A FORMAL APPROACH TO RELTABLIE NETWORK SOFTWARE

Shoji Yuen, Keigo Imai, Ryo Suetsugu, Kiyoshi Agusa

Graduate School of Information Science,Nagoya University, Japan

ABSTRACT

We have been investigating communicating processes, where
the primitive computation is synchronous communication be-
tween praocesses. A process is a “black box™ to be identi-
fied only by observing communications with the environment.
Various behavioral characterizations of communicating pro-
cesses have been studied over the last couple of decades. The
model is good for realizing concurrent behavior of network
software. We realize the behavior of concurrent software based
on equivalences as the fundamental semantics of program-
ming languages with concurrent features. During the period
of the COE project, we have investigated the following topics
with the aim of improving the relfiability of network software.
(1) A meta algebraic framework defined by SOS(Structural
Operational Semantics) for timed process calculi; (2) Web
application modeling; (3) user interface behavioral modeling;
(4) timed extension of a mobile calculus; (5) a network frame-
work for functional programming language Haskell; and (&)
behavioral modeling for embedded systems.

1. INTRODUCTION

The importance of network computing has been increasing
in accordance with the rapid development of computer net-
work. In addition to the reliability of computer network itself,
the reliability of software working over computer network be-
comes a critical issue. The distinguishing feature of network
software is that many programs run concurrently interacting
over network. Generally, cach program runs asynchronously
without any global synchronous mechanism. Network soft-
ware may run efficiently on many processing units and the
separation of component-wise functionality provides a bet-
ter prospects in software design. On the other hand, network
software is inherently difficult to handle due to the follow-
ing properties: (1) Its behavior is inherently nondeterministic.
The state of an entire software system is difficult to determin
due to the lack of a global control mechanism. (2) Interaction
changes the behavier of each component from outside of the
component in the course of computation. Consequently, it is
et possible to model the computation by a function identi-
fied by-an input/output relation. These features are well rec-
ognized in modeling network software, and various kinds of
extensions to alleviate those difficulties have been proposed
for decades.

We have been focusing on a particular model of “commu-
nicating processes” due to its simplicity and semantic clar-
ity. The basic semantics is usually formalized as equivalences
based on bisimulation relations. An equivalence is defined to
form an algebra with respect to the operators that construct
terms; that is, the equivalence is a congruence relation with re-
spect to the operators. This algebraic characterization is often
called “a process algebra” being a major realization of com-
mumnicating processes. Hoare’s CSP [1} is known to have an
algebraic semantics when processes are defined to be equiva
lent if they have the same deadlock capability. Milner's CCS
[2] has an algebraic semantics when communicating capabil-
ity of processes is identical at every point of communication.
ACP (Algebra of Communicating Processes) by Bergstra and
Baeten, as well as by many other Dutch researchers [3] first
defines the equivalences along with the operational semantics
that fits to those equivalences. Beginning with these picneer-
ing work, various formal systems have been proposed based
on the similar approaches. We believe this algebraic charac-
terization assures the better treatment of concurrent behavior
of network software.

Based on the communicating process model, we are at-
tempting to realize network concurrent software with the aim
of improving the hehavioral reliability by providing verifica-
tion techniques based on the calculi. We have been concen-
trating on modeling the existing software with concurrent fea-
tures and on extending the calculi for the modeling technigue.

First, we present the extensions for timed behavior. Pro-
cess calculi deal with “temporal” properties of communica-
tions. However, in network software, it is also important
“when” communications happen. One typical important mech-
anism is “timeout”, in fact, “timeout’™ is found to be the prim-
itive action for all timed behavior, the length of time until the
behavior change is a critical issue. An inappropriate length
of time may crash the entire software. We investigated an
extension introducing “time-tick” to process calculi, first to
conventional process calculi, and then to the w-calculus.

Next, we show an application to a more practical system
of Web applications. A Web application is a server-side pro-
cess that reacts to requests from clients. By extending the
actions, we model the behavior of Web applications. Here, an
action is extended to hold equations (or inequations) to alter
the behavior due to values exchanged with clients.

For more direct modeling of network software, we stud-

ied a programming language based on the w-calculus as the
joint research with the NTT Communication Laboratory. The
language “Nepi” is a direct implementation of @ calculus in
Common Lisp. Since built-in Common Lisp functions can
be used as communications in “Nepi”, practical network pro-

grams are simply described based on communicating processes.

For the formal treatment of “Nepi” behavior, we illustrate a
fundamental framework for “user interface”, which conven-
tional software finds difficult to handle.

Finally we present a summary of work in progress con-
ducted by research associates of the COE project in our re-
search group.

This report consists of brief summaries of work conducted
during the COE project. Section2 describes a timed extension
of the ordered SOS format, and we discuss the meta frame-
work for process calculi with discrete timing. Section3 de-
scribes another timed extension for # calculus. Sectiond ex-
plains modeling web applications based on interactive state
transition systems, called “web automaton™. Section3 presents
the programming language “nepi”. Section§ outlines work in
progress and Section 7 offers concluding remarks.

2. TIMED EXTENSION FOR THE ORDERED 508
FORMAT

(This is a joint research project with Dr. Irck Ulidowski (Uni-
versity of Leicester}[4].}

Operational Definition by SOS rules

‘We extended the ordered SOS format for process calculi with
relative discrete time. As stated in the Introduction, many
process calculi have been proposed. Although each calculus
has its own purpose, generally the algebraic characterization
with congruence relations is one of major goals of the calculi.
As a preof technique, there are many similarities among the
calculi. The operational semantics of a process calculus is
defined by structural operational semantics, SOS for short,
originally proposed by Plotkin[5]. A transition P 3 P,
meaning P becomes £’ by communication «, holds if and
only if the transition is inferred by the SOS rules. Figure 1
shows an example of S§OS rules for CCS without recursion,
The rules compositionally define the transitions of the opera-
tars, prefix a.{), choice _ + _, parallel composition _|_, and
restriction _\ 4.

Ordered SOS

Mare general formats of rules such as the General SOS format
- (GSOS for short), the tyft/tyxt format[6] and the ntyft/ntyxt[7]
format, are known to define a bisimulation equivalence as
congruences. In the GSOS format, each rule has the following
form.

er Ta
o aX o+ X N
X>5x Yy Sy
T — T PO
X4y Sx T X+y sy ©
xXax Y3y
s —— ———T|r
Xy 3 X'y XY S x|y’
X3xvay X5 X
- e e @A)
Xy 5 X'y A\A = XA

Fig. 1. SOS rules for CCS

. LI
{%: ™ Yishierges U {Xi)

F(X) 5 CX,Y)
where X; and Y; are variables, X and ¥ are tuples of vari-
ables and C[X, ¥] is a term containing variables up to X, 7.
The GSOS format is restrictive in that no term structure in the
premises and no multi-level term on LHS of the transition in
the conclusion.

If all rules are in the GSOS format, the strong bisimu-
lation equivalence and the ready simulation equivalence are
congruent with respect to the defined operators[8]. GSOS
allows negative transition in the premises of SOS rules, as

X 5, which holds if no communication e is possible from
X . Ordered SOS format proposed by Ulidewski and Phillips
is equivalent to GSOS, but OSOS has a advantage that no neg-
ative premises are permitted. This limitation allows simpler
treatment in the proof, especially for weak semantics where
unobservable 7 action is abstracted away. Instead of negative
premises, an OSOS format is accompanied by an order rela-
tion between SOS rules. A higher ordered rule has priority
over lower ordered ones. Suppose following r, and 7y are
related as r, > 7.

x5 x
oo T
FX) S u

Then, 74 is applicable only if 7, is not applicable, meaning

X3 x
T,
flX) 3¢t

that effectively has a negative premise X ;z) We write
higher(r) for the set of rules ordered higher than 7, namely,
{r'|r < '},

A rule of the OSOS format is in the same form as one
of GSOS only with positive premises. For rule r, we wiite
actions(r, i) for the label of the ¢-th transition in the premises
and active(r) for the index set of variables appearing on thé
LHS of transitions in premises. rules(f) denctes the set of
rules where the operator appearing in LHS of conclusion 18 f

The eager bisimulation equivalence and branching bisim-
ulation preorder! is congruent with respect to all defined op-
erators except choice like operators if the order satisfies the

'1n weak semantics, we need to consider the divergence of infinite 7 S€°

- 154 -

certain set of conditions[9]. The eager bisimularity is slightly
stronger than the conventional observation equivalence®, There-
fore, if a pair of processes is eager bisimular, then the pro-
cesses are also observationally equivalent.

To attain a well structured weak semantics, a 7 transition
must be kept unobservable and independent. In this respect,
if there exists T transitions, it must be in the following form:

XI—T)X:
T
lX'ﬂ-) _T)f(Xll 5X: :Xn) '

f(XI:"'a

A rule of this formn is called a T-rule written as 7;. Another
particular form is called a choice rule as follows:

X, -

X: 3 X!
o T
:Xi:"' :Xn)_>X£

f(Xl:"'

When « is 7, it is written as 75, We write {au(i) for either
7; or 78, If any 7* rule exists for f, then f must be a choice
operator like "+ in CCS.

These two forms of rules are found to be a key to giving
a well structured operational semantics. These two forms are
supposed to be disjoint in arguments of defining operators.
For this purpose, we have the following two types of opera-
tars, T-preserving and T-sensitive.

if 7 € actions(r,i) then r = tau(i) (1)
if i € active(rules(f)) then tau(i) € rules(f) and @
(either tau(t) = 7; or tau(i) = 7*)
iti € active(rules(f)) then tau(i) = = 3)
ifi € active(r) tau(i) = 7° then r is achoice rule (4)
not(teu(?) < tau(i)) &)
if r' < randi € active(r) then ' < tau(i) (6)
if tau(i) < r and i € active(r) U active(higher(r'))
thenr' <r n
if ¢ € implicit-copies(r) then r < tau({) (8)

Fig. 2. Conditions for eager bisimulation precrder

In figure 2, implicit-copies(r) is the index set of variables
appearing both sides of the transition in the conclusion of r.

Let f be an operator with Ur e yles(yactive(r) # @. The
Operator f is T-preserving if the set of rules and the ordering
on the rules satisfy (1)—(8). The operator f is T-sensitive if
it has a silent choice rule for one of its active arguments and

Querce. P C ¢ means P and) are equivalent but P may diverge if 7 may
(ﬁ‘iergc_

*The eager bisimularnity does not allew 7 transitiens after abservable tran-
Sitian,

the set of its rules and the ordering on the rules satisfy (1)—(2)
and (4)—~(8).

The “rooted” eager bisimulation preorder distinguishes -
transition at the root of operators with choice rules. Strength-
ening an equivalence to a rooted version of the equivalence

The following is an informal presentation of the main char-
acteristics of process languages. For a more precise presenta-
tion, please refer to [4].

Theorem 1 [10, 4/ If operators defined in a process lan-
guage are partitioned into T-preserving, T-sensitive, and op-
erators with no active arguments, then all operators preserve
the rooted eager bisimulation preorder.

Timed Extension of Ordered SOS

We add the notion of discrete relative time by introducing the
“time-tick™ transition. Here, P % P’ means that P becomes
P’ by letting time pass for one tick, where & is a special label
for one unit of time. The time tick is different from the other
labeled transitions in nature. We have been investigating what
class of SOS formal is appropriate for the process languages.
For example, the following rules viclate the notion of “time"”.

X5y
fX)SdY

X135

- ©
f(Xl,Xg) >t

Both rules are legitimate SOS rules if & is considered as an ac-
tion. However, these rules clearly oppose the notion of time
passage since the first rule “eliminates™ time passage whereas
the second rule “creates” it. This motivates further investi-
gation into how timed behavior should be modeled in SOS
formats. Therefore, a time tick transition — must be derived
by time tick transitions (possibly none) of its arguments.

Qur approach to cbtaining an appropriate timed process
language is to extend the untimed process languages with-
out breaking the algebraic property and with the natural time
property at the same time. For example, CCS '+’ is usually
extended with a timed rule:

X3x vy
X+VYSx4yv

The time tick is usually designed not to resclve the choice.
Such operators have the following type of rules.

{X; 5 X[hies

FX) 5 (X
where I is the set of active arguments and X} = X; forj ¢ I.
This type of operators is called a "time-preserving’ one. The
other type of operator is called a "time-altering’ one. For ex-

ample, the time-out operator proposed by Hennessy and Re-
gan is time-altering,

- 155 -

X5 x!
Tr
XYy S X'

xXax

Ty
X ax

Xj) =Y

with the order of r, < rr. A time-altering operator changes
the structure of terms. By placing certain conditions on OS0S
formats, we can guarantee the basic properties of time pas-
sage.

Results for Timed Extensions

In the extensions, not only the g-rules and the order between
them but also the order between o-rules and 7-rules are added
according to the ’strength’ of the arguments. In the time-
preserving extension of the CCS -+ operator, following three
o-rules and order between them.

vy’
o ; Tgn
X+Y =Y

X5 x
o Tel
X+Y 3 X'

XS5Xyvy5Sy

Xtr S Xty
with the order of rp; < 7512 and rya < ry12. Under the max-
imal synchrony assumption[11], neither v, nor ry4 becomes
enabled, but we systematically add o-rules to the active argu-
ments.

For the time-out operator, 7, has no premise although the
first argument is active. To maintain the structure with re-
spect to the weak semantics, generally the 7-transition has to
be tried first. r.. should be tried first prior to r,. Actually,
{re,rr 7s} with rr > 7, is an time altering extension of
{ra, -} with no order.

A detailed explanation of the conditions for the time pre-
serving extension and the time altering extension requires ex-
tra technical definitions and some more auxiliary notions. The
precise definitions appear in the literature[4].

For a rebo process language with time passage, if the
set of operators is partitioned into time-preserving and time-
altering?, then it is called a timed rebo language.

Here we just present the basic results for timed rebo pro-
cess languages.

12

Theorem 2 [4] A rimed rebo process language preserves timed

rooted eager bisinulation preorder.

The basic timed property is the time determinacy prop-
erty: If p 5 9’ and p 5 p", then p’ = p”. The time de-
terminacy property is important because the time passage is

deterministic in nature.

Theorem 3 [4] A timed rebo process language has the time
determinacy property.

3We need some more technical conditions in the precise presentation.

We also investigated several other timed properties, such
o

as the maximal process properiy: if p 5 ' thenp 5. Tn the
0808 format, we simply order o-rules under 7 generating
rules. For example, we order o-rules of the CCS compositigy
under o-rules.

X3xv5y
XY S Xy

XxAx vAy
Xy x|y’

712 To12

with the order of 7510 < 713

3. ATIMED EXTENSION OF A MOBILE CALCULUS

(This is joint work undertaken with Mr. H. Kuwabara (Nagoya
University)*[12].)

‘We propose equivalences and preorders with congruence
properties for a timed extension of the w-calculus. Further-
more, we present a timed extension of syntax and basic oper-
ational semantics to this calculus. The derived timed bisimu-
lation relations are shown to be non-input congruent. These
timed bisimularities equalize the bisimular processes not only
in actions but also in the timing of the actions. In order ta
model hard deadlines, we propose a more relaxed bisimuia-
tion, called the delay rime order which relates a pracess be-
having "faster’ in action to one with the same communica-
tion capability. We show that the delay time orders are non-
input congruent where the "time-insensitive’ composition is
allowed.

In our timed extension, the time-out operation is modeled
by the choice with the delay prefix. The non-input congru-
ence property ensures that adding the time-out operation does
not break the delay time order provided that the length of time
for the time-out is fixed. In this respect, the weak delay time
order relation is a useful foundation for proving the correct-
ness in practical use. This relation is congruent for contexts
in which composition is “time-insensitive’ in the sense that
time-passing actions do not change the status of composing
processes. This restriction is not generally a large obstacle in
the server/client systems because a server is generally time-
insensitive since it process the requests from clients at ary
time. The detailed presentation of the example is in [12]

4. WEB APPLICATION MODELING

(This is the joint project with Mr, Keishi Kato(Hitachi Soft-
ware Engineering)[13]).

We have proposed a behavioral model of Web applica-
tions, called *Web Automata’, based on the MVC(Model View
and Control} model architecture. The MVC model architec-
ture separates design concems to improve overall software

*This research is mostly done while Ms. Kuwabara was a research asse
ciate of the COE project

quality. Since the architecture defines the abstract outline of
the configurations, there is a broad gap between coding Web
applications and their behavioral property.

The behavior of a Web application with dynamic contents
is modeled as an extension of links-automata proposed by
Stotts ct.al. with the constraint-logic feature of the Extended
Finite Automata (EFA) by Sarna-Starosa and Ramakrishna.
As extended in the model checking techniques, we view a
Web application as a data-independent system, where vari
ables appearing in link parameters and form inputs are at-
tached to each page.

We present a testing framework for Web applications bused
on the behavioral model, showing that it provides testing cri-
teria for Web applications when we focus on the loops of the
automata. Our framework is applied to the Jakarta Struts by
presenting the extended configuration schema of Struts in or-
der to describe the Web automata directly.

We focused on the property of Web applications that re-
visiting same pages often results in the similar transitions of
pages. (Figure 3} Testing criteria are presented based on the
number of revisits to pages, thus the more a testing sequence
revisits same pages, the more refined test it is. Although the
criterion depends on the property of the Web application un-
der the test, in many cases we expect that the simplest crite-
rion covers the interesting test sequences where the number
of revisits is at most one.

2 g
7
<action-mappings> Act?vari
<action path="Act1"> Actatvard
Advarl}
: B
<faction>
Q [vard="a"]
<faction-mappings> ‘::‘> ActTer /
(vard=varl] Acta?vara | AcClS
<view-mappings>
Construct
<Miew-mappings- Web Autamaton D
c Act&?vars
{var2,var3)
Web Application Eivars)
Specification Behaviar Model

@ Translorm

<S=Acti?vari[xwvart]

<A [vari=xx]>..<C [vard3=_}>
<S> Actl2?vard[yy/vard]

<B [varé='a}>_<E,[vars=.]>

oxTestSuile
link,farm check
rasponsa

Apgplication
Servar

URL Sequence Test with
Testing Framework

request

g

Extract Test Sequences

<S»Act1?var{xx/vart]
..<E,[varb=. >

abstract runs ot Web Automaton

Fig. 3. Testing Frame in Web Automata

The following is an example of a simple library system
modeled by the Web automaton. The library system features a
simple management functionality such as searching for books
for users as well as updating book information and logging

the borrowing and return of books for managers with logging
into the management account. (Figure 4)

Fig. 4. Simple Library Management Systemn

The web automaton model for this example is given as
an EFA Each transition may have equations as constraints,
and if there is an instance in which the equations are satis-
fied, the transition may occur. Generally there are infinitely
many instances for a transition due to value assignment to
variables. If they make no difference to the state transitions,
those instances may be regarded as equivalent. The traces of
real instances are called concrete runs, while those traces with
nninstantiated variables are called abstract runs. Borrowing
from this EFA technique , we show that the behavior of a Weh
application is recognized as a finite set of abstract runs.

We implemented an experimental prototype for a testing
sequence generator following abstract runs, counting the num-
ber of testing sequences according to our criterion. From a
theoretical point of view, the number of sequences increases
exponentially, which implies that the general complete test
becomes unrealistic. However, if 2 in criterion '™ is small,
where T is the set of tests that visit the same pages n times
at most, a complete test is still possible.

s
1947

Criteria
Number of Test Sequences || 9 132

5. USER INTERFACE BASED ON
COMMUNICATING PROCESSES

(This is the joint work with Mr.K. Mano(NTT),
Dr.Y.Kawabe(NTT} and Mr.H.Kuwabara(Nagoya Univ.)[14]}
A name-passing style Graphic User Interface (GUT) pro-
gramming is proposed in the programming language Nepi, the
operational semantics of which is based on the rendezvous-
style name-passing communication of the w-calculus. Nepi is
able to express timed behavior by combining the wait prefix
with the external choice. We model GUI programs by using
channel-based behavioral characterization. We propose a pair
of extended syntax elements '?g’ and ’!g’ in Nepi to gen-

57-

erate and terminate graphic components. The graphic com-
ponents are accompanied by event handling processes that
canvert a specified instance of name-passing event. In the ex-
tended version of Nepi, a GUT program is described as a com-
position of graphic compenents, event handling processes,
and function processes that implement a real function. We
present an implementation of a GUI extension for the Nepi
programming language on Allegro Common Lisp to illustrate
the features of name-passing style GUT programming in Nepi
with examples.

GUI modeling by name passing

We model a GUI component regarded as comprising the fol-
lowing three types of communicating processes.

1. Graphic component: A process for representing the
appearance of a GUI component, such as buttons. It
has appropriate properties such as size or color. Each
graphic component knows the names of relevant event-
handling processes. The cnvironment manages the cre-
ation and termination of a graphic component by pass-
ing names.

L%

. Action process: A process that performs the actual
task. It corresponds to the call-back function in usual
GUI programming. Upon receiving the appropriate name
from the associated event-handing process, it actually
reacts to the input and communicates with the relevant
Processes.

3. Event-handling process: A process that detects the
occurrence of a raw event and passes on notification
of the occurrence through a name created in advance.
A praphic component is assumed to c¢reate an event-
handling process for each event when a request is sent
by an action process.

Figure 5 shows an overview of the behavioral model. In
addition to the three types of process mentioned above, it is
assumed that there is one environment process that controls
the graphic environment. ‘The environment process receives a
request from an action process to initiate graphic components.
Then, the graphic component creates the event-handling pro-
cesses requested by the action process. The graphic compo-
nent informs the created event handling pracesses of the ac-
tion process by passing on the name of the relevant action pro-
cess. In this respect, a typical name passing facility is used.
After this initial procedure is complete, every time an event
is accepted the event-handling process in charge sends this
information to the action process followed by some reaction
from the graphic component.

After creating a graphic component event-handling pro-
cesses are produced according to the properties of the graphic
component. The event-handling processes interface with the
raw events from the real environment such as button clicks

Environment

@ %Graphic components

] a

g s

o “tx\

=] o e

= - “Qi .

5 a5 @ @ Creation of
(&) o Event—handling
e pracesses

(&Notification of event occurrence

Action processes Event-handling processes

Fig. 5. Behavioral Model for GUI

on the corresponding names. When closing a graphic corn-
ponent, a privileged name has to be sent to the component tg
terminate all sub-components.

Example

We practiced on a programming example of a file copier that
copies one file to another showing the progress bar. First,
the program displays the main window (figure 6(a)) on the
screen. This window consists of a start button and twao input
forms. When the start button is pressed, the program creates
a progress-bar window (figure 6(b)), and starts the procedure
of copying the file. This procedure terminates only when (i}
the file transfer is completed; {ii} a user clicks the cancel but-
ton on the progress-bar window; or (iii) the start button is
untouched for 60 seconds.

—==Text label 9
J'r_ Ioput form (for the irput file) &

______ Tex 1ated 4
i d (e e e — — S — —
I ¥
} Inpuu form (for the output file) ¥ g}"mns I? B |
LTm tapel + Progrest bar @ -
(a) Window Input. (b) Progress Bar.

Fig. 6. Example of a file copier.

All actions and events are handled by name-passing 4c-
cording to the behavioral madeling presented above.
Towards a Formal Treatment of GUI

As for the formal treatment of GUT operations, we have ift-
vestigated a reduction semantics for GUTs. Using the model
checking technigue instead of conventional testing to verify

"=

the behavior, we cxpect to design a more reliable GUI. A de-
tailed definition and discassion are presented in [14].

6. WORK IN PROGRESS

6.1. Functional Programming for Communicating Processes

This research proposes a network programming framework
for Haskell, called PiMonad. Programming language Haskell
is one of the major functional programming languages in use,
saining popularity with the features of non-strictness and strict
typing. Together with the monad extension mechanism, Haskell
features excellent Aexibility for non-functional description such
as for the loop structure, or for the I/O interface.

The aim of this research is to provide a network program-
ming framework for analysis and reasoning about programs
written in Haskell extended with a communication feature.
The PiMonad framework is a lightweight implementation of
asynchronous localized m-calculus(15]. The key point is the
encoding of asynchrony and locality, which makes our imple-
mentation simple.

Foa - LO(I, O b))

Fm:LD)
w:Ln . pe; L{Int, OInt)
pv sk fow LA, O] comgule ; Int —+ [nt
| Resolver 7] f PeerZ |

response
.

Trcalculus-style monadic action

oD
GO

func §

. | input ¥ via channel x
purely-functional compuitation

autput v via channel x

Fig. 7. Communication with types in PiMonad

We have developed a tracing tool in this framework that
fallows one path according to the asynchronous local 7 calcu-
lus. Since we directly describe the system based on the calcu-
lus, the behavior is assured to follow the abstract operational
Semantics. Based on this infrastructure, we plan to develop
a verification tool as future wark. Furthermore, we intend to
devise a systeratic method to verify temporal properties such
as the deadlock free property.

6.2. Modeling Behavior of Embedded Systems

We have applied the communicating process model to the be-
havioral analysis of AIBO robet softwarc as an example of
small scale embedded software. AIBO is an entertainment
robot dog developed by SONY Corporation. One of AIBO'’s
outstanding features is that the robot is fully programmable
in C++. Because the ATBO OS and the OPEN-R environment
offer full programming capability, ATBO is an excellent plat-
form for realizing small scale software for embedded systems.

We modeled ATBO software by the m-calculus[15] to ob-
serve the message passing flow between components accord-
ing to the source code structure. In AIBO programming, con-
current ohject behavior is controlled by wait and notify sig-
nals. From our programming experience, the mistreatment of
these signals is the major source of unexpected behavior of
AIBO programs. Tracking these signals, we approximate the
flow of controi to detect deadlock that are not obvious from
source programs in cases where the ATBO stopped working
unintentionally.

Conceptually, objects run concurrently connected by one-
to-one links. Communication over these links occurs asyn-
chronously. The basic behavior of asynchronous message
passing is as follows. (1} An object notifies other objects that
alink is ready according to the link conaections. (2) An object
on the other side sends a message with a notify signal. Since
all communications are asynchronous, the execution is never
blocked except when a link waiting to receive a message. The
scheduler controls which object runs next. Therefore, model-
ing the scheduler and tracking ready-notify signals, it is basi-
cally sufficient for capturing the abstract execution of AIBQO
software.

Based on this idea, we abstractly translate an ATRO pro-
gram into a w calculus expression by the follewing steps.

Step 1 C++ source codes are sliced to extract message pass-
ing behavior;

Step 2 Shiced codes are translated to 7 pracesses along the
OPEN-R object structure

Step 3 The scheduler is composed from the connection infor-
mation between ports; and

Step 4 The system is described as the composition of all ob-
Jject processes and the scheduler.

The description obtained by the translation is supposed to
track all the behavior of the ATBO program. By analyzing the
description with model checking tools, we are able to verify
the behavioral properties of the communicating objects

It is commonty seen in model checking practices that the
behavioral composition generates a number of states leading
to the intractable state explosion. Figure 8 shows decomposi-
tion verification for the deadlock free property by finding dis-
Joint groups with respect to comrmunications. The groups are

- 159 -

Farmalization

S
o=

n-=galoulus

e ! O TR L 7
’ : Deadlock
| Model |, o
{ Checker = |'weemf| Deadlock-Free

Fig. 8. Deadlock Free Property Analysis

found by checking the communication ports in the « process
description. Using this technique, we have shown an exam-
ple of 484 [.OC partitioned into two groups. The deadlock
free property was checked in 442 seconds and 104 seconds
for the respective groups, while the property was unable to
be checked as a composed system due to insufficeint mem
ory. Although to date this technique have been successful
only for small examples, by incorporating a more elaborate
typing system to partition a system we expect to be able to
apply our technique to large scale systems in the near future.

7. CONCLUDING REMARKS

We have investigated several fundamental topics to Improve
the reliability of network software. In particular, we have
been pursuing research topics based on the communicating
process model. Although the communicating processes have
been studied mostly in the theoretical context, we have been
trying to adapt the model for more practical use. In this re-
spect, we are focusing on the reasonable treatment of vatues
and time in communications. These are the fundamental no-
tions in programming, but have often been abstracted away
to simplify the theory. Particulary, our first result shows that
time is not a simple notion in its behavior and needs to be
treated carefully, otherwise, serious errors are likely to occur
in network software.

8. REFERENCES

[1] C.A.R Hoare, Communicating Sequential Processes,
Prentice Hall, 1985.

[2] Robin Milner, Communication and Concurrency, Pren-
tice Hall, 1989.

[3] I.C.M.Baeten and W.PWeijland, Process Algebra,
Camnbridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1990.

[4] 1. Ulidowski and S. Yuen, “Process languages with dis.
crete relative time based on the ordered sos format ang
rooted eager bisimulation,” Jeurnal af Logic and Alge.
braic Programming, vol. 60-61, pp. 401460, 2004,

[5] G.D. Plotkin, “A structural approach to operational se-
mantics,” Daimi fn-19, Computer Sicence Department,

Aarhus University, 1981.

[6] J.F. Groote and EW. Vaandrager, “Structural operationai
semantics and bisimulation as a congruence,” fnforma-
tion and Computation, vol. 100, no. 2, pp. 202-260,

1992.
(71

1F. Groote, “Transition system specifications with neg-
ative premises,” Theoretical Computer Science, vol,

118, no. 2, pp. 263-299, 1993.
(8]

Bard Bloom, “Structural operational semantics for weak
bisimulations.,” Theor. Comput. Sci., vol. 146, no. 1&32,

pp- 2568, 1995.

[9] Trek Ulidowski and Iain Phillips, “Ordered sos process
languages for branching and eager bisimulations.,” In-
formation and Computation, vol. 178, no. 1, pp. 180~
213, 2002.

[10] I. Ulidowski and S. Yuen, “Process languges for rooted
eager bisimulation,” in CONCUR 2000, D. Miller and
C. Palarnidessi, Eds. 2000, vol. 1877 of LNCS, pp. 275-
289, Springer.

[11] Xavier Nicollin and Joseph Sifakis, “The algebra of
timed processes, atp: Theory and application,” Infor-
mation and Computation, vol. 114, no. 1, pp. 131-178.

1994.

[12] Hiroaki Kuwabara, Shoji Yuen, and Kiyoshi Agusa,
“Congruence Properties for a Timed Extension of the
pi-Calculus,” in Supplemental Volume of the DSN2003.

2003, pp. 207-214, IEEE Computer Society.

[13] Shoji Yuen, Keishi Kato, Daiju Kato, and Kiyashi
Agusa, “Web automata: A behavioral model of web
applications based on the mvc model,” Computer Soft-

ware, vol. 22, pp. 44-57, 2005.

[14] AMizuno, K. Mano, ¥ Kawabe, H. Kuwabara, K. Agusa,
and S.Yuen, “Name-passing style gui programming in
the pi-calculus-based language nepi,” Electric Notes it
Theoretical Computer Science, vol. 139, no. 1, pp. 149-

168, 2005.

(15] D. Sangiorgi and D. Walker, The Pi-Calculus: A Theory

of Mobile Processes, Cambridge University Press, 2001

