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ABSTRACT

This paper reviews a real-time blind source separation (BSS) method
for convolutive mixtures of audio signals, in which a single-input
multiple-output (SIMO)-model-based independent component anal-
ysis (ICA) and a new SIMO-model-based binary masking are com-
bined. SIMO-model-based ICA can separate the mixed signals, not
into monaural source signals but into SIMO-model-based signals
from independent sources in their original form at the microphones.
Thus, the separated signals of SIMO-model-based ICA can main-
tain the spatial qualities of each sound source. Owing to this at-
tractive property, novel SIMO-model-based binary masking can be
applied to efficiently remove the residual interference components
after SIMO-model-based ICA. In addition, the performance deteri-
oration due to the latency problem in ICA can be mitigated by in-
troducing real-time binary masking. We develop a pocket-size real-
time DSP module implementing the new BSS method, and report the
experimental evaluation of the proposed method’s superiority to the
conventional BSS methods, regarding moving-sound separation.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate orig-
inal source signals using only the information of the mixed signals
observed in each input channel. Basically BSS is classified into un-
supervised filtering technique in that the source-separation proce-
dure requires no training sequences and no a priori information on
the directions-of-arrival (DOAs) of the sound sources. Owing to the
attractive features of BSS, much attention has been paid to BSS in
many fields of signal processing such as speech enhancement.

In recent researches of BSS based on independent component
analysis (ICA), various methods have been presented for acoustic-
sound separation [1, 2, 3, 4]. This paper also addresses the BSS
problem under highly reverberant conditions which often arise in
many practical audio applications. The separation performance of
the conventional ICA is far from being sufficient in the reverberant
case because too long separation filters is required but the unsuper-
vised learning of the filter is not so easy. Therefore, one possible
improvement is to partly combine ICA with another signal enhance-
ment technique, but in the conventional ICA, each of the separated
outputs is a monaural signal, and this leads to the drawback that
many kinds of superior multichannel techniques cannot be applied.

In order to attack the tough problem, we have proposed a novel
two-stage BSS algorithm [5] which is applicable to an array of di-
rectional microphones. The main aim of this paper is to introduce
and review our BSS method. This approach resolves the BSS prob-
lem into two stages: (a) a Single-Input Multiple-Output (SIMO)-
model-based ICA proposed by the authors [6] and (b) SIMO-model-
based binary masking for the SIMO signals obtained from the pre-
ceding SIMO-model-based ICA. SIMO-model-based ICA can sep-
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arate the mixed signals, not into monaural source signals but into
SIMO-model-based signals from independent sources as they are at
the microphones. Thus, the separated signals of SIMO-model-based
ICA can maintain rich spatial qualities of each sound source. After
the SIMO-model-based ICA, the residual components of the inter-
ference, which are often staying in the output of SIMO-model-based
ICA as well as the conventional ICA, can be efficiently removed by
the following SIMO-model-based binary masking.

It should be enhanced that the two-stage method has another
important property, i.e., applicability to the real-time processing.
In general ICA-based BSS methods require huge calculations, but
SIMO-model-based binary masking needs very few computational
complexities. Therefore, because of the introduction of binary mask-
ing into ICA, the proposed combination can function as the real-time
system. In this paper, we mainly address the real-time implementa-
tion issue on the proposed BSS with our developed pocket-size DSP
module, and evaluate the “real-time” separation performance for real
recording of moving sound mixtures under a reverberant condition.

2. MIXING PROCESS AND CONVENTIONAL BSS

2.1. Mixing process

In this study, the number of microphones is /' and the number of
multiple sound sources is L, where we deal with the case of K = L.

Multiple mixed signals are observed at the microphone array,
and these signals are converted into discrete-time series via an A/D
converter. By applying the discrete-time Fourier transform, we can
express the observed signals, in which multiple source signals are
linearly mixed with additive noise, as follows in the frequency do-
main:

X(f) = ANS) + N, ("

where X (f) = [X1(f),--+ , X (f)]" is the observed signal vec-
tor, and S(f) = [S1(f),---,Sc(f)]" is the source signal vector.
Also, A(f) = [Ari(f)]r is the mixing matrix, where [X];; denotes
the matrix which includes the element X in the i-th row and the j-
th column. Here, IV (f) is the additive noise term which generally
represents, for example, a background noise and/or a sensor noise.
The mixing matrix A(f) is complex-valued because we introduce a
model to deal with the relative time delays among the microphones
and room reverberations.

2.2. Conventional ICA-based BSS

In the frequency-domain ICA (FDICA), first, the short-time analysis
of observed signals is conducted by frame-by-frame discrete Fourier
transform (DFT). By plotting the spectral values in a frequency bin
for each microphone input frame by frame, we consider them as
a time series. Hereafter, we designate the time series as X (f,t)

=[X1(f, 1), X (£,D)]".



Next, we perform signal separation using the complex-valued
unmixing matrix, W (f) = [Wi(f)]ix. so that the L time-series
output Y (f, t)=[Y1(f,t), -+, YL(f,t)]" becomes mutually inde-
pendent; this procedure can be given as Y (f,t) = W (f) X (f,1).
We perform this procedure with respect to all frequency bins. The
optimal W (f) is obtained by, e.g., the following iterative updating
equation [1]:

wial() = g[1- ey @,o)Y" (L W)
+ W), 2

where I is the identity matrix, (-); denotes the time-averaging oper-
ator, [7] is used to express the value of the 7 th step in the iterations,
n is the step-size parameter, and @(-) is the appropriate nonlinear
vector function. After the iterations, the source permutation and the
scaling indeterminacy problem can be solved by, e.g., [1, 3].

2.3. Conventional binary-mask-based BSS

Binary mask processing [7, 8] is one of the alternative approach
which is aimed to solve the BSS problem, but is not based on ICA.
We estimate a binary mask by comparing the amplitudes of the ob-
served signals, and pick up the target sound component which arrives
at the better microphone closer to the target speech. This procedure
is performed in time-frequency regions, and is to pass the specific
regions where target speech is dominant and mask the other regions.
Under the assumption that the {-th sound source is close to the I-th
microphone and L = 2, the [-th separated signal is given by

%(fE =

where m;(f,t) is the binary mask operation which is defined as
my(f.t) = Lif | X (f, )] > | Xk(f,t)] (k # D; otherwise my(f,t) =
0.

my(f, 1) Xi(f, 1), (3)

This method requires very few computational complexities, and
this property is well applicable to real-time processing. The method,
however, needs a sparseness assumption in the sources’ spectral com-
ponents, i.e., there are no overlaps in time-frequency components of
the sources. Indeed the assumption does not hold in an usual au-
dio application, e.g., a mixture of speech and a common broadband
stationary noise.

3. PROPOSED TWO-STAGE BSS ALGORITHM

3.1. What is SIMO-model-based ICA?

In a previous study, SIMO-model-based ICA (SIMO-ICA) was pro-
posed by some of the authors [6], who showed that SIMO-ICA en-
ables the separation of mixed signals into SIMO-model-based sig-
nals at microphone points.

In general, the observed signals at the multiple microphones can
be represented as a superposition of the SIMO-model-based signals
as follows:

X(f) = [Au(N)S1(f), - A () S1(H)]"

+AL(H)SL(f), - Arn(HSLD, @)

where [Au(£)Si(f), -+, Axai(f)Si(f)]" is a vector which corre-
sponds to the SIMO-model-based signals with respect to the I-th
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Fig. 1. Input and output relations in (a) proposed two-stage BSS and.
(b) simple combination of conventional ICA and binary masking,
This corresponds to the case of K = L = 2.

sound source; the k-th element corresponds to the k-th microphone’s
signal.

The aim of SIMO-ICA is to decompose the mixed observations
X (f) into the SIMO components of each independent sound source; |
i.e., we estimate Ag;(f)Si(f) for all & and [ values (up to the per-
missible time delay in separation filtering). SIMO-ICA has the ad-
vantage that the separated signals still maintain the spatial qualities
of each sound source, in comparison with conventional ICA-based
BSS methods.

3.2. Motivation and strategy

Owing to the fact that SIMO-model-based separated signals are still
one set of array signals, there exist new applications in which SIMO-
model-based separation is combined with other types of multichan-
nel signal processing. In this paper, hereinafter we address a spe-!
cific BSS consisting of directional microphones in which each mi-
crophone’s directivity is steered to a distinct sound source, i.e, the
[-th microphone steers to the [-th sound source. Thus the outpuls
of SIMO-ICA is the estimated (separated) SIMO-model-based sig-
nals, and they keep the relation that the [-th source component i
the most dominant in the [-th microphone. This finding has moti-
vated us to combine SIMO-ICA and binary masking. Moreover we
propose to extend the simple binary masking to a new binary mask-
ing strategy, so-called SIMO-model-based binary masking (SIMO-
BM). That is, the masking function is determined by all the informa-
tion regarding the SIMO components of all sources obtained from
SIMO-ICA. The configuration of the proposed method is shown in
Fig. 1(a). SIMO-BM, which subsequently follows SIMO-ICA, can
remove the residual component of the interference effectively with-
out adding enormous computational complexities. This combination
idea is also applicable to the realization of the proposed method’s
real-time implementation.

It is worth mentioning that the novelty of this strategy mainly
lies in the two-stage idea of the unique combination of SIMO-ICA
and the SIMO-model-based binary mask. To illustrate the novelty of
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Fig. 2. Examples of spectra in simple combination of ICA and binary
masking. (a) ICA’s output 13 B1(f)S1(f.t) + E1(f,t). (b) ICA’s
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Fig. 3. Examples of spectra in proposed two-stage method. (a)

SIMO-ICA’s output 1; A11(f)S1(f,t)+ E11(f,t), (b) SIMO-ICA’s
output 2; Ao1 (f)S1(f,t) + E21(f,t), and (c) result of binary mask-
ing between (a) and (b); i {Fs2):

the proposed method, we hereinafter compare the proposed combi-
nation with a simple two-stage combination of conventional monaural-
output ICA and conventional binary masking (see Fig. 1(b)) [9].

In general, conventional ICAs can only supply the source signals
Yi(f.t) = Bi(f)Si(f, )+ Ea(f,t) (1 =1, -+, L). where By(f) is
an unknown arbitrary filter and E;(f, t) is a residual separation error
which is mainly caused by an insufficient convergence in ICA. The
residual error Ej( f,t) should be removed by binary masking in the
subsequent postprocessing stage. However, the combination is very
problematic and cannot function well because of the existence of
spectral overlaps in the time-frequency domain. For instance, if all
sources have nonzero spectral components (i.e., when the sparseness
assumption does not hold) in the specific frequency subband and are
comparable (see Fig. 2(a),(b)), i.e.,

|B1(f)S1(f,t) + Ex(f,0)| = |B2(£)S2(f, 1) + E2(f, 1), (5)

the decision in binary masking for Yi(f,t) and Y2(f,t) is vague
and the output results in a ravaged (highly distorted) signal (see
Fig. 2(c)). Thus, the simple combination of conventional ICA and
binary masking is not suited for achieving BSS with high accuracy.

On the other hand, our proposed combination contains the spe-
cial SIMO-ICA in the first stage, where the SIMO-ICA can supply
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Fig. 4. Input and output relations in proposed two-stage BSS which
consists of FD-SIMO-ICA and SIMO-BM, where = L = 2 and
exclusively selected permutation matrices are given by Py = I and
Py = [l]ij —1I.in (9)

to say, the obtained SIMO components are very beneficial to the
decision-making process of the masking function. For example, if
the residual error Ey(f,t) is smaller than the main SIMO compo-
nent Agi(f)Si(f,t), the binary masking between A11(f)S1(f,t) +
E11(f,t) (Fig. 3(a)) and Aa1([f)S1(f,t) + E21(f,t) (Fig. 3(b)) is
more acoustically reasonable than the conventional combination be-
cause the spatial properties, in which the separated SIMO compo-
nent at the specific microphone closer to the target sound still main-
tains a large gain, are kept; i.e.,

[A1(f)S1(f,t) + Eu(f,t)] > [A21(F)S1(f. 1) + E2a1(f,1)]- (6)

In this case we can correctly pick up the target signal candidate
An(f)Si(f,t) + Ev(f,t) (see Fig. 3(c)). When the target com-
ponents A1 (f)S1(f,t) are absent in the target-speech silent dura-
tion, if the errors have a possible amplitude relation of E11(f,t) <
E»1(f,t), then our binary masking forces the period to be zero and
can remove the residual errors. Note that unlike the simple combi-
nation method [9], our proposed binary masking is not affected by
the amplitude balance among sources. Overall, after obtaining the
SIMO components, we can introduce the SIMO-BM for the efficient
reduction of the remaining error in ICA, even when the complete
sparseness assumption does not hold.

In summary, the novelty of the proposed two-stage idea is at-
tributed to the introduction of the SIMO-model-based framework
into both separation and postprocessing, and this offers a realiza-
tion of the robust BSS. The detailed algorithm is described in the
next subsection.

3.3. Algorithm: SIMO-ICA in 1st stage

Time-domain SIMO-ICA [6] has recently been proposed by some
of the authors as a means of obtaining SIMO-model-based signals
directly in ICA updating. In this study, we extend time-domain
SIMO-ICA to frequency-domain SIMO-ICA (FD-SIMO-ICA). FD-
SIMO-ICA is conducted for extracting the SIMO-model-based sig-
nals corresponding to each of the sources. FD-SIMO-ICA consists
of (L — 1) FDICA parts and a fidelity controller, and each ICA runs
in parallel under the fidelity control of the entire separation system
(see Fig. 4). The separated signals of the [-thICA (Il = 1,--- L —1)
in FD-SIMO-ICA are defined by

the specific SIMO signals with respect to each of sources, Axi (f)Si(f,1).

up to the possible residual error Exi(f,t) (see Fig. 3). Needless

=3

Y qcan(fit) = [YICAD(F, )] = Wacan (X (£, 1), (D)



where W ican (f) = [W([C \I)(f)]ij is the separation filter matrix
in the [-th ICA.

Regarding the fidelity controller, we calculate the following sig-
nal vector Y (qcar)(f,t). in which the all elements are to be mutu-
ally independent,

L-1

Yacan(fit) = X(fit)= > Yacan(fit):  ®)
1=1

Hereafter, we regard Y (1car)(f, t) as an output of a virtual *“L-th”
ICA. The reason we use the word “virfual” here is that the L-th ICA
does not have its own separation filters unlike the other ICAs, and
Y(ICAL)(fat) is subjecl to W(ICA!)(f) ([ =1, ,L — 1) By
transposing the second term (— Z,L:"ll Y (1can(f,t)) on the right-
hand side to the left-hand side, we can show that (8) suggests a con-
straint to force the sum of all ICAs’ output vectors ZIL:] Y 1can(f.t)
to be the sum of all SIMO components [Z,L:l A (N)Si(f, )]k
(= X(f,1)).

If the independent sound sources are separated by (7), and si-
multaneously the signals obtained by (8) are also mutually indepen-
dent, then the output signals converge on unique solutions, up to the
permutation and the residual error, as

Y qcay(f,t) = diag A(f)P{ PiS(f.1) + Ei(f,1), (9

where diag[X] is the operation for setting every off-diagonal ele-
ment of the matrix X to zero, E(f,t) represents the residual error
vector, and P; (I = 1,-- -, L) are exclusively-selected permutation
matrices which satisfy >, P; = [1];;. For a proof of this, see [6]
with an appropriate modification into the frequency-domain repre-
sentation. Obviously, the solutions provide necessary and sufficient
SIMO components, Ag;(f)Si(f,t). for each [-th source. Thus, the
separated signals of SIMO-ICA can maintain the spatial qualities of
each sound source. For example, in the case of L = K = 2, one
possibility is given by

Y](ICAI)(f’ t), YQ(ICAl)(f’ t) T
= An(NS(LD+En(f0), An(DSa(f.0+En(f.0)

(10)
Yl(ICAZ)(f,f), YQ(ICAQ)(f,t) T

= Aw(f)Sa(f,t)+Era(f,t), Aa1(f)S1(fit)+En(f,t) ©
(11)

where Py = Iand Py = [1];; — I

In order to obtain (10) and (11), the natural gradient of Kullback-
Leibler divergence of (8) with respect to W icay(/f) should be
added to the existing nonholonomic iterative learning rule [1] of the
separation filter in the [-th ICA (I = 1,--- , L — 1). The new itera-
tive algorithm of the {-th ICA part ({ = 1,--- , L — 1) in FD-SIMO-
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ICA is given as

(ICAL)

WEJI(ng\]l)(f) = W{JI]C-\I) [{Oﬁ dlaE

H
Y fean(f:) >t} P an(f
{ott ding (® X (f ZY(IW,
=1
H
S ¥l "),

'=1

1= S Wl (1) ] :

l'=1

X(f,0)—

where a is the step-size parameter. Also, the initial values of W ;¢
for all [ values should be different.

3.4. Algorithm: SIMO-BM in 2nd stage

After FD-SIMO-ICA, SIMO-model-based binary masking is appli
(see Fig. 4). Here, we consider the case of (10) and (11). The re.
sultant output signal corresponding to source | is determined in
proposed SIMO-BM as follows:

(f1) = ma(f OV (), (13

where mi(f,t) is the SIMO-model-based binary mask operatio
which is defined as m1(f,t) = 1if

YAVt
> max a|[ YD (£,1)], cal YIOAD (£, 1)), ealYs AV (£,8)

(1

otherwise m1(f,t) = 0. Here, max|[-] represents the function
picking up the maximum value among the arguments, and ¢, - - - ,
are the weights for enhancing the contribution of each SIMO com
ponent to the masking decision process. For example, [c1, 2, c3]
(0,0, 1] yields the simple combination of conventional ICA and con
ventional binary mask [9]. Otherwise, if we set [c1, ¢2, c3] = 1, 0,0}
we can utilize better (acoustically reasonable) SIMO information
garding each source as described in Sect. 3.2. If we change anoth
pattern of ¢;, we can generate various SIMO-model-based maskin,
with different separation and distortion properties.
The resultant output corresponding to source 2 is given by

Ya(f,t) =
where ma(f, t) is defined as ma(f,t) = 1if

ma(f, )Yy SRV (1), (

s o T8

> max e[V (£,0)], e Y OMP (£, 1)), el (f:0)

(I

otherwise ma(f,t) = 0.

The extension to the general case of L = K > 2 can be easil
implemented. Hereafter we consider one example in that the perm
tation matrices are given as

P = [Sinn]ris ¢
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Fig. 5. (a) Overview of pocket-size real-time BSS module, where
proposed two-stage BSS algorithm works on TEXAS INSTRU-
MENTS TMS320C6713 DSP. (b) Signal flow in real-time imple-
mentation of proposed method.

Table 1. Specifications of pocket-size real-time BSS module

TI TMS320VC6713
(clock frequency: 200 MHz)

2 ch mic. in (expandable to 4 ch)
2 ch speacker/line out
8 kHz (expandable to 16/ 32 kHz)
AA cell battery x 2
Flash ROM: 100 KByte used
SDRAM: 1 MByte used
150 g (including buttery)

Processor

Input/output interfaces

Sampling frequency
Power supply

Amount of memory

Weight

where 0;; is Kronecker’s delta function, and

k+l—1 (k+l1-1<L)

n(k,l) = k+l-1-L (k+1-1>1L)

(18)

In this case, (9) yields

Yacan(fit) = Arnety(F)Snny (fi 1) + Exney(f51) - (19)

Thus the resultant output for source 1 in SIMO-BM is given by
Vi(f,t) = ma(f )Y M), (20)
where m1(f,t) is defined as m1(f,t) = 1if
YI(IC'\”(f,t) e Cl|Y2(ICAL)(f’ 1), 62|YB(ICAL4)(f: £,
C3IY4(ICAL_2)(f’ t)|= e 7CL—1IYL(,ICA2)(f7 t)|=
sesp=1]¥5 o F B ; 2n

otherwise mq(f,t) = 0. The other sources can be obtained in the
same manner.

3.5. Real-time implementation

We have already built a pocket-size real-time BSS module, where the
proposed two-stage BSS algorithm can work on a general-purpose
DSP as shown in Fig. 5(a) and Table 1. Figure 5(b) shows a con-
figuration of a real-time implementation for the proposed two-stage
BSS. Signal processing in this implementation is performed in the
following manner.
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Fig. 6. Layout of reverberant room used in computer-simulation-
based BSS experiment, where room impulse responses are recorded
for generation of convolutive mixtures. The reverberation time is
200 ms.

1. Inputted signals are converted to time-frequency series by us-
ing a frame-by-frame fast Fourier transform (FFT).

2. SIMO-ICA is conducted using current 3-s-duration data for
estimating the separation matrix, that is applied to the next
(not current) 3 s samples. This staggered relation is due to the
fact that the filter update in SIMO-ICA requires substantial
computational complexities (the DSP performs at most 100
iterations) and cannot provide the optimal separation filter for
the current 3 s data.

3. SIMO-BM is applied to the separated signals obtained by the
previous SIMO-ICA. Unlike SIMO-ICA, binary masking can
be conducted just in the current segment.

4. The output signals from SIMO-BM are converted to the re-
sultant time-domain waveforms by using an inverse FFT.

Although the separation filter update in the SIMO-ICA part is
not real-time processing but includes a latency of 3 seconds, the en-
tire two-stage system still seems to run in real-time because SIMO-
BM can work in the current segment with no delay. Generally, the
latency in conventional ICAs is problematic and reduces the applica-
bility of such methods to real-time systems. In the proposed method,
however, the performance deterioration due to the latency problemin
SIMO-ICA can be mitigated by introducing real-time binary mask-
ing. Owing to the advantage, the problem of performance decrease
is prevented, especially in the case of rapid change of the mixing
condition, e.g., the target sources are moving. This fact will appear
via experiments in the next section.

4. SOUND SEPARATION EXPERIMENT

4.1. Experimental conditions

In this section, computer-simulation-based BSS experiments are dis-
cussed to investigate the basic properties of the proposed method.
We use realistic (measured) room impulse responses recorded in a
reverberant room (Fig. 6) for the generation of convolutive mixtures.
The reverberation time in this room is 200 ms. We neglect the addi-
tive noise term N (f) in (1).

First, to evaluate the feasibility for general hands-free applica-
tions, we carried out sound-separation experiments with two sources
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Fig. 7. (a) Results of NRR and (b) results of CD under different speaker configurations and methods, where background noise is neglected,

Each score is an average for 12 speaker combinations.

and two directional microphones (SONY stereo microphone ECM-
DS70P). Two speech signals are assumed to arrive from different
directions, 07 and 02, where we prepare three kinds of source direc-
tion patterns as follows; (61,62) = (—40°,50°), (—40°,30°), or
(—40°,10°). Two kinds of sentences, spoken by two male and two
female speakers selected from the ASJ continuous speech corpus for
research [10], are used as the original speech samples. Using these
sentences, we obtain 12 combinations with respect to speakers and
source directions, where the power ratio between every pair of the
sound sources is set to 0 dB. The sampling frequency is 8 kHz and
the length of each sound sample is limited to 3 seconds. The DFT
size of W (f) is 1024. We used a null-beamformer-based initial
value [3] which is steered to (—60°,60°). This experiment corre-
sponds to the off-line test, and the number of iterations in the ICA
part is 500. The step-size parameter was optimized for each method
to obtain the best separation performance.

4.2. Experimental evaluation of separation performance
We compare the following methods.

(A) Conventional binary-mask-based BSS given in Sect. 2.3.

(B) Conventional second-order-ICA-based BSS proposed by Parra
[2], where scaling ambiguity can be properly solved by method
used in [1]. Also, permutation is solved by [3].

(C) Conventional higher-order-ICA-based BSS given in Sect. 2.2
with scaling ambiguity solver [1]. Also, permutation is solved
by [3].

(D) Simple combination of conventional higher-order ICA and bi-
nary masking.

(E) Proposed two-stage BSS method with [c1, 2, ¢3] = [1,0,0.1];
this parameter was determined in the preliminary experiment
(performed via various ¢;’s with 0.1 step) and gave the best
performance (high separation but low distortion.)

Noise reduction rate (NRR) [3], defined as the output signal-to-
noise ratio (SNR) in dB minus the input SNR in dB, is used as the
objective measure of separation performance. The SNRs are calcu-
lated under the assumption that the speech signal of the undesired
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speaker is regarded as noise. The input SNR is defined as

(Au(f)Si(f.)]?)e
(1Xi(f, 1) = Au(£)Si(£, )2
(22)

L
ISNR [dB] = %Z 10log,,

=1

and the output SNR is calculated as a ratio between the target com-
ponent power in the output signal and the interference component
power. We obtain these components by inputting SIMO-model-based
signals [A1(f)Si(f, 1), -, Axi(f)Si(f,t)] for each source to the
separation system, where the separation filter matrices and binary-
mask patterns estimated in the preceding blind process with X ( f,)
are used.

Figure 7(a) shows the results of NRR under different speaker
configurations. These scores are the averages of 12 speaker com-
binations. From the results, we can confirm that employing the
proposed two-stage BSS can improve the separation performance
regardless of the speaker directions, and the proposed BSS outper-
forms all of the conventional methods. Since the NRR of the SIMO-
ICA part in the proposed method was almost the same as that of
conventional higher-order ICA, we conclude that the NRR improve-
ments of greater than 3 dB can be gained by introducing SIMO-BM.

Since the NRR score indicates only the degree of interference
reduction, we could not evaluate the sound quality, i.e., the degree
of sound distortion, in the previous paragraph. To assess the distor-
tion of the separated signals, we measure cepstral distortion (CD)
[11], which indicates the distance between the spectral envelopes of
the original source signal and the target component in the separated
output. CD does not take into account the degree of interference re-
duction, unlike NRR; thus, CD and NRR are complementary scores.
CD is given by

P

Z 2 (C'nul (2,]) — Crcf (2.7))2’

i=1

J
CD [dB] = % > Dy 23)
j=1

where J denotes the number of speech frames, Cou (i, §) is the -th
FFT-based cepstrum of the target component in the separated output
at the j-th frame, Ci(4,7) is the cepstrum of an original source
signal, D, = 20/ log 10 indicates the constant value for converting
the distance scale to the decibel scale, and the number of liftering
points p is 10. CD decreases as the distortion is reduced.

Figure 7(b) shows the results of CD (average of 12 speaker con-

binations) for all speaker directions. As can be confirmed, the CDs



Table 2. Parameters of Speech Recognition Experiment

Database

JNAS [12], 306 speakers
(150 sentences / speaker)

E Task

20-k newspaper dictation

Acoustic model

phonetic tied mixture [13] (clean model)

Feature vectors

12-order MFCCs,
12-order AMFCCs,
l-order A energy

Training data

260 speakers’ utterances
(150 sentences / speaker)

Testing data

46 speakers’ utterances (200 sentences)

Decoder

Julius [13] ver.3.4.2

Sampling frequency 16 kHz
Frame length 25 ms
Frame shift 10 ms

Higher-order ICA
. Proposed method

I:‘ Binary mask
g Higher-order ICA
e binary mask

Word Accuracy [%]
(=2
(4]

50 b 194 b 3
(-40°,507) (-40°,307) (-40°,10%)
Directions of Sources

Fig. 8. Result of word accuracy for different speaker allocations
and methods. The recognition task is 20k-word newspaper dictation.
Julius decoder [13] is used, where a phonetic tied mixture model was
trained via 260 speakers selected from JNAS database [12]. Test sets
include 46 speakers’ utterances (200 sentences).

of both conventional ICA and the proposed method are smaller than
those of binary masking and its simple combination with ICA. This
means that (a) the conventional binary-mask-based methods (A) and
(D) involve significant distortion due to the inappropriate time-variant
masking arising in the nonsparse frequency subband, (b) but the
proposed method cannot be affected by such inappropriateness. It
should be mentioned that the simple combination of conventional
ICA and binary masking still shows deterioration, and this result
is well consistent with the discussion provided in Sect. 3.2. These
results provide promising evidence that the proposed combination
of SIMO-ICA and SIMO-BM is well applicable to low-distortion
sound segregation, e.g., hands-free telecommunication via mobile
phones.

4.3. Speech recognition experiment

Next, to evaluate the applicability to speech enhancement, we per-
formed large-vocabulary speech recognition experiments utilizing
the proposed BSS as a preprocessing for noise reduction. Table
2 shows the parameter settings in the speech recognition. Sound
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Directional
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Fig. 9. Layout of reverberant room used in real-recording-based ex-
periment. the reverberation time is 200 ms.

source 1 (S1(f)) produces 200 sentences of the test sets, and source
2 (S2(f)) produces a different sentence as the interference with a
0 dB mixing condition. Thus, the separation task is to segregate
source 1 from the mixtures and recognize it.

Figure 8 shows the results of word recognition performance (word
accuracy) for each method, where we can see the proposed method’s
superiority. The score of the proposed method is obviously better
than the scores of binary masking and its simple combination with
ICA, and significantly outperforms conventional ICA. Thus, the pro-
posed method is potentially beneficial to noise-robust speech recog-
nition as well as hands-free telephony.

5. REAL-TIME SEPARATION EXPERIMENT FOR
MOVING SOUND SOURCE

In this section, we discus a real-recording-based BSS experiment
performed using actual devices in a real acoustic environment. We
carried out real-time sound separation using source signals recorded
in the real room illustrated in Fig. 9, where two loudspeakers and
the real-time BSS system (Fig. 5) are set. The reverberation time in
this room is 200 ms, and the levels of background noise and each
of the sound sources measured at the array origin are 39 dB(A) and
65 dB(A), respectively. Two speech signals, whose length is limited
to 32 seconds, are assumed to arrive from different directions, 0
and 02, where we fix source 1 in #; = —40°, and move source 2 as
follows:

1. in the 0-10 s duration, source 2 is set to 2 = 50°,

2. in the 10-11 s duration, source 2 moves from 62 = 50° to
30°,

3. inthe 11-21 s duration, source 2 is settled in 2 = 30°,

4. in the 21-22 s duration, source 2 moves from 0> = 30° to
10°,

5. in 22-32 s duration, source 2 is fixed in 62 = 10°.

The rest of the experimental conditions are the same as those of the
previous experiment described in Section 4.1.
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Fig. 10. Results of segmental NRR calculated along time axis at
0.5 s intervals, where real recording data and real-time BSS are used.
Each line is an average for 12 speaker combinations. The levels of
background noise and sound source are 39 dB(A) and 65 dB(A),
respectively.

It was difficult to evaluate an accurate NRR in this real envi-
ronment because we never know the target and interference compo-
nents separately. In order to calculate NRRs approximately, first, we
recorded each sound source individually for making the reference in
the SNR calculations, and then we immediately recorded the mixed
sounds which are to be processed in the BSS system. We can esti-
mate SNRs by memorizing the separation filter matrices and binary
mask patterns along the time axis, and combining them with the in-
dividual sound sources.

We compare four methods as follows: (A) the conventional binary-

mask-based BSS, (B) the conventional higher-order-ICA-based BSS,
(C) the simple combination of conventional ICA and binary mask-
ing, and (D) the proposed two-stage BSS method. In the proposed
method, we set [c1, c2, ¢3] = [1,0,0.4], which gives the best perfor-
mance (high NRR but low CD) under this background noise condi-
tion.

Figure 10 shows the averaged segmental NRR for 12 speaker
combinations, which was calculated along the time axis at 0.5 s in-
tervals. The first 3 s duration is spent on the initial filter learning of
ICA in methods (B), (C) and (D), and thus the valid ICA-based sepa-
ration filter is absent here. Therefore, in the period of 0-3 s, we sim-
ply applied binary masking in methods (C) and (D). The successive
duration (in the period of 3-32 s) shows the separation results for the
open data sample, which is to be evaluated in this experiment. From
Fig. 10, we can confirm that the proposed two-stage BSS (D) outper-
forms other methods throughout almost the entire duration of 3-32s.
It is worth noting that conventional ICA shows appreciable deteriora-
tions especially in the 2nd source’s moving periods, i.e., around 10 s
and 21 s, but the proposed method can mitigate the degradations. On
the basis of these results, we can assess the proposed method to be
beneficial to many practical real-time BSS applications.

6. CONCLUSION

We proposed a new BSS framework in which SIMO-ICA and a new
SIMO-BM are efficiently combined. SIMO-ICA is an algorithm for
separating the mixed signals, not into monaural source signals but
into SIMO-model-based signals of independent sources without los-
ing their spatial qualities. Thus, after SIMO-ICA, we can introduce
the novel SIMO-BM and succeed in removing the residual interfer-
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ence components.

In order to evaluate its effectiveness, many separation expey
ments were carried out under a 200-ms-reverberation-time congj
tion. The experimental results revealed that the SNR can be congjg.
erably improved by the proposed two-stage BSS algorithm with yg
increase in signal distortion. In addition, we found that the propogeg
method outperforms the combination of conventional ICA and .
nary masking as well as of a simple ICA and binary masking. The
efficacy of the proposed method was confirmed in various separatioy
tasks, i.e., an off-line test and an on-line test using a DSP module ap-
plied for real recording data.
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