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ABSTRACT

In this paper we deal with the blind source separation (BSS)
problem in the frequency domain. To solve this problem
we adopt the idea of super-exponential methods (SEM) and
eigenvector algorithms (EVA) with reference signals. SEMs
have the attractive property that they are computationally
efficient and converge to the desired solutions at a super-
exponential rate. Conventional SEMs have the problem that
they are sensitive to Gaussian noise. To overcome this issue,
we propose the robust SEM, which utilizes only the higher-
order cumulants. SEMSs, however, have the drawback that
they fail to extract all the source signals due to the failure
of the deflation process. To compensate for this drawback,
we propose the EVA with reference signals, which makes it
pussible to exiract all the sources.

1. INTRODUCTION

This paper deals with the blind source separation problem
for a multiple-input multiple-cutput (MIMQ) static system
driven by independent source signals. To solve this prab-
lem, we draw on the two ideas of super-exponential methods
(SEM)[1, 2, 31 and eigenvector algorithms (EVA) with refer-
ence signals[4, 5, 6].

To date several researchers have proposed SEMs for Inde-
pendent Component Analysis (ICA) and Blind Source Sep-
aration {BSS). One of the attractive properties of SEMs is
that they are computationally efficient and converge to the de-
sired solution at a super-exponential rate. However, conven-
tional SEMs suffer the drawback that they are very sensitive
to Gaussian noise, because SEMs utilize the second-order and
the higher-order cumulants of the observations. Therefore, in
this paper we propose an SEM robust against Gaussian noise,
that utilizes only the higher-order statistics of the observa-
tions. However, when we extract independent sources one by
one using SEMs, a defiation process is needed after the sepa-
ration process to make the output signals independent of each
other. The deflation process, however, sometimes fails.

To avoid the deflation process, we propose an eigenvec-
tor algorithm (EVA) with reference signals. The EVA de-
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Fig. 1. The composite system of an unknown system and a
filter, and reference system

rived from a criterion with reference signals is used for solv-
ing the BSS problem of MIMO static systems. The proposed
EVA has the attractive feature that all source signals are sep-
arated simultaneously from their mixtures, whereas the other
methods using deflation process extracted signals one by one.
Therefore, if the deflation process fails, none of the the sig
nals can be separated. However, the EVA with reference sig-
nals enables us to extract all the sources without resorting any
deflation methods.

We demonstrate the effectiveness of the proposed meth-
ods through computer simulations and an experiment in a real
environment.

2. PROBLEM FORMULATION

Throughout this paper, let us consider the following MIMO
static systemn with 22 inputs and ' outputs, a convolutive mix-
ture model with additive noise (See Fig. 1.);

y{t) = H(k)s(t — k) +n(t), ()
&

where y(t) represents an m-columnn output vector called the
observed signal, s{t) represents an m-column input vector
called the source signal, n(t) represents an m-column noise
vector and H {t) is an m x n{m > n) mixing matrix.

To achieve the blind source separation for the system (1),
4 convolutive mixture in the time domain is converted into in-
stantaneous mixtures in the frequency domain with the short-
time Fourier transform (STFT),

y(f,t) = H(f)s(f,t) + n(f,1). ()



The following n filters, which are m-input single-output
(MISO) static systems driven by the observed signals, are
used for each frequency bin:

n(f ) =w(Hy(ft), 1=12...,n, (3

where superscript ¥ denotes the conjugate transpose of a
matrix or a vector z(f,t) is the Ith output of the filter,
wilf) = [ () Wia(F)s- ., Wim]¥ s an m-column vec-
tor representing the m coefficients of the filter in frequency
bin f. Substituting Eq. {2) into (3), we obtain

zi{f,t) wi' (VH(f)s(f,t) + wi (f)n(f, 1),
= gl (Ns(f.t) +wf (Hn{f,1)
1=1,2,....n (4)
where @(f) = [gu{Mhe(f. g =

HA(#)wi(f) is an n-column vector. The BSS problem
considered in this paper can be formulated as follows:
Find = filters wy{f)’s denoted by w,(f)s satisfying the
following condition, without the knowledge of H{f), even
if the Gaussian noise n(f, ) is added to the observed signal

y(f,1),
gi(f) = W (f) = 8,(f), 1 (5)

where 8;(f) is an n-column vector whose elements
()7 = 1,2,...,n) are equal to zero except for the
or{ fith element.

To solve the blind separation problem, we put the follow-
ing assumptions on the systermn and the source signals.

Al) The matrix H(f) in (2) has full column rank.

A2y The input sequence {s{f,t)}
non-Gaussian vector whose element processes
{8:(f.0)},i = 1,2,...,n, are mutually statistically
independent and have nonzero variance, oZ (f) and
nonzero fourth-order cumulants, w(f), i = 1,2,...

HA(f)% =1,2,...,n

IS a zero-mean,

S Th

A3) The noise sequence {n{f,t)} is a stationary process
vector, whose elements, {n,(f,t)},i=1,2,... ,mare
zero-mean (Faussian processes.

A4} The two vecetor sequences {n{f, %)} and {s(f,t)} are
mutually independent.

Hereafter, for the sake of simple notation, we omit the
frequency bin f, i.e., s(f,£) =s(t).

3. ROBUST SUPER-EXPONENTIAL METHOD
(RSEM)

3.1. RSEM for frequency-domain BSS

To find a solution w; satisfying Eq. (5), we extend the ro-
bust super-exponential method (RSEM) proposed in [7] to
complex-valued signals. Using a matrix A, we must find w;

rm'n(HHw; — SI)HA(HHW,: = Sz) (6)
Wy
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Solving the above equation brings us the following tyy
step equations;
- _

w; Qtq,,
(1]

. T W
[1]H [1]'( B
Wl Wl

(I=1,2...,n), m

where | dcnotcs he pseudo-inverse operation. d; =l

[di1, diz, -+ s i’

di; = cum {z7 (&), 27 (£), 21 (&), y;{£) }, 0

’s j-th element d;; is calculated by

where superscript * denotes the complex conjugale of a sjp.
nal. This means that d;; is given by the fourth-order cumula; |
of the cutput signal z;(f) and the observed signal v, (£} In the
super-exponential methods, the above two-step procedure be.if
comes one cycle of iterations. In convectional SEMs[1, 2, 3] ¢
QQ is calculated by the sccond-order cumulants of the ob-_;i
served signals, whereas in the RSEM, only the fourth- order !

cumulants of the observe signals are used. For comp]ex
valued signals, Q is calculated using

Q - ZRy,k:
k=1
[Ry,k]i!j = cum {yi (t)a Y;(t}:Yk(i)v YE (t)} ) (11)

where [Ry z]; ;

(10);

l

denotes the (i, §)th element of the matixi}

R, ;. Because RSEM utilizes only the higher-order cumu: }

lants, it is insensitive to Gaussian noise.

3.2. Adaptive Robust Super-Exponential Method (AR ::

SEM)

We consider implementing adaptively the twao-step procedure

inEqgs. (7) and (8) for the case of two sources and two sensors.

To this end, we must specify the dependency of each time t,:

and rewrite Egs. (7) and (8) as follows:

Wiy = QYpdie),
WEQ] (t) — wtm (t) ,
wil¥ )wle)

(1 =1,2),

(l = 1=2)=

(12)...

(13)‘,.

where Q(t) and d, () are the estimator at time £ of Q and dy, I

respectively. We caleulate G(#) in accordance with a movings
average:

Q) = Q-1
+(1—a) {(Ci (1) — Cu(t) -

Ca()C3(6)

w{C1(t)})Cr{l]

(14)!

3

where « is a forgetting factor close to but less than [, and
tr{ X} denotes the trace of matrix X . Here C, (¢) and Calt):



in Bq. (14) are defined by Ci{t)_= y(&yH (), Caolt) =
y(t)yT(t), respectively. Matrices C1(t) and Ca{t) are mov-
ing averages of C,(t) and Cs(t), respectively, which are cal-
culated by

Ci(t) =

BC.(t—1)+(1-8)Cile), (19
Ca(t) = 1—

BCs(t —1) + (1 - P)Calt),  (16)

where /3 is also a forgeting factor close to but less than 1, and
a> f. ~

The update of d;{t) is
aai(t -1
+{1 = a) {([z(8)* = 2% ())z] (t)y (t)
~n(t)z )y (E)}. (a7

InEq. (17), %;(t) and ¥;{¢) are the moving averages of 71 {t)12
and (2} (£))?, respectively, and are calculated by

di(t) =

) = MiE-1+0-Bz® 08
W) = Bul-1+1-0Ew): 19
3.3. Deflation

Since the source signals are exiracted onc by one from the ob-
served signals, the filters wi's must be constructed such that
different sources are extracted. To achieve this goal, Inouye
et al. and Kawamoto et al. subtracted the components con-
tributed by extracted sources from the observed signals.[3, 8].
However, the estimation error of the separated signals resulls
in severe miscalculation. Therefore, we decorrelate the out-
put signals z;(¢) in the sense of fourth-order statistics using a
Gram-Schmidt-like deflation:

wi (H)Q() w1 {t)
wi ()Q(t) w1 (t)
Nevertheless, this deflation process sometimes fails. To avoid

the deflation, we propose the eigenvector algorithm with ref-
ercnce signals.

4, EIGENVECTOR ALGORITHM (EVA)

4.1. Analysis of EVAs with reference signals for MEIMO
static systems

In this subsection we assume that there is no noise n(t) in the
output y{£}. Next we propose the eigenvector algorithm with
reference signals. To solve the BSS problem, the following
cross-cumulant between z; (t) and the reference signal x(¢) is
defined:

Cyux = cum{z(t), 27 (), x(t), x*{t)}, 2

where ~ denotes the complex conjugate and the reference sig-
nal x(t) is given by £7y(t) = fFHs(t) = afls(t) (@' =

AE =

£HH is a vector whose elements are a;, ag, . . ., &), USing an

appropriate filter f. The filter T is called a reference system.

Moreover, we define the constrain o, = o, where g}, and
' TP

a;"m denote the variance of the output z; () and a source sig-
nal s, (£), respectively. [n the case of SISO systems, Jelonnek
et al. [, 6] have shown that the maximization of |C,x| under
Ty = afm leads to a closed-form expression as shown by the

following generalized eigenvector problem:
Cyxw; = ARwy. (22)

Then they utilized the facts that C,, and o2, can be expressed
in terms of the vector wj as, respectively,

Cox = WiHCprowy, (23)
03, = wl'Rw,, (24)
where C,, is a matrix whose (i, j)th element is calculated by
cum{y; (t), ¥3 (£),x(), x*{&) }, R = Ely(t)y" (2)] is the co-
variance matrix of m-column vector y (), and A is an eigen-
value of Rf C,. Furthermore they have shown that the eigen-
vector corresponding to the maximum eigenvalue of RTC,,
becomes the solution of the blind equalization problem in
[3, 6], which is referred to as an eigenvector algorithin (EVA).
However, the algorithm proposed by Jelonnek et al. is for
SISO or SIMQ infinite impulse response channel. Therefore,
we want to show how the eigenvector algorithm Eq. (22)
works for the BSS in the case of the MIMQ static system
in the frequency domain. To this end, we use the following
equalities:

R =
Cpx =

HYHY, (25)
HAH?, (26)

where ¥ is a diagonal matrix whose elements are afi,i =
1,2,...,n and A is a diagonal matrix whose elements are
lai| 2yt = 1,2,...,m. We then obtain the following theo-
rem.

Theorem 1. Suppose the values |a;|*v; /o2 i =1,2,...,n
are all nonzero and distinct. If the noise n(t) is absent in Eq.
(2), the m eigenvectors corresponding 1o n nonzere gigenval-
ues af RTC . become the vectors Ww's satisfying Eq. (3).

Proof. Based on Eq. (22), we consider the following eigen-
vector problem:
RIC,w; = dw;. (27

Then, substituting Eqgs. (25) and (26} inte (27), we obtain
HY 'S '"H'HAHY w; = dw:. (28)

Since H has full column rank, using 1 property of the pseudo-
inverse operation (9], p.433),

HIT N AH W, = dwy. (29)



Multiplying Eq. (29) by H¥ from the lefi-hand side and using
a property of the pseudo-inverse operation again, Eq. (29)
becomes

STIAH w; = AH wy. (30)

By noting that 321 A is a diagonal matrix whose elements,
|a;|*yi/eZ i = 1,2,...,n are all nonzero and distinct, if
g = Hw; # 0, then the cigenvector g; obtained from Eq.
(30) becomes the vector g; satisfying Eq. (5). Namely, the
n eigenvectors wy corresponding to n nonzero eigenvalues
of Rnyx cbtatned from Eq. (27} become the vectors w;
satisfying Eq. {5). O

4.2. Robust eigenvector algorithm (REVA)

In the previous subsection, we assumed that there are no
noises in the output signals. In this subsection, we will show
such an eigenvector algorithm in which the solutions (Eq. (5))
can be obtained, even if the noise n(t) is present in the output
y(#). We then replace the covariance matrix R, by Q defined
in Eq. (10), which utilizes only the higher-order statistics. Tt
is shown by a simple calculation (see [8]) that Eq. (10) be-
comes

Q = HAHY, (31)
where A is a diagonal matrix defined by
A = diag{viai,..., Ydn}, (32)
& = Y hihf, r=12,...,n, (33)
1=1

and diag{- - - } denotes a diagonal matrix with the diagonal
elements built from its arguments; h;. is the (¢, 7)th element
of H.

Here, as a constraint, we take the following value:

Coyl = _Zcum{zz(t),zr(t),yf(t),y:(t)}

= |wf'Qw,|

m
e ~ *
E a;vi81:);| -
i=1

(34)

Then, we consider solving the problem whereby the fourth-
order cumulants |C,| is maximized under the condition that
|C.y| = |, ¥y |- Then, according to the Lagrangian method,
the following generalized cigenvector problem is derived
from the problem:
Cyxwy = AQw,. (35)
From the following theorem, by solving the eigenvector
problem of the matrix Q7Cyy, the n eigenvectors wy(l =
1,2,...,n) correspond to the vectors w; (! = 1,2,...,n) in
Eg. (5).
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Theorem 2. Suppose the values |a;[*/8:,1 = 1,2,... ,ngp!
all nonzere and distinct. The n elgenvectors correspondig
to n nonzero eigenvalues of QVCyy become the vectors \iq’;'f
satisfving Eq. (3).

Proof. 'We omit the proof because it is easily proved, just ik,
Theorem 1. o

Remark 1. Since the matrix Q'C,, consists of only t;
Jourth-order cunulants, the eigenvector derived from the ma.é
trix can be obtained with as lirtle influence from Gaussigy
noise as possible, which is referred to as a robust eigenvectgr|
algoritim (REVA).

4.3. Adaptive version of REVA

REVA can be implemented adaptively. To this end we musy
specify the dependency of each time ¢. Here we show thel
update procedure in the case of a two-input two-output static
system.

Q(2), which is the estimator of Q at time ¢ is also caleu:
lated by using Eq.(14).

Cy (), which is the estimator of C,x at time t is calou-
lated by

aC,,(t - 1)
+{1 = a){y (E)y ™ (t)x(E)x*(t)
—y(£)y 7 (2)9x(t)

=y (@)x(E) ¥y, () — y (X" {£) ¥y, (1)}, (36)

where ¥,(¢) and ¥, (f),7 = 1, 2 are the moving averages of
v (t) and v, (t) defined by

¥ (t)
-‘—,Yi [t) =

Bix(t — 1) + (1 — B)vi(t), 37
B9y, (t ~ 1) + (1 = B)vy (1),
i=1,2, {38)

where vy (t) = x(£)x*(2), v,, (t) = y# (t)x*(t) and v,, (t) =
¥ (e)x(e).

The separator w; (i) is then calculated by solving eigen-
vector problem Eq. (35).

5. EXPERIMENTS

5.1. Simulation

We conducted a simulation experiment. F{z), which is & ;
transform of the mixing matrix H{t}, is defined as:
1—04z71

Hiz) = ( 05271 — 0.2:~2 _ ) (39];.

The BSS problem is solved by adaptive REVA. To me# |
sure the separation performance, multichannel imersymbﬂ]' :

05271 0.2z
1—-0.4z71
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Fig. 3. MISIs of RSEM

interference (MISI) was used, which is defined as

2 2 2
N Z':l |g7'.7
MisI = 3 (’—, -1

i=1 \ Max; {gis]
+z (

The MISI becomes zero if ;s satisfying Eq. (5) are obtained,
and the smaller the MISI value, the closer the obtained so-
luticn is to the desired one. Figure 2 shows the MISIs of
some frequency bins using EVA with the reference signal and
Fig. 3 shows those of SEM, which uses the deflation process.
Obviously using SEM caused the deflation process to fail ina
frequency bin, whereas EVA with the reference signal could
converge to the desired solution in all frequency bins.

i=1 ‘cﬂj|

max; |g1_7 |_‘

Remark 2. REVA utilizes the fourth-order cumulants. Since
estimating the fourth-order cumulants accurately generally
reguires a large number of samples, it takes a rather long
time for convergence to occur when using REVA.

5.2. Real environment

We conducted separation experiments using REVA in an of-
fice room, with microphones and loudspeakers placed as
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Fig. 4. Layout of the experiment

shown in Fig. 4. Because a reference signal is needed, the
number of microphones is three while the number of sources
is two, the observed signal of microphone 3 is used as a ref-
erence signal. Artificially, 5-dB Gaussian noises are added to
the observed signals to demonstrate that the proposed REVA
works in a noisy environment. Figure 5 shows a set of wave-
forms of the source signals, the separated signals and the en-
hanced signals which were provided by the ES 202 (50 soft-
ware [10]. In the enhanced signals, additive Gaussian noises
were reduced, indicating that REVA can extract independent
but distorted source signals.

6. CONCLUSION

In this paper we described the BSS problem in the frequency
domain. We proposed and the super-exponential method
(SEM) and the eigenvector algorithm (EVA} with reference
signals. EVA'’s advantage is that all scurce signals are ex-
tracted simultaneously without the deflation process. There-
fore, EVA can be robust to (Gaussian noises using only the
higher-order cumulants (REVAY}. In addition, an adaptive ver-
sion of REVA was presented.

The computer simulations and an experiment in a real en-
vironment clarified the validity of the proposed methods.
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