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ABSTRACT

In our research, taking advantage of methods for proving in-
ductive theorems, we apply them to verification of procedural
programs written in a subset of the C language with integer
type. More precisely, we transform procedural programs to
equivalent rewrite systems, and verify that the rewrite sys-
tems satisfy the specifications, using the inductionless induc-
tion method. In this paper, we briefly summarize the outline
of our approach.

1. INTRODUCTION

In the field of term rewriting, inductionless induction [10, 8]
and rewriting induction [11, 3] have been widely studied as
methods for proving inductive theorems [4]. Since equiva-
lence of functions can be represented as inductive theorems,
methods for proving inductive theorems are useful to verify
the equivalence of functions in functional programming.

On the other hand, in the field of procedural program-
ming, Hoare logic is useful in verifying correctness of func-
tions written as ‘while’ programs [7, 9]. This method needs
some heuristics for finding appropriate ‘loop invariants’ and
‘pre- and post-conditions’.

In our research, taking advantage of methods for proving
inductive theorems, we try to verify that procedural programs
written as ‘while’ programs satisfy the corresponding speci-
fications written as rewrite systems. More precisely, we pro-
pose a transformation from ‘while’ programs in a subset of C
into rewrite systems and show that the transformation reduces
the equivalence of procedural programs to that of functions in
rewrite systems (cf. [6]). This paper briefly summarize this
approach.

2. OUTLINE OF OUR APPROACH

Let P be a ‘while’ program in a subset of C [7], and S be
a specification written as a term rewriting system (TRS) [1].
We first transform P and S into a rewrite system R, and then
apply the method of inductionless induction (more precisely,
completion [1, 2]) to the pair of R and the equation e that
fepresents equivalence between P and S (see Fig. 1). We
show that if the completion process finishes successfully then
P is proved to satisfy S.
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2.1. From Procedural to Functional

To apply techniques based on inductionless induction for ab-
stract reduction systems, we transform ‘while’ programs with
integer type into computationally equivalent pdTRSs whose
rewrite rules have Presburger sentences [5] as their condi-
tional parts. Since the Presburger sentences are decidable, it
is easier to treat pdTRSs than conditional TRSs. We prove
that the transformation is correct, i.e., computational equiva-
lence between programs and the corresponding pdTRSs. This
implies that computational properties of ‘while’ programs are
reduced to that of ‘functional’ programs encoded by pdTRSs.

It is also possible to transform procedural programs into
equivalent unconditional TRSs instead of pdTRSs. However,
in our approach, we do not employ such a transformation. The
reason is that encoding negative integers is easier on pdTRSs
than on TRSs, and intermediate results of completion pro-
cesses on pdTRSs are simpler than on TRSs.

2.2. Verification by Inductionless Induction

Inductionless induction [10, 8] is a method to show that two
reduction relations are equivalent, and it is usable to prove that
an equation e is an inductive theorem on a reduction system
‘R. In the process of the method, we do the following in order:

1. using a completion procedure, construct a convergent
(i.e., confluent and terminating) rewrite system R’ such
that the reduction of R’ is equivalent to that of the com-
position of {e} and R, and

2. check the condition that the set of all normal forms for
R’ is equal to that for R.

If R is sufficient-complete and confluent, then the condition
on normal forms at the above second item always holds. Since
the transformation produces sufficient-complete and conflu-
ent pdTRSs, we can focus only on the above first item, i.e.,
‘completion’ for the pair ({e}, R).

In the field of term rewriting, completion procedures are
well investigated for TRSs but not for pdTRSs. Therefore, we
proposed a completion procedure for pdTRSs, based on the
KB completion [1, 2]. Since TRSs are pdTRSs, the comple-
tion procedure we proposed is an extension of the KB com-
pletion procedure.



sepcification S —»;
(g(:L‘l,~ t ~,In) = )

program P —»
int f( int xy,..., int z, ){

transformation

return z;

}

—> pdTRSR —>

—

equation e
(9(x1,y ... xn) =E(T1,...,2n))

inductionless induction (success)
——> 3 ~
(completion of ({e},R)) P selisficy

Fig. 1. outline of our approach

3. EXAMPLE OF VERIFICATION

In this section, we show an example of verification by our ap-
proach. Consider the following C program and specification:

int suml ( int x ) {
int i, z = 0;
for( i =0 ; i < x ; i++ ){
zZ += i+1;
}

return z;

Sum(0) = 0 and Sum(S(z)) = Sum(zx) + S(z).

Here, natural numbers are encoded by function symbols S
and 0. The above program and specification is transformed
into the following pdTRS:

suml(z) — Us(z,0,0)

Us(z,4,2) — Us(zx, S(i), 2+ S(4))
Us(z,i,z) >z ifi>x
Sum(0) — 0

Sum(S(x)) — Sum(z) + S(z)
O+y—uy

S(z)+y— S(x+vy)

if i<z

\

To prove that suml satisfies the specification, we apply the
completion procedure to ({sumi(z) = Sum(z)},R). We
succeeded in the completion, by introducing the appropriate
lemma “Us(S(x),i,y) = Ua(z,i,y) + S(z) if i < a7
Therefore, it is guaranteed by our approach that suml and
Sum are equivalent computationally, i.e., the sum1 program
is correct as summation.

4. CONCLUSION

Although our approach is applicable to restricted C programs,
it is expected that our approach is useful in checking C pro-
grams written by beginners at programming. Implementing
a system for checking such C programs is one of our future
works.
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