19 48 binary 930 12.50 1.14

one-hot 706 18.18 2.60

proposed 435 8.70 8.70

pma 8 8 24 binary 385 13.33 1.33

one-hot 375 18.18 2.60
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Table 5.3: Experimental results of sequential circuit synthesis (2).

Circuit # of # of # of # of Local clock System clock

name[28] inputs outputs states gates (GHz) (GHz)

proposed 566 6.90 6.90

s1 8 6 20 binary 655 13.33 1.11

one-hot 399 13.33 1.67

proposed 741 5.41 5.41

s1488 8 19 48 binary 1003 13.33 1.11

one-hot 889 15.38 1.71

proposed 109 8.00 8.00

s27 4 1 5 binary 38 18.18 3.03

one-hot 103 18.18 2.27

proposed 1472 4.65 4.65

s298 3 6 135 binary 2749 13.33 0.83

one-hot 1718 18.18 2.02

proposed 270 6.45 6.45

s386 7 7 13 binary 227 15.38 1.54

one-hot 187 18.18 2.60

proposed 648 5.71 5.71

s820 18 19 24 binary 535 13.33 1.11

one-hot 609 18.18 1.82

proposed 873 6.90 6.90

sand 11 9 32 binary 924 11.76 1.07

one-hot 750 15.38 1.71

proposed 927 5.13 5.13

scf 27 56 94 binary 1522 13.33 1.03

one-hot 1460 15.38 1.54

proposed 35 10.53 10.53

shiftreg 1 1 8 binary 20 25.64 6.41

one-hot 25 18.18 6.06

proposed 668 5.71 5.71

styr 9 10 30 binary 850 13.33 1.03

one-hot 664 18.18 2.02



Chapter 6

Integer Multiplier with

Systolic Array Structure

6.1 Introduction

In this chapter, we propose an integer multiplier for concurrent-flow clocking SFQ digital

circuits based on the systolic array scheme. Since SFQ digital circuits work by pulse logic,

logic gates of SFQ digital circuits have different features from those of CMOS digital

circuits. For example, all logic gates of synchronous clocking SFQ digital circuits have

the function of a latch and NOT gate of dual-rail SFQ digital circuits has no cost, i.e.,

cross of true-line and false-line. Therefore, suitable circuit structure of SFQ arithmetic

circuits is different from that of CMOS arithmetic circuits. The importance of studies on

such suitable circuit structure is increasing. In this chapter, we focus on multiplication

because multiplication appears frequently in various applications. Since multiplication

using addition and shift operations requires relatively long calculation time, multipliers

are integrated into many commercial microprocessors.

The systolic array is a parallel architecture and is suitable for VLSI implementation[34].

It consists of regularly arranged simple processing elements (PEs). The systolic integer

multiplier to be proposed has one-dimensional structure, and all signals of the multi-

81



82
CHAPTER 6. INTEGER MULTIPLIER WITH

SYSTOLIC ARRAY STRUCTURE

plier flow from the circuit input to the output unidirectionally. The multiplier matches

concurrent-flow clocking of SFQ digital circuits well. The circuit area of the proposed

multiplier is proportional to the bit-width of the operand and the latency required for a

multiplication is also proportional to the bit-width of the operand.

For evaluation of the proposed multiplier, we have designed a 4-bit systolic multiplier.

For comparison, we have also designed a 4-bit array multiplier which is one of the most

typical parallel multipliers. From the results of the design and a digital simulation, the

number of JJs and the latency of the designed 4-bit systolic multiplier are 2308 and 1240

ps at 25 GHz of clock frequency, respectively, while those of the designed 4-bit array

multiplier are 4254 and 840 ps, respectively. We have estimated the performance of larger

scale multipliers. The estimated latency of n-bit systolic multiplier is (322.5n − 40) ps

at 25 GHz of clock frequency, while that of n-bit array multiplier is (252n − 168) ps.

The ratio is about 1.28 when n is large. The circuit area of the proposed multiplier is

proportional to n, while that of the array multiplier is proportional to n2. Our estimation

shows that the systolic multiplier achieves comparable latency to the array multiplier,

using extremely fewer number of JJs when the bit-width of the operand is large. We

have fabricated a 1-bit PE of the proposed multiplier using NEC 2.5kA/cm2 standard Nb

process and have successfully tested it at low speed.

In general, for CMOS digital circuits, latency of an arithmetic circuit with systolic

array structure is long because of the setup/hold time of registers included in the systolic

array. For synchronous clocking SFQ digital circuits, all logic gates have the function of a

latch. Therefore, additional delay is not required in the systolic array, and latency of an

SFQ arithmetic circuit with systolic array structure is not long in comparison with typical

architectures. Adoption of systolic array structure is a promising approach for designing

SFQ arithmetic circuits.

The rest of this chapter is organized as follows. In Section 6.2, we describe the charac-

teristics of the systolic array and propose an integer multiplier with systolic array struc-

ture. In Section 6.3, we describe the results of design and evaluation of the proposed
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multiplier and in Section 6.4, we describe the test results. Finally, in Section 6.5, we give

the summary of this chapter.

6.2 Integer Multiplier with Systolic Array Structure

6.2.1 Systolic Array

The systolic array was proposed as an architecture suitable for VLSI implementation[34].

We review the characteristics of a systolic array briefly.

A systolic array consists of a set of interconnected processing elements (systolic cells)

and each cell performs some simple operation. Systolic cells are interconnected to form

simple, regular communication and control structure. Signals in a systolic array flows

between cells in a pipelined fashion, and communication with the outside world occurs

only at the boundary cells. A systolic array has the following advantages:

• Modular expandability,

• Simple and regular data and control flows,

• Use of simple and uniform cells,

• No global broadcasting.

Each systolic cell has finite number of registers. All signals except the clock signal

of a cell are only connected to its adjacent cells. Data signals are input serially and are

output serially. The systolic array achieves high-throughput operations and small circuit

area, while latency tends to be long.

6.2.2 Integer Multiplier with Systolic Array Structure

We consider the multiplication Z = X × Y where X is a multiplicand, Y is a multiplier

and Z is the product. X and Y are n-bit two’s complement integers and Z is a 2n-bit two’s

complement integer. In this section, first, we transform the expression of multiplication for
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constructing a systolic array. Then, we propose an integer multiplier from the transformed

expression.

X and Y can be written as follows:

X = −xn−12
n−1 +

n−2
∑

i=0

xi2
i, (6.1)

Y = −yn−12
n−1 +

n−2
∑

j=0

yj2
j . (6.2)

Then, the expression is rewritten as follows[35]:

Z = X × Y

=

(

−xn−12
n−1 +

n−2
∑

i=0

xi2
i

)

×



−yn−12
n−1 +

n−2
∑

j=0

yj2
j





= xn−1yn−12
2n−2 − xn−1

n−2
∑

j=0

yj2
n+j−1

−yn−1

n−2
∑

i=0

xi2
n+i−1 +

n−2
∑

i=0

n−2
∑

j=0

xiyj2
i+j. (6.3)

To remove subtractions from Eq. (6.3), we use the following relations:

−xn−1

n−2
∑

j=0

yj2
n+j−1 =



−2n−1 +
n−2
∑

j=0

xn−1yj2
j + 1



 2n−1,

−yn−1

n−2
∑

i=0

xi2
n+i−1 =

(

−2n−1 +
n−2
∑

i=0

yn−1xi2
i + 1

)

2n−1.

a is the bit-complement of a. Then, Eq. (6.3) can be rewritten as follows:

Z = −22n−1 + xn−1yn−12
2n−2 +

n−2
∑

j=0

xn−1yj2
n+j−1

+
n−2
∑

i=0

yn−1xi2
n+i−1 +

n−2
∑

i=0

n−2
∑

j=0

xiyj2
i+j + 2n. (6.4)

Based on Eq. (6.4), we propose a systolic integer multiplier. The multiplier to be pro-

posed has one-dimensional structure as shown in Fig. 6.1. In the figure, a 4-bit multiplier

is shown. xi (yj) is input 1-bit per clock cycle from the LSB (least significant bit), and

z0, . . . , z2n−1 are serially obtained at the right-most cell. In cell j, yj is stored and yj · xi
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Figure 6.1: 4-bit integer multiplier.

(i = 0, . . . , n−1) are calculated. The calculated yj ·xi is accumulated with an intermediate

result which is input from Sin, and the result of the accumulation is output from Sout

to the next cell. Load is used for loading Y and resetting each cell. yj is loaded to an

appropriate cell according to the load signal which is fed to Load at the same time of the

input of y0. CTRL1 and CTRL2 are used for the bit-complementation included in Eq.

(6.4) and are exchanged each other at the right-most cell.

The detail of the 1-bit cell is shown in Fig. 6.2. The cell consists of 2 non-destructive

read-outs (NDs), 2 ANDs, 3 XORs, 1 confluence buffer (CB), 8 splitters and 21 DFFs

(Ds), and is a serial adder that calculates (X ·Y )⊕CTRL1+S. The NDs calculate X ·Y

and control loading Y . Signals input from Sin and Yin are output at Sout and Yout after

3 clock cycles, respectively, and signals input from Xin, Loadin, CTRL1in and CTRL2in

are output at Xout, Loadout, CTRL1out and CTRL2out after 4 clock cycles, respectively.

After 3n clock cycles from the input of x0 to the left-most cell, z0 is obtained from the

right-most cell and after then, z1, . . . , z2n−1 are serially obtained.

For the bit-complementation in Eq. (6.4), we set CTRL1 = 1 when xn−1 is input from

X and CTRL2 = 1 when x0, . . . , xn−2 are input. Furthermore, for the addition of 2n, we

input 1 from S at the (n + 1)-th clock cycle and for the addition of −22n−1, we input 1

from S at the 2n-th clock cycle.

We show the flow of a 4-bit multiplication in Fig. 6.3. The multiplication starts at
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D

DDDD

D

Xin Xout
Sout

CTRL1in CTRL1out

D D DD

Sin

CB

D DD

CTRL2in CTRL2out

D D DD

D DD

Yin

Loadin

Yout

Loadout

ND

ND

D

Figure 6.2: 1-bit cell of the proposed multiplier. (D is a DFF, ND is a non-destructive read-out

(NDRO) and CB is a confluence buffer.)

t = 1 and ends at t = 20. The product Z is obtained during t = 13 to t = 20. The next

multiplication can start at t = 9. Each box separated by dashed lines indicates a pipeline

stage of the 1-bit cell, each box filled by oblique lines indicates a pipeline stage which is

working and each dot indicates an intermediate step of an addition.

All signals of the proposed integer multiplier flow from the circuit input to the output

unidirectionally. This feature matches concurrent-flow clocking of SFQ digital circuits

well. The circuit area of the proposed multiplier is proportional to n which is the bit-

width of the operand and the latency of the multiplier is also proportional to n.

6.3 Design and Evaluation of the Proposed Multiplier

In order to evaluate the proposed systolic integer multiplier, we have designed a 4-bit

systolic integer multiplier. For comparison, we have also designed a 4-bit array integer

multiplier which is one of the most typical parallel multipliers. We have used CONNECT

cells[5] and have assumed NEC 2.5kA/cm2 standard Nb process[4]. Figure 6.4 shows the

circuit structure of a 4-bit array integer multiplier. “FA” indicates a full adder. For
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Figure 6.3: Flow of a 4-bit multiplication.

interconnections of the systolic multiplier, we have used only Josephson-transmission-

lines (JTLs) because all interconnections of the multiplier are short. On the other hand,

for interconnections of the array multiplier which has many long interconnection, we have

assumed that passive-transmission-lines (PTLs) are available without any restrictions and

the delay of PTLs is 0 (We have taken the delay of drivers and receivers of PTLs into

consideration).

We have compared the 4-bit multipliers with each other. Table 6.1 shows the number
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Figure 6.4: Circuit structure of a 4-bit array integer multiplier.

of JJs and the latency of the designed multipliers. The clock frequency of the multipliers

is 25 GHz (The clock period is 40 ps). The propagation delay of the clock signal is its

delay from the input to the output. The number of stages is the number of gates with

clock input on the paths from the circuit input to the output. Latency is approximated

by the following expression: latency = ((the number of clocks required −1) × the clock

period) + the propagation delay of the clock signal. The number of JJs of the systolic

multiplier is almost the half of that of the array multiplier. The latency of the former is

about 1.5 times longer than that of the latter.

Here, we estimate the performance of larger scale multipliers. Since an n-bit systolic

multiplier can be constructed by connecting n 1-bit cells in serial, the number of JJs,

the propagation delay of the clock signal and the number of required clocks for an n-

bit systolic multiplier are all proportional to n. Therefore, the latency of n-bit systolic

multiplier is approximated by (5n− 1)× 40 + 490/4× n = (322.5n− 40) ps. Since circuit

area of an n-bit array multiplier is proportional to n2, we assume that the number of
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Table 6.1: The number of JJs and the latency of the designed multiplier.

4-bit systolic 4-bit array

multiplier multiplier

# of JJs 2308 4254

propagation delay 490 440

of the clock signal

# of pipeline stages 12 10

# of clocks required 20 11

The latency 1250 840

at 25 GHz (ps)

JJs of an n-bit array multiplier is exactly proportional to n2. For estimating latency

of an array multiplier, we assume that propagation delay of the clock signal is exactly

proportional to the number of stages of logic gates with clock input. The number of

stages of n-bit array multiplier is (3n − 2). Namely, those of an 8, 16, 32 and 64-bit

multipliers are 22, 46, 94 and 190, respectively. Therefore, the numbers of required clocks

of the multipliers are 23, 47, 95 and 191, respectively. We assume clock frequency of all

multipliers is 25 GHz. Consequently, the latency of n-bit array multiplier is approximated

by (3n − 1) × 40 + 440/10 × (3n − 2) = (252n − 168) ps. Tables 6.2 and 6.3 show the

estimated numbers of JJs and the estimated latency, respectively. The latency of the

64-bit systolic multiplier is about 1.3 times longer than that of the 64-bit array multiplier.

Since the delay of PTLs is not taken into consideration, the ratio is small if it is taken. The

proposed multiplier achieves comparable latency to the array multiplier, using extremely

fewer number of JJs when the bit-width of the operand is large.

In general, for CMOS digital circuits, latency of an arithmetic circuit with systolic

array structure is long in comparison with typical architectures because of the setup/hold

time of registers included in systolic cells. On the other hand for SFQ digital circuits,

latency of an arithmetic circuit with systolic array structure is not long in comparison
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Table 6.2: The estimated number of JJs of larger scale multipliers.

systolic array ratio (systolic / array)

4-bit 2308 4254 0.5425

8-bit 4616 17016 0.2713

16-bit 9232 68064 0.1356

32-bit 18464 272256 0.0678

64-bit 36928 1089024 0.0339

Table 6.3: The estimated latency of larger scale multipliers.

systolic (ps) array (ps) ratio (systolic / array)

4-bit 1250 840 1.49

8-bit 2540 1848 1.37

16-bit 5120 3864 1.33

32-bit 10280 7896 1.30

64-bit 20600 15960 1.29

with typical architectures because of the function of a latch all logic gates have. Systolic

array structure is suitable for SFQ arithmetic circuits.

The proposed multiplier can start a multiplication every 2n clock cycles, while the

array multiplier can start a multiplication every 1 clock cycle. The proposed multiplier is

attractive for the situation where multiplication is not so frequently appeared.

6.4 Test Result of the Proposed Multiplier

We have fabricated a 1-bit cell of the proposed systolic integer multiplier using NEC

2.5kA/cm2 standard Nb process. Figure 6.5 shows a chip photograph of the 1-bit cell.

The number of JJs of the cell is 577 and the circuit area of it is 0.60 mm × 0.56 mm.

Figure 6.6 shows the test result of the 1-bit cell at low speed. We have set Y = 1 and have

tested the cell at two situations, i.e., CTRL1 = 0 (the left part) and CTRL1 = 1 (the right
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Figure 6.5: Chip photograph of the 1-bit cell. (The number of JJs is 577 and the circuit area is

0.60 mm × 0.56 mm.)

part). As test patterns, we have input 0101 from Sin and 0110 from Xin, respectively.

The expected results of the two situations are 1011 and 1110, respectively because the

cell is a serial adder that calculates (X · Y )⊕CTRL1+ S. We can see that the cell works

correctly. The dc bias margin of the cell ranges from −5% to 11%.

6.5 Summary of the Chapter

We have proposed a systolic integer multiplier and have designed a 4-bit version using

CONNECT cells. The number of JJs of the 4-bit systolic multiplier is almost the half

of a 4-bit array multiplier, and its latency is about 1.5 times longer than that of the
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clkin

Sin

Xin

Yin

CTRL1in

CTRL2in

Loadin

clkout

Sout

Xout

Yout

CTRL1out

CTRL2out

Loadout

1 0 1 0 1 0 1 0

0 1 1 0 0 1 1 0

1 1 1 10 0 0 0

1 1 0 1 0 1 1 1

Figure 6.6: Test result of the 1-bit cell. (The test pattern of the left side is Y = 1, CTRL1 = 0,

S = 0101 and X = 0110, and the result is 1011. The test pattern of the right side is Y = 1,

CTRL1 = 1, S = 0101 and X = 0110, and the result is 1110.)

array multiplier. Our estimation of the performance of larger scale multipliers shows

that the proposed systolic multiplier achieves comparable latency to the array multiplier,

using extremely fewer number of JJs when the bit-width of the operand is large. We

have fabricated a 1-bit cell of the proposed multiplier using NEC 2.5kA/cm2 standard

Nb process and have successfully tested it at low speed. The proposed systolic multiplier

fully exploits the ultra-fast computation speed of SFQ circuits. By using systolic array

structure, a small-area and fast multiplier is achieved.
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In general, for CMOS digital circuits, latency of an arithmetic circuit with systolic

array structure is long in comparison with typical architectures because of the setup/hold

time of registers included in systolic cells. On the other hand for SFQ digital circuits,

latency of an arithmetic circuit with systolic array structure is not long in comparison

with typical architectures because of the function of a latch all logic gates have. Adoption

of systolic array structure is a promising approach for designing high-speed and small-area

SFQ arithmetic circuits.





Chapter 7

Conclusion

We proposed design automation algorithms and design of an arithmetic circuit for SFQ

digital circuits.

In Chapter 3, we proposed a new method of logic synthesis for dual-rail SFQ digital

circuits. In the method, we constructed a root-shared binary decision diagram (RSBDD)

from given logic functions and reduced the size of the constructed RSBDD by a variable

re-ordering technique. Then, we constructed a dual-rail SFQ circuit using the reduced

RSBDD. The experimental results showed that by using the proposed method, we can

synthesize circuits that consist of about 27.1% fewer logic elements than those synthesized

by a Transduction-based method on average.

In Chapter 4, we proposed an algorithm for clock scheduling of concurrent-flow clocking

SFQ digital circuits. By using the algorithm, we can determine clock scheduling for a

given clock period in the computation time of O(g3) where g is the number of clocked

gates. Experimental results on smaller benchmark circuits showed that the proposed

algorithm can obtain the optimum solutions, i.e., the same results with an ILP solver.

Experimental results on larger benchmark circuits showed that for a given clock period, the

proposed algorithm can obtain near optimal solutions in which inserted delay elements are

59.0% fewer and clock trees are 40.4% shorter on average than those by a straightforward

algorithm. The proposed algorithm can also be used to minimize the clock period. The
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clock periods obtained by the proposed algorithm were 19.0% shorter on average than

those by the straightforward algorithm.

In Chapter 5, we proposed a new synthesis method of sequential circuits for syn-

chronous clocking SFQ digital circuits. In the method, we used a state module consisting

of a DFF and several AND gates. First, we encoded the states of a sequential machine by

one-hot encoding, and then, assigned a state module to each state. Finally, we connected

the state modules with each other according to the state transition using CBs. Using the

proposed method, we can construct a sequential circuit without clocked gates in its feed-

back loops. The experimental results showed that compared with a conventional method

for CMOS digital circuits, the proposed method can synthesize circuits that work with

4.9 times higher clock frequency and have 17.3% more gates on average.

In Chapter 6, we proposed a systolic integer multiplier for concurrent-flow clocking

SFQ digital circuits and designed a 4-bit version using CONNECT cells. The number of

JJs of the 4-bit systolic multiplier was almost the half of a 4-bit array multiplier, and its

latency was about 1.5 times longer than that of the array multiplier. Our estimation of

the performance of larger scale multipliers showed that the proposed systolic multiplier

can achieve comparable latency to the array multiplier, using extremely fewer number of

JJs when the bit-width of the operand is large. We fabricated a 1-bit cell of the proposed

multiplier using NEC 2.5kA/cm2 standard Nb process and successfully tested it at low

speed.

In this dissertation, we focused on logic synthesis and clock scheduling from various

topics of studies of CAD systems. To use the proposed design automation algorithms

effectively, development of placement and routing tools suitable for SFQ digital circuits

is important. When we designed the algorithms, we assumed that the delay of PTLs is

ignorable. We need to deal with the delays in the placement and routing phase. More

precisely, we need to minimize or equalize the length of each PTL in the placement and

routing phase. In addition, evaluation of errors caused by process variation, timing jitter

and so on is also important because the errors affect the robustness of designed circuits.
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These topics are especially important in designing larger scale SFQ digital circuits.

Through the studies in this dissertation, much knowledge about CAD systems for SFQ

digital circuits was obtained. By the method of logic synthesis proposed in Chapter 3,

small-area dual-rail circuits were achieved. The result shows that adoption of dual-rail

representation has the possibilities to be an alternative approach for designing SFQ dig-

ital circuits. By the clock scheduling algorithm proposed in Chapter 4, high-throughput

circuits were achieved with fewer delay elements. The result shows that appropriate clock

scheduling makes the performance of circuits higher and the proposed algorithm is an

effective for the clock scheduling problem. By the method of sequential circuit synthesis

proposed in Chapter 5, sequential circuits which work with several times higher clock

frequency were achieved. High-throughput sequential circuits can be designed systemat-

ically using the proposed method. Utilization of SFQ-specific gates and development of

new design methods make the performance of SFQ digital circuits higher. The obtained

knowledge will be bases of the development of CAD systems for SFQ digital circuits. In

the study of the integer multiplier, a systolic multiplier achieved comparable latency to

an array multiplier with extremely smaller circuit area. This result is valuable knowledge

to design SFQ arithmetic circuits. Adoption of systolic array structure is a promising

approach to design high-speed arithmetic circuits with smaller circuit area. Indeed, some

arithmetic circuits have been designed based on the systolic array scheme[36, 37]. Ad-

vancement of CAD systems and process technology will lead SFQ circuit technology to a

major player in future information and communication technology.
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