Program Generation Techniques
for Developing Reliable Software

Sakabe Laboratory & Sakai Laboratory

raduate School of Information Science, Nagoya University |

{sakabe, sakai}@is.nagoya-u.ac.jp

Programs are usually developed from given specifications having sufficient information for their coding.
Manual coding is unavoidable for obtaining actually runnable programs. To decrease this tiresome work,
we are investigating program generation methods. In this presentation, we introduce two generation
methods: The first method is an inverse compiler that automatically generates an inverse computation
program of a given program. The second method is a transformational one whose output is compatible
with the given specification and program. In these studies, we employ term rewriting systems as models
to represent functions, programs and specifications.

Inverse Compiler: We are interested in a method for automatically generating an inverse program
for a given program. Several inverse interpreters, such as unification algorithims, narrowing and “Inverse
Algorithm” have been studied so far. For any program P and any value v these inverse interpreters can
search all solutions (vy,...,v,) such that P(vy,...,v,) = v. This is, however, difficult to combine with
other programs: therefore, instead of inverse interpreters, we present an inverse compiler. Given a
program P, our inverse compiler produces a term rewriting system that defines the inverse program p—!
which can be combined with other programs. Using this term rewriting system, we compute the inverse
image of any data term v with respect to P as the set of data terms of P~'. We also study a strategy to
compute generated term rewriting systems efficiently.

P—> Inverse Inverse

——(V1, ...,V . -1 ey U
v—s| Interpreter U1 wees Un) P_>Comp11er_’P —(v1 n)

4

Program Generation from Quantified Equational Specifications: In our transformational ap-
proach, we model specifications and programs as quantified equational formulas, and we realize the
transformation based on quantified equational logic. Program generation succeeds if the output for-
mulas represent a term rewriting system. This transformation is sound; that is, the resulted formulas
logically imply the original formulas, which are representations of the given specification and program.

Specification Automatic Generation
(Quantified Equations) ———— -
e =—_- =
S - Program safisfying Specification
Pre-coded Program (—\

Inverse Compiler

What is the inverse computation of a program P?

Find all tuples (v,...,v,) satisfying P(v,,...,v,) = v, from v.

Applications: solving equations, etc.

Inverse Interpreter Inverse Compiler (Our work)
_’ - o
B Inverse " E ‘ Inver;e |
v —¥|Interpreter " Compiler v
v > P —> v, v,
mAIl solutions can be obtained. m P! is incorporable with other programs.

m Easy to prove correctness and termination.

m Possible to analyze properties of P~ from the
properties of P.

Extension of Inverse Compiler

Partial Inverse Computation

P .| Inverse ‘1
L & Compiler l |
V.V, V, > P — v,
Ex. addition and subtraction. - y 0
{ 0+y—>y — s(z) - y—>5(x) if z—y > X
S(X)+Y—> S(X+
() Y (Y) given (X + Y) y _) X

...
..........

9cd<§?ﬂ}v) = ged(x,y) gedlz;y) - ged(x,y) ifz-y 5%
ged(x,y) — ged(y,x) if x<y = ged(x,y) — ged(y,x) if x<y
gcd(x,0) — x gcd(x,0) — x

g.c.q.(s_(gxs (0)) —345°(0) ged(s*(0),57(0) ——5*(0)
Not computable! Computable!

" is not an instance of x+y.

166

Automatlc Program Generatlon

Specification

(quantified equations)
, automatic generation

B {VX.h(d(x)) =5 @ do-l O (x = 0)
~ vx.d(h(x)) = x ' = ' X _{d(x—1)+2(x21)

Program satisfying E

(x=1)
h(x —2) +1(x > 2)

Pre—coded Program

Towards
m Reliable programs
m Efficient development

Example of Transformatlon

Expansion:

Eu{lrEzU)s R oi={x— i}, U{li} : R-covering set,
Decomposition: Eu{r\; El—yi-Vi)};R ! (Wi} =Var(ti), Uoi —pop, Vi
Eu{r(Cltl=s)}hnr if Cl]1#0, Deduction:
EU{l'Ge.(t=aAClx]=s)hR x € X —Var(I(C[t] =~ s)) Eu{r¥:sU)};R . o;={x—t;}, U;{t:} : R-covering set,
Composition: Eu {F(/\,-\)’_y:.V,-)};R ! (U1} = Var(ti), Uoi 5 pue, Vi
EUu{I'Ga.(x=tAU)} R T g fpesid Variable-Elimination:
Eu{r{Uo)}h R = {z b},

Eu{r{vz.(V; EJ. (z2t; AU R
EU{F(/\IVy, Uioi)}; R

{t } : R-strongly covering set,
{y-} = Var(t;)

Transformation Sequence

P (d(h(x)) =).\ [h(0) = 0,h(S(0)) = } e {V;L'.Ely.(h(rn)zy/\(l(y)z:v),}.R Dec { Va3y.(h(x) ~ y Ad(y) = z), }
P Vaeh(d@) = [T r(S2(x) = S(h(x)) ¢ va. (h(d(x)) =~) T e (3 (d(@) &y A h(y) ~ 2))

1

Va3y. (h(x) = y Ad(y) =), Va.3y.(h(z) = y Ad(y) = z),
Hyp dx)=0AN0 = Ry Exp dx)=~0A0 =~ B
~o V. [v d(z) = S(0O)AO= 2 e Va. | v d(x) = S(0)AO = o
vV (3z.(d(zx) = S*(z) AS(h(2)) = x)) Vo 3z (d(x) = S%(2) A Ju.(S(u) = x Ad(u) =

Va.3y. (h(z) = y Ad(y) = x), Va3y.(h(x) = y Ad(y) = x)
= { <v-,; ((d(x) = 0V d(z) = 5(0)) Az =0)> iRy =y { ((d(0) = 0 v d(0) = 5(0)
TV w3z (d(x) x S2(z) Aw x S(u) Ad(u) = z) A Yu.(32.(d(S(u)) = S2(2) Ad(u) ~ =)
va3y. (h(z) = y Ad(y) =), { d(0) — 0, }
=Som d(0) — 1,
{ d(S(x)) — S2(d(x))

(d(0) = 0V d(0) = S(0)) i B= Eai
A Vad(S(w) &~ S2(d(u)) -

167

