STRUCTURED SENTENCE RETRIEVAL BASED ON LEXICAL DEPENDENCIES

Shigeki Matsubara* and Yoshihide Kato**

*Information Technology Center, Nagoya University
**Graduate School of International Development, Nagoya University
Furo-cho, Chikusa-ku, 464-8601, Japan

matubara@nagoya-u.jp

ABSTRACT

This paper presents a corpus search system utilizing lexical
dependency structure, The user’s query consists of a sequence
of keywords. For a given guery, the sysiem automatically
gencrates the dependency structure patterns which consist of
keywords in the query, and returns the sentences whose de-
pendency structures maich the generated patterns. The de-
pendency structure patterns are generated by using two opera-
tiens: combining and interpolation, which utilize dependency
structures in the searched corpus. The operations enable the
system to generate only the dependency structure patterns that
occur in the corpus. The system achieves simple and intuitive
corpus search and it is enough linguistically sophisticated 1o
utilize structural information.

1. INTRODUCTION

Large text corpora increasingly become important resources
for linguistic research, development of natural language pro-
cessing systems, language teaching, etc. Corpus search sys-
tems are necessary Lo utilize text corpora effectively.

Several corpus search systems have been presented. Most

systems provide keyword-based search functionality. The search

1s simple and intuitive, but not enough linguistically sophisti-
cated to utilize structural information.

On the other hand, [2] and [4] have presented corpus search
systemns utilizing syntactic structure, Gsearch and Linguist’s
Search Engine (LSE), respectively. These systems can search
corpora by using phrase structure patterns. In the Gsearch, the
user gives a phrase structure pattern and a grammar to the sys-
tern. The system constructs parse trees of the sentences in the
corpus by using the given grammar, and returns the sentences
whose parse trees match the given pattern. In the LSE, the
aser first gives an example of sentences which he/she needs.
The system parses the example by using a statistical parser
and returns the parsing result. The user edits the resulting
parse tree to specify a structural query. The system finally
Teturns the sentences whose parse trees match the structural
Query. The Gsearch and LSE can search corpora by utilizing
Syntactic information. However, they do not achieve simple

search like keyword-based sysiems.
This paper presents a corpus search system which auto-

matically generates structural quernies from keyword-based queries.

The system searches corpora based on lexical dependency in-
formation. The user’s query is a sequence of keywords. For
a given query, it generates dependency structure patterns by
using two operations: combining and interpolation. The user
nced neither to build a grammar like the Gsearch nor to edit
structural query like the LSE, because of the automatic pattern
generation. The system achieves simple and intuitive corpus
scarch and it is enough to linguistically sophisticated to utilize
structural information.

2. CORPUS SEARCH BASED ON DEPENDENCY
STRUCTURE

This section presents a corpus search system based on depen-
dency structure.

We assume that corpus sentences are annotated with de-
pendency structures. The user’s query consists of a sequence
of keywords (words or POSs). For a given query, the system
tries to generate dependency structure patterns and returns the
sentences whose dependency structures match one of the gen-
erated patterns.

2.1. An Algorithm of Generating Dependency Structure
Patterns

This section proposes an algorithm of generating dependency
structure patterns. The inputs are as follows:

query: qi---Gm {g1. .- -, Gm are keywords)

sentence: § = wy - - - Wy (wq ..., wy are pairs of words and

POSs)
dependency structure (a set of dependencies): D
where D is a set of dependencies between words in s. If w;

depends on w;, the pair of the positions (4,) is 4 element of
D. We write i — 7 for (¢, 7).

-137-

au{l’, L', |

Fig. 1. Combining

‘We define the dependency structure pattern as a 3-tuple
d = {h, L, R), where h is a word position and L and R are
lists of dependency structure patterns. £ is called the head
of d. The dependency structure patterns d represents that the
heads of dependency structure patterns in L depend on h from
left. Similarty for R, from right.

Our proposed algorithm generates dependency structure
paiterns by using the following two operations: combining
and interpolation.

combining: Letd = (h, L, B) and d’ = (L', L', R') be de-
pendency structure patierns forg; - - gy and Qi1 Gk
respectively, If h — A" and R’ = e, then generate a de
pendency structure pattern (h', d - L', R') (see Fig la)).
If " — h, then generate a dependency structure paitern
(h,L,R-d") (see Fig 1b)).

interpolation: Let d be a dependency structure pattern for
gi - - - g; whose head is k. For A’ such that b — &', if
h < K/, then generate a dependency structurc pattern
(h'*,d,e) (see Fig. 2a)). If h > h', then generate a de-
pendency structure pattern (A", , d) (see Fig. 2b)). A
symbol * means that &' is introduced by interpolation.

By applying the combining operation to the given query,
all dependency structure patterns that directly connect key-
words in the query can be generated. The generated patterns
are guaranteed to match the dependency structure I, so the
system returns the sentences for which some patterns are gen-
crated.

In some cases, the user may not intend that some key-
words in the query directly depend on the other keywords. To
process such queries robustly, we introduce the interpolation
operation. This operation can generate the dependency struc-
ture patterns which include words not occurring in the guery.

To avoid useless application of the operaticn, we intro-
duce a cost defined as the number of cecurrence of * in the

dependency structure pattern. The algorithm does not gener-
ate the dependency structure patterns whose costs are greater
than a threshold.

Figure 3 illustrates the algorithm of gencrating dependency
structure patterns. & is the threshold of cost. DI, 7, ¢ is used
for recording the dependency structure patterns with cost ¢
for gi+1 -+ g5. rm{d) and Im(d") arc the rightmost word po-
sition in d and the leftmost word position in d’, respectively.
These positions are used for checking the order of keywords
in dependency structures patterns generated.

2.1.1. An example of combining operation

Let us consider an example of gencrating dependency struc-
ture patterns for the following query:

(n

it is for to

and the following sentence:
2)

Assume that the dependencies are as illustrated in Figure 4.

The first keyword “it” matches the first word in sentence
(2), so the following dependency structure pattern is gener-
ated:

It is important for us to have such technology.

{1,€,¢€) 3

Similarly, the following dependency structure patterns arc gen-
erated {or keywords “is”, “for” and *10”, respectively:

(2,¢,8) “)
(4,£,2) (3)
(6,£,€) (6)

For the heads of dependency structure patterns (3) and (4),
the dependency 1 — 2 holds. Therefore, the following depen-
dency structure pattern is gencrated:

(2, (1,g,8),€) (N

a) h<h’

b) h=h'

Fig. 2. Interpolation

A AN

It 1s important for us to have such technology

1 2 3 4

5 6

7 8 S

Fig. 4. Dependencies for It is important for us to have such technology™

Similarly, the following dependency structure pattern is gen-
erated for “for to™:

(4,¢,(6,¢,€)) (8)

Furthermore, since 4 — 2, dependency structure patterns (7)
and (8) are combined and the following dependency structure
patiern is generated:

(2:(L,e,2), (4,&,(6,¢,¢))))

This means that “it is for to” occur in sentence (2) in the form
of dependency structure pattern (9).

On the other hand, for sentences in which some keywords
do not depend directly on the others (for instance, “It is clear
whether support for the proposal will be broad enough fo a
serious challenge™), the algorithm generates no dependency
structure pattern.

2.1.2. An example of interpolation operation

Let us consider another example of dependency structure pat-
tern generation. The query and the sentence are as follows:

(10)
(1D

combines and

Opera combines music and drama

The dependencies are as illustrated in Figure 5.
For “combines” and “and”, the following dependency struc-
lure patterns are generated:
(2.e,8) (12)

(4,¢,) (13)

Since neither 2 — 4 nor 4 — 2, no dependency structure
pattern is generated by the combining operation.

By applying the interpolation operation to dependency struc-

ture pattern (13), the following pattern is generated:

(3*,e,(4,2,8)) (14)

Since 3 — 2, the algorithm combines (12) and (14) to gener-
ate the dependency structure pattern:

(2,&,(3%,&,(4,g,€))) (15)

This example demonstrates that the interpolation opera-

tion allows the generation of the dependency structure pattern

in which some keywords indirectly depend on the other key-
word.

3. IMPLEMENTATION AND EVALUATION

The system is implemented in CMUCL !. The system pro-
vides a simple KWIC display of the result. The returned
sentences are classified according to the dependency structure
patterns matched. Figure 6 shows a screen shot of the system.

To evaluate the performance of our proposed system, we
performed an experiment. We searched Penn Treebank [3],
which is annotated with phrase structures. The phrase struc-
tures in the corpus are converted to dependency structures by
using the method in the literature [1].

We built several queries and assigned relevant sentences
to each query manually. We measured the precision and recall
of the search systemn for the cost threshold of 0 to 3. The

‘http://www.cons.org/cmucl/

- 139 -

U} Depondeney baged Carpun Seorak = Mapist
Fe 561 Yew 0 Gobeels Tmb fel

” o —_
@2 -8 G G [s o= I
— — s 3
[
iterpolstion €@ |
Cremp=an for s |
Tmespalaen 4 3
W "ol
It Is Tor 4]
Judge Ranirez , 44 , said it isunjust for judges
* Wo bolieve that it igvitally irpportant for those Japemese
One could argus that it isnoot an assertion of a item vete at all for the presidaent , ... pc
Although much of Orleams by barge . it ispogsikle for exporters
* We think Gen-Probe " Wa thinkit isimportact forus
Chief Inspactor airport said . ' It isnot uncoamon for property
* The soooer morning . the aasiarit is forus
Furtharoora ., his . oaviraonmeant . butit is just fipe ond dandy for him

Hom difficult

Oovernment officials
Repukliceo Sen.
Chorles Wathan , ..

Scme apalysts seid

Brothers Inec.

it
It
It
bow ipportantit

........ s pretext , aodit

is

isdifficult

is really unfortunate

is

isunfaiy

shoms how tough it is

bt

. saysit ispatural

. if not impossible .,

fora thioking person

for hurea beings
for then

foranyone who bas not

for those in the White Hous

for hanks
for ucderwriters

3]

Fig. 6. A screen shot of the sysiem

Table 1. Precision and recall for a query “it is for to.”

[threshold 8 || precision | recall |
0 100.0% (17/17) 81.0% (17/21)
1 80.5% (19/21) 90.5% (1921}
2 70.0% (21/30) | 100.0% (21/21}
3 60.09% (21/35) | 100.0% (21/21}
baseline 27.3% (21/77T) | 100.0% (21/21)

Table 2. Precision and recall for a query “combine and.”

| threshold 8 || precision | recall]
0 0.0%(07 2 | 00%(01
1 55.0% (11/20) | 100.0% (11/11)
2 42.3% (11/26) | 100.0% (11/11)
3 32.4% (11/24) | 100.0% (11/11)
baseiine 24.5% (11/45) | 100.0% (11/11)

precision and recall are defined as follows:

the number of relevant sentences returned
the number of sentences returned

Precision =

the number of relevant sentences returned
Recall =

the number of relevant sentences

Moreover, we measured the precision of the search which re-
turns the sentences including all keywords in the query in the
order. The recall of the search is always 100%. We call it the
search baseline.

3.1. The result for a query “it is for to”

Let us consider the result for a query “it is for to.” The preci-
sion and recall are shown in Table 1. When & = 0, the system
achieves high precision and recall, and all the dependency

structure patterns that the system generated are the same as
the example of Section 2.1.1 The relevant sentences for which
the systemn does not generate the dependency structure pat-
tern with cost 0 have the dependency structures where “for”
depends not on “is” but on a complement. However, these
relevant sentences were able to be found by using the interpo-
lation operation.

3.2, The result for a query “combine and”

Let us consider the result of a query “combine and” The
precision and recall are shown in Table 2. No relevant sen-
tence was found by using the dependency structure patters
with cost 0. However, all the relevant sentences are found by
using the dependency structure patterns with cost 1. The re-
sult demanstrates that the interpolation operation is necessary

- 140 -

input: query q1 - - - g,
SETence Wy - - - Wa,
dependency structure D

initialization:
fori=1tom
for each 7 s.t. w; = gq; de
push (j,€,£) te D[i — 1,4,0];

for cost = 0ta @
combining:
fork=2tom
forj=Fk—1downtol
fori= 45 — 1 down to {
for ¢ = O to cost
foreach d = (h, L, R) € D[i,§,¢],
4 =R, L, 1) € D[j, k,cost —¢
st rm{d) < im{d') do
ifh— h € DAR =c¢then
push (&', dL’, R"Y to D[i, k, cost];
if 4’ — h then
push (A, L, Bd"} to D[i, k, cost];

interpolation:
forij=1tom
fori=7— 1downto0
ifi#0vj# qgthen
for each d = (h, L, R) € D, §, cost]
forh'st h—h'eD
if b < A/ then
push (k"™ d,) to D[4, j, cost + 1};
else
push (h'", £, d) to D[i, 5, cost + 1];

return D{0,m, 0] U - .- U D[0, m, cost];

Fig. 3. An algorithm of generating dependency structure pat-
terns

aYaYalh

Opera combines music and drama
1 2 3 4 5

Fig. 5. Dependencies {for “Opera combines music and drama”

Table 3. Precision and recall for a query “have
preposition mind.”
| threshold & precision | recall |
0 100.0% (10/10) 90.9% (10/11)
I 73.3% (11/15) | 100.0% (11/11)
2 61.19% (11/18) | 100.0% (11/11)
3 61.19% (11/18) | 100.0% {11/t1}
baseline 50.0% (11/22) | 100.0% (1 1/11}

for the system to process such gueries robustly. The preci-
sion 15 not good, but we expect that the user can seek relevant
sentences easily because the returned sentences are classified
according to the patterns and relevant sentences are expected
to belong to a few classes. In this example, the relevant sen
tences belonged to 2 classes.

3.3, The result for query “have preposition mind”

Let us consider the result for a query “have prepositicn
mind”. prepositiocn is not a word but a part of speech.
Table 3 shows the precision and recall. The system achieves
high precision and recall for the query. Moreover, we can
know the instance of preposition from the result (in this

(TR B}

example, most words matching preposition were “in™).

4. CONCLUSION

This paper presents a corpus search system based on depen-
dency structure. The system automatically generates depen-
dency structure patterns by utilizing corpus annotated with
dependency structures so the user needs not to construct a
structural guery. The experimental results demonstrated that
the system achieves high precision cerpus search.

We would like to evaluate the system performance from
the viewpoint of not only the precision and recall but also the
usability.

Acknowledgments

This work is partially supported by the Grant-in-Aid for Sci-
entific Research (A)}2)(No. 16200001) and for Young Scien-
tists (B)(No. [7700145) of ISPS.

5. REFERENCES

[1] M. Collins: Head-Driven Statistical Models for Natural
Language Parsing, University of Pennsylvania (1999).

[2] S.Corley, M. Corley, F. Keller, M. Crocker and S. Trewin:
Finding Syntactic Structure in Unparsed Corpora: The
Gsearch Corpus Query System, Computers and the Hu-
manities”, vol. 35, no. 2, pp. 81-94 (2001).

- 141 -

[3] M. P. Marcus, B. Santorini and M. A. Marcinkicwicz:
Building a Large Annotated Corpus of English: the Penn
Treebank, Computational Linguistics, vol. 19, no. 2, pp.
310-330 (1993).

[4] P. Resnik and A. Elkiss: The Linguist’s Scarch Engine:
An Overview, Proceedings of the 43rd ACL Interacrive
Poseter and Demonstration Sessions, pp. 33-36 (2005).

- 142 -

