CLASSES WHOSE TERMINATION IS DECIDABLE

Masahiko Sakai

Graduate School of Information Science, Nagoya University

ABSTRACT

We consider several classes of term rewriting systems and
prove that termination is decidable for these classes. By
showing the cycling property of infinite dependency chains,
we prove that termination is decidable for semi-constructar
case, which is a superclass of right-ground TRSs. By analyz-
ing argument propagation cycles in the dependency graph, we
show that termination is also decidable for left-linear shallow
TRSs. Moreover we extend these by combining these two
techniques.

1. INTRODUCTION

Termination is one of the central properties of term rewrit-
ing systems {TRS8s for short). We say a TRS terminates if it
does not admit any infinite reduction sequences. Termination
guarantees that any expression cannot be infinitely rewritien,
and hence the existence of a normal form for it. As we go
from simple to more general classes of term rewriting sys-
tems, the difficully of deciding termination increases until it
becomes undecidable. Tt is meaningful to identify the decid-
ability barrier and study decidability issues for some interme-
diate classes, especially if these classes are expressive enough
to capture interesting rules.

As a generalization of the decidable classes of ground
TRSs [7] and right-ground TRSs [4], the class of semi-
constructor TRSs is studied. A TRS is called semi-
constructor if every defined symbol in the right-hand sides
of rules takes ground terms as its arguments. By showing the
cycling property of infinite dependency chains, we give a pos-
itive answer to this problem.

The class of shallow TRSs has been attracting some inter-
ests from researchers due to the decidability of reachability
and joinability problems for this class [3,8,10,13]. A TRS is
called shallow if all variahles in [, r occur at positions with
depth 0 or 1 for each rule [— 7. In 2005, the affirmative re-
sult on termination of TRSs that contains right-linear shallow
riles was shown by Godoy and Tiwari [3]. Here we propose
atechnique based on the analysis of argument propagation in
the dependency graph.

Combining the two techniques for semi-constructor case
and shallow case, we prove the decidability of termination for

Tnint work with Yi Wang.

- 161 -

the following TRSs:

i. right-linear reverse-growing TRSs with all the depen-
dency pairs being shallow or righi-ground

2. left-linear growing TRSs with all the dependency pairs
being shallow or right-ground.

The organization of this paper is as follows. In Seciion 2,
we review preliminary definitions of term rewriting systems
and introduoce basic definitions and results concerning depen-
dency pair method that will be used in Section 3. In Section
3, we give the definition of loop, head-loop and cycle first,
then list our results and give their proofs. In Section 4, we
compare our results with some existing results.

2. PRELIMINARIES

‘We assume the reader is familiar with the standard definitions
of term rewriting systems {2] and here we just review the main
notations used in this paper.

A signature F is a set of function symbols, where every
f € F 1s associated with a non-negative integer by an arity
function: arity: F — N{={0,1,2,...}). Function symbols
of arity 0 are called constants. The set of all terms built from
a signature F and a countable infinite set V of variables such
that F MV = 0, is represented by 7 (F, V). The set of ground
terms is denoted by T (F, 8) (T (F) for short). We write s = ¢
when two terms s and ¢ are identical. The root symbol of a
termn £ is denoted by root(t).

The set of all positions in a term ¢ is denoted by Pos(t)
and £ represents the root position. We denote the subterm
ordering by <, that is, £ < s if ¢ is a subterm of s, and £ < g if
t<dsandt # s. The depth of a position p € Pos(t) is |p|. The
height of aterm ¢ 1s 0 if ¢ is & variable or a constant, and 1 -+
max({height(s;) | i € {1,...,mI}) ittt = fs1,...,8m)-
Let C be a context with a hole (0. We write C[¢] for the term
obtained from C by replacing O with a term ¢.

A substitution § is a mapping frem V to T(F, V) such
that the set Dom(6) = {z € V | 8(z) # z} is finite. We
usually identify a substitution & with the set {z — 8{z) | z €
Dom(#)} of variable bindings. In the following, we writc t8
instead of 6(¢).

A rewrite rule | — r is z directed equation which satisfies
[¢ Vand Var(r) C Var(l). A term rewriting system TRS is

a finite set of rewrite rules. If the two conditions [& V and
Var{r) C Var(l) are not imposed, then we call it ¢TRS. We
use R~ for the reverse eTRS of B R™1 = {r = [|l —
r € R}. The reduction relation —pC T(F, V) x T(F, V)
associated with a TRS R is defined as foliows: § — g tif
there exist a rewrite rule] — r € IR, a substitution &, and a
context C such that 5 = C[ld] and t = C[rf]. The subterm
[8 of s is called a redex and we say that s is reduced to ¢ by
contracting redex [8. The transitive closure of — g is denocted
by —%. The transitive and reflexive closure of — is denoted
by —%. If s —% ¢, then we say that there is a reduction
sequence stariing from s to ¢ or ¢ is reachable from s by R. A
terin without redexes is called a nomnal form. A rewrite rule
[— 7 is called lefi-linear (resp. right-linear) if no variable
occurs twice in { (resp. 7). It is called linear if it is both left-
and right-linear. A TRS is cailed left-linear (resp. right-linear,
resp. linear) if all of its rules are left-linear (resp. right-linear,
resp. linear).

Fora TRS R, aterm t € 7 (F, V) terminates if there is
no infinite reduction sequence starting from ¢. We say that R
terminates if every term terminates.

Fora'TRS R, a function symbol f &€ F is a defined symbol
of Rif f = root{l) for some rule [— r € R. The set of all
defined symbols of R is denoted by Dy = {root(l) | 3l —
r € R}. We write Cg for the set of all constructor symbols
of R which is defined as F\Dg. A term t has a defined root
symbol if root(t) € Dg.

Let R be a TRS over a signature 7. F! denotes the
union of F and DY, = {f! | § € Dy} where F N
D}a = {0 and f* has the same arity as f. We call these
fresh symbols dependency pair symbols. Given a term ¢ =
fltr,. .. te) € T(F, V) with f defined, we write ¢ for the
term fA(ty,...,tn). If { — & € R and u is a subterm of
T with a defined root symbol, then the rewriie rule I# — uf
is called a dependency pair of K. The set of all dependency
pairs of R is denoted by DP(R).

For TRSs R and C, a (possibly infinite) sequence of the
elements of C s — ¢, s — 5, is an (R, C)-chain if
there exist substitutions 73, 79, . . . such that tETi—ﬁzngnH

holds for every sf — tg and SE_H — tE_H in the sequence. An
(R, DP(R))-chain is called dependency chain.

Theorem 1 { [1,6]) ForaTRS R, i does not terminate if and
only if there exists an infinite dependency chain.

The nodes of an (R, C)-graph denoted by G(R, C) are the
elements of C and there is an edge from a node ! — ¢! to
u! — w* if and only if there exist substitutions ¢ and T such
that ttg -3, wir. An (R, DP(R))-graph is called dependency

graph and denoted by DG{H). Note that the dependency

graph is not computable in general. However, our results will

work on any approximation of the dependency graph. We say
a graph is an approximate graph of a (R, C)-graph G if it con-
tains G as a subgraph and root(t) = root(u) for each arrow

2

from a node s — tf o wf — w!. We remark that there exis'ﬁ
at least one computable approximate graph for every (R, C)LE-*
sk]

The special notations “(K, C)-chain” and “(R, C)—grapﬁ’-z?
adopted in this paper is for handling left-linear TRSs as rigpi
linear ones. For example, we will use an (R}, Dp{ R)—l)g‘_'
chain™. .

3. DECIDABILITY OF TERMINATION BASED QN |
CYCLE DETECTION s

Infinite reduction sequences are often composed of cycles, A3
cycle is a reduction sequence where a term is rewritten 1o tha &
same term. Morc generally, a loop is a reduction Sequgnce_':f:
where an instance of the starting term re-occurs s a subtery
It is obvious that a loop gives an infinite reduction sequence,':'?
In fact, the usvual way to deduce non-termination is to ¢on!
struct a loop.

Definition 2 (Loop, Head-Loop, Cycle)

1. A reduction sequence loops if it contains ¢ —} C[t'8).
for some context €, substitution 6 and term &, Sim-
ilarly, a reduction sequence head-lcops if containing
t' —% t'8, and cycles if containing £ —5 t'.

2. A term t loops (resp. head-loops, resp. cycles) with
respect to R if there 1s a looping (resp. head-looping,
resp. cycling) reduction sequence starting from £.

3. A TRS R admits a loop (resp. head-loop, resp. cycle)
if there s 4 term ¢ such that ¢ loops (tesp. head-luops,
resp. cycles) with respect to K.

Proposition 3 The following statements hold:

1. If t cycles, then # head-loaps. If ¢ head-loops, then t
loops.

2. A TRS does not terminate if it admits a loop or a head-
loop or a cycle.

Exampled Let B = {f{z) — M(f(s(a)), 9(z) ~
g{h(z))} and ¢ f(z). We can construct the follow-
ing reduction sequence by only applying the former rule:
fle) = h(f(g(a))) — h(h(f(g(a)})) — --- which loops
with C = h[l], § = {z > gla)} and t' = f{z). Nouce
there are more than one looping reduction sequences for H1.

Naturally, the observation above inspires us to find some
class of TRSs, whose non-termination is eqguivalent to the e
istence of loops. If we are able to check the existence of 100pS:
then termination of such a class becomes decidable.

The following theorem lists our main results and will be
proved in the following subsections.

Theorem 5 Termination of the following classes of TRSs is
decidable:

1. semi-constructor TRSs
2. right-linear shallow TRSs
3. left-linear shallow TRSs

4_ right-linear rev-growing TRSs with all the dependehcy
pairs being shallow or right-ground.

5. left-linear growing TRSs with all the dependency pairs
being shallow or right-ground.

3.1. Semi-Constructor TRSs

Definition 6 (Semi-Constructor TRS) A termt € T{F, V)
is a semi-constructor term if every term s such that s < ¢ and
root(s) € Dpg is ground. A TRS R is a semi-constructor
system 1f 7 is a semi-constructor term for every rule ! — 7 €

R

Example 7 The TRS Ry = {f(z) — h{z, flg(a))),
g(z) — g(h(a, e))} is a semi-constructor system,

Propasition 8 A TRS R is called right-ground if for every
[l — 7 € R, ris ground. The following statements hold:

1. Right-ground TRSs are semi-constructor systems.

2. For a semi-constructor TRS R, rules in DP(R) are
right-ground.

For a given TRS, let 7, denote the set of all ininimal non-
tenminating terms, here “minimal” is used in the sense that all
its proper subterms terminate.

Definition 9 (C-min) For a TRS R, let £ C DP(R).
An infinite reduction sequence in R 4 C in the form

ottt ohti o - with t; € Tog for all i > 1 s

called a C-min reduction sequence. We usc C,m-n(tﬂ) to de-
note the set of all C-min reduction sequences starting from
.

Proposition 10 ([1,6]) Given a TRS £, we have the follow-
ing statements:

1, If there exists an infinite dependency chain, then
Conin(t*) # 0 for some C € DP(R) and t € 7.

2. For any sequence in Cp,:,{t¥), reduction — 5 takes
place below the root while reduction — takes place
at the root.

3. For any sequence in Cpin{t*), subsequence sf—3, ot

* implies s—%C/[t] for some context C.

R

4. For any sequence in Cpnsn (t%), there is at least onc rule
in € which is applied infinitely often.

Lemma 11 For a TRS R, if sg € Cpnin(t%) loops, then sg
head-loops.

Proof- Let sq € Cruin{t") loops, then there is a subsequence
t8 % -Cl[th0] in sq. From Prop.10~2) and the fact that de-
pendency pair symbols appears only in dependency pairs, we
have C [tifﬂ = tiﬁ, which implies that sq head-loops. O

Lemma 12 For a TRS R, if sqg € Cpnsn (£) loops, then there
is a term ti in sq such that ¢;. loops with respect to R,

Progf: From Lemma 1 and Prop. [0-(3). a

Lemma 13 For a semi-constructor TRS R, the following
statements are equivalent:

1. E does not terminate.

2. There exists i — u! € DP(R) such that sq cycles for
some 5q € Crpin (u¥).

Proof: (2=>1): It is obvious by Lemma 12. (1=2): By Theo-
rem |, there exists an infinite dependency chain. By Prop. 10—
(1), there exists a sequence sq € Cpin (t*). By Prop. 10-(4),
there is some rule I — u! € C which is applied at root redue-
tion in sq infinitely often. By Prop. 8—(2), w! is ground. Thus

ul eycles in the form wl—3, g - -{”_m,}uﬂ insg. 0O

Notice that non-termination of semi-constructor systems

depends on the existence of a ¢ycling dependency chain,
which represents the cycle “w!—% 100 - — sy * D
sg” in the proof of Lemma 13. Here, cycle is guaranteed by
the fact that DP(R) is right-ground.
Proaf: (Theorem 5-(1)) The decision procedure for termi-
nation of semi-constructor TRS K is as follows: consider all
terms g, ua, . - -, Uy corresponding to the right-hand sides of
DP{R) = {lf — u! | 1 <4 < n}, and simultaneously gen-
erate all reduction sequences with respect to R starting from
1, U, ..., Un. It terminates if it enumerates all reachable
terms exhaustively or it detects a looping reduction sequence
w; ~} Clu;) for some 1.

Suppose A does not terminate. By Lemuna 12, 13 and
the groundness of u;'s, we have a looping reduction sequence
u; —75 C[uy] for some ¢ and C. Hence we detect non-
termination of R. If R terminates, then the execution of the
reduction sequence generation stops finally since it is finitely
branching. Thus we detect termination of R after finitely
many steps. O

Next we make a natural extension by relaxing the condi-
tion for assuring cycling, which is mainly used in the Subsec-
tion 3.3.

Lemma 14 Let R be a TRS whose termination is equivalent
to the non-existence of a dependency chain that contains infi-
nite use of nght-ground dependency pairs. Then termination
of 7t is decidable.

Proof: We apply the above procedure starting from terms
U1 ,Ua,. . Up, Where u;’s are all ground right-hand sides of
dependency pairs. Suppose R is non-terminating, we have a
dependency chain with infinite use of a right-ground depen-
dency pair. Similarly to the semi-constructar case, we have a
foop u; —7; C[u;], which can be detected by the procedure.

Example 15 Let By = {f(a) — g{b), glz) — f(z),
h(a,z) — h{b,x)}. We can compute the dependency graph.
It has only one cycle, which contains a right ground node.
From Lemma 14 we can show termination of I3 by the pro
cedure starting from g(b).

3.2. Right-Linear Shallow or Left-Linear Shallow TRSs

In this subseciion, we show how to analyze cycle of depen-
dency chains that consist only of right-linear shallow depen-
dency pairs and then show the decidability of termnination for
right-linear shallow TRSs and left-linear shallow TRSs.

Definition 16 (Shallow TRS) A rewrite rule [— r is shal
fow If all variables in Var(l) U Var(r) occur at positions with
depth 0 or 1. An €TRS is shallow if all its rewrite rules are
shallow.

Example 17 TRS Ry = {f(z,¥) f{g(a). v),

flgla).2) — f(z,8)} and Rs = {g(z,z) — f(z,a),
fle,z} — g(z.b), 2 — ¢, b — ¢} are shallow,

—

We say that 7' is joinable to sifVt € T. t -}, sand T'is
Joinable if it is joinable to some 5. From now on, we assume
A in which both of the following properties are decidable.

Ground Reachability: t —7% s for given ground terms ¢ and
5.

Ground Joinability: 7' is joinable for a given set T of
ground terms.

For dependency chains composed of shallow dependency
pairs, all informations carried by variables are passed to the
next dependency pairs in its derivation. For example, consider
A5 and an infinite sequence of dependency pairs:

9"z, z) — f*(z,0),
e.z) — ¢°(z,b),
9"z, z) — fFlz,0),

It is a dependency chain because we have a derivation:

d'(ec) = e a) = fic, a) — 9"(@: b)
~ - gie,c) — flc,a) —

- 164 -

i 1 2 3 | 104
Ny = Np = Na= | N =il
A L L R B LR
L N e T e = R
_ T- AT-- € JT-1-T Z-t-c g |1
L(i) ' a-1-2" b-1-3" a-{-5 7 p |
As(z) 0 {a} {a.b} {a}
—

Fig. 1. Labeling for Example 19

In order to analyze such information flows caused by varj@y
ables, we introduce some notions. We refer the set of van,ﬁ
ables appears in a rule { — r as Var(l — 7). We Tepreit
sent mappings A : V — P(7(F)} as {z — A(z) | 5 Eﬁ
Dom{A)} in similar to substitutions.

Definition 18 (Labeling Function) Let R and C be eTRSs)
and AG be an approximate graph of (R, C)-graph. Letp beﬁ
a path nd;, ndy, ndy -+ - in AG. A labeling function L, that A
associate each positive integer © with a pair of a node nd and =:"
amapping A : Var(nd;) — P{T(F)) is defined as fol]més::'f
L4

1. Let nd; be fu(tl,...

Lp(1)
Var{nd,).

Sm}. Tl’]enrs
B for z €7

:tn) - gg(sll"'i
(ndy, A} where Aq(z) =

2. Let nd;, = flﬁ(vl,...,?Jk} — fﬁ(ul,...
Lp(d) = (nd;, Ay) and nd;q = fﬂ(f;l,...

)y lin);

vin) =

g"(s1,-- -, 8m). Then Ly(i + 1) = (ndigs, Ay
where
Aipi{zy={u;|je{l,...,n}At; =z Au; ¢V}

J U

JE€{1,.-.,n}At =zAu; €V

for £ € Var{nd;).

A (uyg)

Example 19 Consider R = R; and ¢ = {g¥(x.z) —
FHz,0), fHe,z) — gﬂ(m,b)} C DP(Rs). The labeling
function for a path Ny, No, N1,. 1sL 1) = (N, {z 0}
L) © (oo e) EE) = (N e (o)
L{4) = N,, {.c — {a}}), L(5) = (N1, {z — {a,b}});--
where N1 = g*(z,2) — f(z,a) and Ny = fb(c,z) —
g*(z, b). (See }*10. 9]

Definition 20 (Argument Propagation Cycling) Let L; b¢
a labeling function over p = ndy, nds, ndg, Wesay?
finite sequence of labels L, (1), L, (I + 1),..., Lp(J) 1520
argument propagation cycling (APC for short) if Ly{I) =
L,(.J) and the following conditions, called smootihness col-
dition, are satisfied for all ¢ (7 < ¢ < J):

1. A;{z) is joinable for each = € Dom(A;).

2, Forall (1 < j < n)suchthatt; ¢ V,

(a} A;(u;) is joinable to t; if u; € V;
(b} wu; isreachable to £; if u; & V.

where

L) = (% — f*(ur, ..., un), A;) and
LP(?'+ 1) = (fj(tlz s 7tn) - Sﬁ:AH'l) -

We say an APC is minimal if all its proper subsequences
arc not APC.

Example 21 Consider the labeling function L in Exam-
ple 19. The sequence L(2), L(3), L(4) is a minimal APC,

One may think that every minimal APC centains no rep-
etition of a same node except the edges. However it is not
correct in general as shown by the following example.

Example 22 Consider a TRS R = {g(z.y) —
f(y:b=$1 a’)'l g’(.’L‘,‘y) I f(y,a.,:l:,b), f(mxxvy:y) =k
g¢(z,y)} and ¢ = DP(Zg). The minimal APC

pover a path Ny N3 No N3 Nj,... is the sequence
L(2), L(3), ..., L(6) as shown in Fig. 2 and L(2), L(3), L{4)
is not an APC. Indeed N3, Ny, N3, N3, ... is not a depen-
dency chain.

Lemma 23 For an eTRS £ such that ground reachability and
ground joinability are decidable and for a shallow ¢TRS C, the
existence of APC is decidable.

Proof: Firstly we take an approximate graph G of (R, C)-
graph. The procedure tries searches starling from every node
in G. In traversing edges, it quits if an APC is found and
backtracks traversal if the path does not satisfy the smooth-
ness condition. The correctness of this procedure is obvious.
The range of the labeling function is finite since the possible
clements in Ag(z) of the labeling function are ground terms
at depth 1 that occurs in the right-hand side of nodes. Since
the smoothness condition is decidable by the assumption, ter-
mination of the procedure is guaranteed. a
For an APC {nd;, Aj),...,(ndy, &), RanD denctes
union of ranges of all A;s contained in the APC, that is
RanD = Ran(A;) U Ran(Ar4q) U - Ran(A ;) where
Ran(A;) = {A;(z) | £ € Dom(A;)}. From the smoothness
condmon 1, each set § € HanD of terms is joinable to a term
5, which we denote by a function £v : P{T(F)) — T(F)
where Ev(D) is assined by a fresh variable.
We say that a natural extension of (R,C)-chain
nd_y,ndy,ndy is backward-infinite. In order to avoid
confusion, we sometimes say that an infinite (R, C)-chain is
forward-infinite. Next lemma will formally express the rela-
tion between an APC and an infinite (R, C)-chain.

Lemma 24 Let R be an ¢TRS and C be a right-linear shallow
¢TRS. Then,

- 165 -

I. there exists a forward and backward-infinite (R,C)
chain if there exists an APC, and

2. there exists an APC if there exists a forward or
backward-infinite {R, C}-chain.

Proof We firstly show the former par. Let
L,(I),....,L,(J) be an APC over a path
ndl, -,'nd;, -+ ,ndy. The following procedure con-

structs substitutions ry,--- ,7; S0 as to obtain a cyclic
{R,C)-chain ndyrr—pndrp 71 —g - - —Rndy7s.

1. Firstly, do the following repeatedly while applicable,
starting with empty substitutions -, = ¢ {7 <1 < J).

o Letnd; = o' — f*(uy,...,u;) and ndy,; =
A, tn) — 85 Setm o= U {u; —
tj'ri+-1} if I <3< J, u; € Y - DO[D(Ti) and
tiTi1 € Vforsomej € {1,...,n}.

s Setry:=T1; if'rJ #TI.
2. Secondly, do the following repeatedly while applicable.

o Let nd;7; = ! - fHuy,...,u,) and
'fldz'+1‘?'-i+1 = fﬁ(tl,...,tn) — Sn. Set Ai =
Az[uj = A.H,j_(tjﬂ fr<i<dJ, Uz, by € V and
Aj(ug) # Ajp(t;) forsome 7 € {1,...,n},
where Alz — T denotes a mapping A’ such that
Al(z) =T and A'(y) = Aly) fory # z.

b SetAJ = A] ifA; # Aj.
3. Thirdly, do the follwing

s Set7; = U {r — Efu(A
Var(nd;) — Dom(n).

H{zN} forz €

Note that the uniqueness of each substitution 7; s guaran-
teed by the right-linearity of nodes. This procedure eventually
stops and construct a cyclic (£, C)-chain from the smoothness
of the APC. Hence the existence of an forward and backward-
infinite (R, C)-chain is easily shown.

Next, we argue that there exists an APC over a given
forward-infinite (R, C}-chain. Let the (I, C)-chain be
ndy,nda, ... where nd; = Lg — 35 € C. There exists an
APC (with smoothness condition ignored) over the path. Note
that it is also possible even if the given chain is backward-
infinite one - -- ,nd_j, ndg, ndy, since we can choose a nat-
ural number N small enough such that an APC can be found
along the path ndy, ndpy4q, - - ndo,nd1 Let the APC be
L), -+, L{J). We have an sequence tITI —*c sl"r; —%
tﬂl 1'I+1 —*c 5§+1TI-1 —huc T RuC tJTJ I * Si.iITJ’
where if — s is a rule in L(’L) The satisfaction of the
smooLhans Condmon follows from the traces of the reduc-
tions of ground terms at depth 1 in the sequence. O

The following example is helpful for understanding the
first step of the procedure in the above proof.

7 1 2 4 5 6
Ny = Ny = 2 = Ny = Ny = N3 =
P A L O S I L L O O L B L
nd; ?I"’\b—-—:r.’,y———y"\a—-—m’fy—-—y"\b T-x’ Y
\z_ y&,.r - _y"! \:E i yl’l
L3} a-1-y' b4y a-1-y’
Ai(z) B {8} {6} {a} {a} {b}
Aiy) P {a} {a} {6} {6} {a}

Fig. 2. Labeling for Example 22

Example 25 Consider the APC L(2), L(3), L(4) from a path
ndy, nda, . .. (see Fig. 1). We show the existence of cycling
reduction sequence ¢ _’Euc t. The first step of the procedure
in the proof of Lemma 24 produce substitutions 75 = 13 =
74 = {x = ¢} and the remaining steps do nothing. We have
File.e) —e g4e,8) =% ¢*leic) —c fHle,a) — Flc,c)
from the sequence ndara, ndss, ndy7y.

The following example is helpful for understanding the
second and the third step of the procedure in the abave proof.

Example 26 Consider the following TRS R; = { g(z, z) —
flz,a), flz,z) — hiz,b), hiz,y) — glz,¥),a —
b — cland C = {g¥z,z) - flz,0), Hz,z) —
Wiz, b) A¥(z,y) — ¢*(z,y)} C DP(Rs). It has an APC
L(4), L(5), L(6), L{7) for alabeling function L in Fig. 3. Ac-
cording to the procedure in the proof of Lemma 24, the first
step produce 7y = 75 = 75 = 7y = @ and the second step
changes Ag so that Ag(y) = {a,b}. Hence we obtain substi-
tutions 75 = 75 =7y = {x — ¢}and 7y = {z — ¢,y > ¢}
by the third step since £v{{e,b}} = c¢. Therefore, we
have g*(c,c) —¢ fi(c,a) —% fle.c) —c R¥(e,b) =%
R¥(c, e) —¢ g¥(c, ¢) from the sequence nda7s, . . ., ndrTr.

Next, based on Lemma 24, we give proofs for Theorem 5—
{2) and (3).
Proof: (Theorem 5—(2)) Let R be a right-linear shallow TRS.
Then, DP(R) is also right-linear shallow. We know ground
reachability and ground joinability of right-linear shallow
TRSs are decidable [3,9, 10, 13]. By Lemma 23, we can de-
cide the existence of APC. Thus we can decide the existence
of a forward-infinite {R, DP(R)}-chain by Lemma 24. The
theorem follows from Theorem 1. O
Froof: (Theorem 5-(3)) Let R be a left-linear shallow TRS.
Then R~* and DP(R)™! arc right-linear shallow eTRSs
We know ground reachability and ground joinability of
right-linear shallow TRSs are decidable [3, 9, 10, 13]. By
Lemma 23, we can decide the existence of APC. If an APC

exists, we have a backward-infinite (R, DP({R)~!)-chain
from the former part of Lemma 24, which shows the existence
of a forward-infinite (R, DP(R))-chain. If no APC exists, we
have no backward-infinite (2=, DP(R)~1)-chain from the
latter part of Lemma 24, which shows the non-existence of
a forward-infinite (&, DP{R)}-chain. The theorem follows
from Theorem], a

3.3. Combining the two techniques

In this subsection, we combine the techniques in the above
two subsections and show the decidability of termination for
some larger classes. This is based on the following lemma,

Proposition 27 For TRSs B, € and € such that C D (', the
following statermnents are equivalent.

1. There exists an infinite (R, C)-chain.

2. There exists an infinite (B, C")-chain or there exists an
infinite (R, C}-chain with infinite use of pairs in € —C'.

Proof: Since the latter implies the former trivially, we
show the converse. Suppose we have an infinite { R, C)-chain
ndy,ndsz, . .. with finite usc of pairs in € — ¢’. Letting ndy
is the last use of a pair in C - , the infinite subsequence
Ndnt1, ndngo, ... is a (R, C")-chain. a
Definition 28 {Growing TRS) A rewrite rule ! — r is grow-
ing if all variables in Var(I} N Var(r) occur at positions with
depth O or 1in {. An eTRS R is growing if every rewrite rule
in R is growing and R is rev-growing if R~ is growing.

Example 29 TRS s = { f(a,7) — ¢(z,b), 9(zv) =
h{z,p(z,y)), hlc,z) — f{z,z)}is left-linear growing.

Progf: (Theorem 5—4)) Let R be a right-linear rev-growing
TRS with DP{R) being shallow or right-ground. Let Cs bé
the set of all shallow pairs in DP(R). We know ground reach-
ability and ground joinability of right-linear rev-growing

Z 1 2 3 4 5 6 7
Ny = Ny = N3 = Ny = Ny = Ny = Ny =
. /A I A S I -G IO L I O SO P L
T —_ o~ — —~ —_— ~ —~ - —
- T- - T- APy L- T o] T -7 Z T o ST T T
L(i) ¥ a-+-z" b-4i-V--V-1-z a-4-z b-1-Y-¥-1-z" «a
Ai(z) @ {a} {a} {e,0} | {e,b} | {ab} | {a.b}
Aq(y) {8} {v}

Fig. 3. Labeling for Ry

TRSs are decidable [10, 13]. Since C; is right-linear shallow,
we can decide the existence of APC by Lemma 23. If an APC
exists then we have an infinite (R, Cs)-chain by Lemma 24,
which implies that X is non-terminating. Otherwise, from
Prop. 27, it is enough to decide the existence of an infinite
(R, DP(R))-chain with infinite use of pairs in DP(R) — C,,
which is a set of right-ground pairs. This is decidable from
Lemma 14. O
Proof: {(Theorem 5—+5)) Let R be a lefi-linear growing TRS
with DP(R) being shallow or right-ground. Let C; be the
set of 2ll shallow pairs in DP(R). Then R~ is right-linear
rev-growing and C; ! is right-linear shallow. Since we know
ground reachability and ground joinability of right-linear rev-
growing TRSs are decidable [10, 13], we can decide the exis-
tence of APC by Lemma 23. If an APC exists then we have
a backward-infinite {R~!,C_!)-chain by Lemma 24, which
implies the existence of an infinite (R, C,)-chain and hence
R is non-terminating. Otherwise, from Prop. 27, it is enough
to decide the existence of an infinite (R, DP(R))-chain with
infinite use of pairs in DP(R) — C,, which is a set of right-
ground pairs. This is decidable from Lemma 14. a

4. COMPARISON

In this section, we compare our results with some existing
results.

Lemma 30 For 2 semi-constructor TRS E, the following
statements are equivalent:

1. K does not terminate.
2. DG{R) contains a cycle.

Proof: Suppose I does not terminate. There exists an infi-
nite dependency chain by Theorem 1. Hence the dependency
graph must have a cycle, otherwise it causes a contradiction.
Conversely, for every edge from a node s* — ¢ to a node
u! — ¥ in a cycle, there exists a substitution 7 such that
t! 5% yfr. Thus we can easily construct an infinite depen-
dency chain. a

Lemma 31 The dependency graph of semi-constructor TRSs
is not computable.

Proof: By encoding Post’s Correspondence Problem. Let
{{us,) € 7 x ©F | 1 < ¢ < n} be a finite set of PCP
pairs.

{e—ele)|1<i<n}u

{g - Fle,d)}U

{b—a(b), b—ale) [b € {c.d}, a e T}V
{f{z,z) — gz, z)} U

{ei(glus{z), v:y))} — glz,9) | 1 i< n}U
{ei(gluile),vi(e))) e |1 i <n}

TRSRg =

Defined symbol of Ry is {£,¢,d, f} U {&; | 1 €7 < n},
g is a semi-constructor TRS and it 1s a variant of the ex-
ample in [12]. Notice that the following statement is true:
in DG(Hg), there is an edge from node ef — eg {€) to node

et (g(u1(€),v1(€))) — €l if and only if PCP has a solution.
O

Note that reachability problem is undecidable for linear
semi-constructor TRSs [11]. However this fact is not enough
to prove the above lemma because the use of reachability in
dependency graphs are limited.

In the reference [9], Middeldorp proposed a decision pro-
cedure for termination of right-ground TRSs which is depen-
dency graph based. Denoting growing approximation depen-
dency graph by DGg(R), he showed that for right-ground
TRS R, DG(R) = DGg(R), that is, the dependency graph
of the right-ground TRS is computable. Thus, the decision
procedure proposed is that: compute the dependency graph
of R using the growing approximation and then check the ex-
istence of cycles. For semi-constructor case, we ailso have
Lemma 30 to assure that semi-constructor TRS terminates if
and only if there is no cycles in the dependency graph. How-
ever, the dependency graph based method can not be applied
to semi-constructor case, since its dependency graph 1s not
computable by Lemma 31.

The following theorem shown by Godoy and Tiwari [5] is
also given as a corollary of Theorem 5—(4) since TRSs in this
class satisfy the assumption of our theorem.

Theorem 32 { [5]) Termination of TRSs that consist of right-
lincar shallow rules, collapsing rules and right-ground rules is
decidable.

Nagaya and Toyaina [10] obtained the decidability result
for almost orthogonal growing TRSs. We claim that the appli-
cable classes of Nagaya’s method and ours do not cover each
other. Considering K4 in Example 17 and Hg in Example 29:
R4 is left-linear shallow, but it is not almost orthogonal
since there is a non-trivial critical pair {f(g(a), 2z}, f(z, &),
DP(Hg) does not fit either of the applicable classes we pro-
poscd, but 1t 1s orthogonal.

5. CONCLUSION

One research direction on termination is to find more general
classes of TRSs whose termination is decidable. We proposed
several positive results listed in Theoremn 5.

We propose some conjectures and list them as follows:

Conjectare 33 Termination of right-linear ev-growing
TRSs with all the dependency pairs being left-linear is
decidable.

Conjecture 34 Termination of left-lincar growing TRSs with
all the dependency pairs being right-linear is decidable.

Conjecture 35 Termination of shallow TRSs is undecidable.

Acknowledgement

‘We would like to thank Ashish Tiwari for helpful comments.

6. REFERENCES

[1] T. Arts and J. Giesl: Termination of term rewriting using
dependency pairs. Theoretical Computer Science 236
(2000) 133-178.

[2] F. Baader and T. Nipkow: Term rewriting and all that.
Cambridge University Press (1998).

[3] H. Comon, M. Dauchet, R. Gilleron, F Jacquemard,
D. Lugiez, S. Tison and M. Tommasi: Tree automata
techniques and applications (1997).
http://www.grappa.univ-1ille3.fr/tata/

[4] N. Dershowitz: Termination of linear rewriting sys-
tems. Proc. of the 8th international colloquium on
automnata, languages and programming, LNCS 115
Springer-Verlag (1981) 448458,

[5] G.Godoy and A. Tiwarl: Termination of rewrite systems
with shallow right-linear, collapsing and right-ground
rules. Proc. of the 20th international conference on au-
tomated deduction, LNAIT 3632 (2003) 164-176.

- 168 -

[6] N. Hirokawa and A. Middeldomp: Dependency paify
revisited. Proc. of the 15th international cgnfermce.é
on rewriting techniques and applications, LNC§ 3087
(2004) 249-268.

[71 G. Huet and D. Lankford: On the uniform hallmnpmb_q
lem for term rewriting systems. Technical Report 283‘
INRIA (1978).

[8] F Jacquemard: Decidable approximaticns of termn
rewriting systems. Proc. of the 7th international cop. %,
ference on rewriting tcchnigues and applications, LNCSH
1103 (1996) 362-376.

[9]1 A. Middeldorp: Approximating dependency graphs us
ing trec aulomata techniques. Proc. of the internationg) }
joint conference on automated reasoning, LNAI 2083
(2001) 593-610. '

[10] T. Nagaya and Y. Toyama: Decidability for left-linear
growing term rewriting systems. Proc. of the 10th inter- |
national conference on rewriting techniques and apph
cations, LNCS 1631 (1999) 256-270,

[11] T. Mitsuhashi, M. Oyamaguchi, Y. Ohta and T. Yamada,
The joinability and unification problems for confluent
semi-constructor TRSs. Proc. of the 15th international |
conference on rewriting techniques and applications,.
LNCS 3091 (2004) 285-300.

[12] I. Mitsuhashi, M. Oyamaguchi and T. Yamada: The
reachability and related decision problems for monadic
and scmi-constructor TRSs. Information Processing
Letters 98 (2006) 219-224.

[[3] T. Takai, Y. Kaji and H. Seki: Right-linear finite path
overlapping term rewriting systemns effectively preserve
recognizability. Proc. of the 11th international confer
ence on tewriting techniques and applications, LNCS
1833 (2000) 246-260.

