

# **Information Services with Ad-hoc Network**

# Yoji ISHII, Koichi ASAKURA, Toyohide WATANABE

Watanabe Laboratory, Department of Systems and Social Information, Graduate School of Information Science, Nagoya University

# Simulator for Inter-vehicle Communication (IVC)

# Inter-vehicle communication (IVC)

- Supporting safety driving
- •Providing traffic information

### Difficult to evaluate network protocol for IVC

- ·Lacking of hardware (e.g. antenna, transmitter, etc.)
- ·Impossible to experiment using plenty of vehicles

### **Development of simulator for IVC**

- ·Using accurate GIS information
  - •Road information, building information
- •Applying accurate radio communication model
  - ·Line of sight model, KAJI model, etc.

# Evaluating network protocol for IVC

- ·Analyzing network traffic
- ·Estimating possibility of new network services



Simulator for Inter-vehicle communication

- 1):simulation field
- 4:status window for each node
- 2:time manager 5:statistics window
- 3:packet creator

# Location-based Information Services (LBS) using Ad-hoc Network o non-member

## Location-based information should be present in area where it is provided.

- •Providing adequate information according to user's current location
- •Providing location-based information immediately for applicable users
- •Mobile terminals in the area keep/share/manage location-based information cooperatively on ad-hoc network.

### Modeling mobile terminals and area where information is provided

- •Defining area to provide location-based information as Community Area (CA)
- •Defining member of community as mobile terminals in CA
- •Realizing LBS by delivering community information among mobile terminals
  •Community information: location-based information, CA information, etc.

### Problem 1: change of community members as mobile terminals move

- ·Notifying existence of community by member's hello packet
- ·Sharing community information in bucket brigade manner

#### Problem 2: situation in which no member exists in CA

•Mobile terminals around CA keep information temporally instead of members

#### Problem 3: consistency of location-based information

- ·Selecting a leader member in community
- •Updating with leader member's permission and acceptance

### Simulation experiment

- •Objective: evaluation of time period for updating location-based information
- ·Simulation setting
  - •Fields: 600m × 600m, Communication range: 100m, Velocity: 40km/h
  - •CA = all fields (no change of community members)
- •Examining average time of ten updates as number of members changes
- ·Experimental result
  - •When number of members is 200-300 (average neighbors: 11-16), update period is 3 \( \text{Dut} \) (7 second).



leader of community

Community area and member



Interface of community system



Time for updating information

- 1:updating within 3 Out (7second)
- 2:increasing cased by network division
- 3:increasing cased by radio collision