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ABSTRACT

Driving behavior modeling using such driving signals as velocity,
following distance, and gas or brake pedal operations, has been
investigated for accident prevention and vehicle design. Driving
behaviors are different among drivers, and research on driver mod-
eling has also been carried out from different points of view in cog-
nitive and engineering approaches. In this paper, driver’s charac-
teristics in driving behaviors are modeled with a Gaussian mixture
model (GMM) using “cepstral features™ obtained through spectral
analysis of gas pedal operation signals. The GMM driver model
based on cepstral features is evaluated in driver identification ex-
periments and compared with a conventional GMM driver model
that uses raw driving signals without spectral analysis. Experimen-
tal results show that the proposed driver model achieves an 89.6%
driver identification rate, resulting in 61% error reduction over the
conventional driver model.

1. INTRODUCTION

With increasing emphasis on safety and driving comfort, advanced
driver assistance systems including adaptive cruise control (ACC)
and lane-keeping assist systems (LKAS) have been developed over
the last several years. These systems assist drivers by automati-
cally controlling vehicles using observable driving signals of ve-
hicle status or position, e.g., velocity, following distance, and rel-
ative lane position. Other research addressing driving signals in-
cludes driving behavior modeling that predicts the future status
of a vehicle [1][2], drowsy or drunk driving detection with eye-
monitoring [3] [4], and the cognitive modeling of drivers [5]. Mod-
eling of drivers’ individualities in driving behavioral signals has
also been investigated in [6] and [7] in which each driver was mod-
eled using an optimal velocity model [8] [9] represented by a func-
tion of the relationship between velocity and following distance
or using a Gaussian mixture model (GMM) [10] that characterized
the distribution of gas and brake pedal pressure, velocity, and fol-
lowing distance.

In this paper, drivers’ characteristics were extracted through
spectral analysis of driving behavioral signals. We applied spec-
tral analysis to gas pedal signals to obtain “cepstrum™ (cepstral
coefficients), which is the most widely used spectral feature for
speech recognition [11]. From a theoretical point of view, cep-
strum is defined as the inverse Fourier transform of the log power
Spectrum of the signal, which allows us to smooth the structure of
the spectrum by keeping only the first several low-order cepstral
coefficients and setting the remaining coefficients to zero. Cepstral
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Fig. 1. Examples of driving behavioral signals.

coefficients are therefore convenient to represent the spectral enve-
lope. In this work, assuming that drivers’ characteristics in driving
behaviors while accelerating or decelerating could be represented
by spectral envelope of gas pedal signals, each driver was mod-
eled with a GMM using the lower-order cepstral coefficients. The
GMM driver model based on cepstral features was evaluated in
driver identification experiments and compared to a conventional
GMM driver model that uses raw driving signals without applying
any spectral analysis techniques.

2. COLLECTION OF DRIVING BEHAVIORAL SIGNALS

A driving simulator was used for data collection, which simulated
a two-lane expressway and displayed the view from a driver’s seat
in a monitor. Each driver was instructed to follow the lead vehicle
displayed in the monitor without passing it. The moving pattern of
the lead vehicle was collected on a relatively congested express-
way in Japan. Experimental participants included eleven males
and one female from 21 to 31 years old with driver’s licenses.
They drove in the simulator four times for five minutes each. Iden-
tical moving patterns of the lead vehicle were used for all drivers.
Driving behavioral signals of velocity, headway distance, and gas
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Fig. 2. Relationship between velocity and following distance for
two different drivers.
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Fig. 3. Spectral (cepstral) analysis.

and brake pedal positions were collected and sampled at 100 Hz.
Pedal positions were digitized to 0—10,000 levels so that 10,000
corresponded to full throttle or completely braked positions.

Examples of the collected driving signals are shown in Fig. 1.
Drivers maintain a longer distance behind the lead vehicle as ve-
locity increases and less frequently press the brake pedal when
driving on an expressway.

3. DRIVER MODELING USING DRIVING BEHAVIORAL
SIGNALS

3.1. Driver Modeling Using Raw Driving Signals

[garashi et al. [6] proposed statistical driver modeling based on
a Gaussian mixture model (GMM) [10] using the distribution of
such driving behavioral signals as gas or brake pedal pressures and
vehicle velocity. They showed that a combination of pedal pres-
sures and their dynamic features gave the best driver identification
performance. Dynamic features are defined as the linear regression
coefficients of raw signal x(n), calculated in the range of window
size 2K: _

K i kx(n + k)

Azx(n) = &£ = — (1)
k=—K ]“—

Wakita et al. [7] modeled each driver using an optimal velocity
model, which was originally used for traffic flow modeling [8] [9],
to represent the relationship between velocity and following dis-
tance from the lead vehicle. Each driver was modeled with a
monotonically increasing nonlinear function that approximates the
trajectory of the relationship between velocity and following dis-
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Fig. 4. Spectra of three kinds of signals approximating pedal op-
eration.

tance. Examples of such trajectories are shown in Fig.2. The
trajectories are assumed to represent the following distance with
which drivers feel comfortable. We can see that driver | is more
aware of the velocity of the lead vehicle and adjusts velocity more
frequently in accordance with the following distance. On the other
hand, driver 2 tends to maintain a constant velocity up to a cer-
tain following distance. By comparing the optimal velocity model
with GMM, they found that the GMM driver modeling gave a bet-
ter performance.

3.2. Driver Modeling Using Cepstral Features

In this work, drivers’ features are extracted through the spectral
analysis of gas pedal signals by using a spectral feature called
“cepstrum,” which is defined as the inverse Fourier transform of
the short-term log power spectrum. Cepstral coefficients are ob-
tained by the following equation:

N-1

c(m) = j_i? Z 10g|X(l;)| e?ﬁkmj/_\'.
k=0

(2)

where X (k) denotes N-point discrete Fourier transform of the
windowed signal x(n). As shown in Fig. 3. cepstral analysis al-
lows us to obtain a spectral envelope by keeping only the first sev-
eral cepstral coefficients in the lower “quefrency” range and set-
ting the remaining coefficients to zero, while on the other hand, a
fine structure of the spectrum is obtained by keeping the cepstral
coefficients in the higher quefrency range and setting the lower
quefrency coefficients to zero. Cepstrum is the most widely used
spectral feature for speech recognition [11].

Figure 4 shows the log power spectra of 0-1 step-like signals
with three different slopes approximating fast, normal, and slow
pedal strokes. We can see significant differences between the over-
all structures of the spectra, which motivated the use of cepstral
coefficients in the lower quefrency range for driver modeling to
characterize short-term pedal signals. Figure 5, which compares
the spectrograms of 150 second gas pedal signals obtained from
three drivers, shows the differences between the spectra of the ac-
tual pedal signals.

Speech modeling assumes that vocal cord excitation (vibra-
tion), represented by the fine structure of the spectrum, is filtered
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with the vocal tract represented by the spectral envelope. As shown
in Fig. 6, in driver modeling, we assume that a command signal
for hitting a pedal e(n) is filtered with driver model H (e?*) rep-
resented as the spectral envelope, and the output of the system is
observed as pedal signal @(n), e.g., in the case of gas pedal oper-
ation, a command signal is generated when a driver decides to hit
the gas pedal, and H(e’*) represents the process of acceleration.
This can be described in frequency domain as follows:
E(¢/“)H(e™),

X (') (3)

X(ej“') log E(ej“’)‘ + log |H(€jw)| s, @

log

where X (e/*) and E(e’*) are the Fourier transforms of x:(n)
and e(n), respectively. We focus on drivers’ individualities rep-
resented as frequency response H (e’*).
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4. GAUSSIAN MIXTURE MODEL (GMM)

A Gaussian mixture model (GMM) was used for modeling driver’s
characteristics in driving behavioral signals. A GMM is a well-
known statistical model widely used in pattern recognition includ-
ing speech and speaker recognition [10]. It is defined as a mixture
of multivariate Gaussians, and the probability of D-dimensional
observation vector o for GMM A is obtained as follows:

M
blo| \) = Zwi./\f,-(o), ()

i=1

where M is the number of Gaussians of the GMM and N; (o) is
the D-variate Gaussian distribution of the i-th component defined
with mean vector g¢; and covariance matrix 33;:

Nito) =~ exp { (0~ ) 27 (0 - o)},

NGO o

where ()" and (-)~! denote transpose and inverse matrices, re-
spectively. w; is a mixture weight for the i-th component and sat-

isfies
M
g iy = 1.

i=1

Each driver & was modeled with GMM ;.. and an unknown
driver was identified as driver k& that gave the maximum value of
the log likelihood for observation sequence O = (01, 02, . . ., or):

/

(N

T
k= arg mgxz log b(o: | Ax). (8)

t=1
5. EXPERIMENTS

5.1. Experimental Conditions

Drivers’ characteristics were modeled using cepstral coefficients
and their dynamics obtained from Eq. (1) with regression window
size 2I{ = 0.8 sec. To obtain a sequence of cepstra from a gas
pedal signal, 1.28 second frame length and 0.1 second frame shift
were chosen for spectral analysis in preliminary experiments. To
compare the driver model based on cepstral features to the con-
ventional driver model, drivers were also modeled using the raw
driving signals of vehicle velocity, gas pedal position, and their
dynamics obtained with the same regression window size. The
distributions of driver features were modeled using GMMs with 8,
16, or 32 Gaussians and diagonal covariance matrices based on the
expectation maximization (EM) algorithm.

Twelve drivers drove four times for five minutes each. A four-
fold cross-validation approach was used for evaluation. Three of
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Fig. 6. General modeling of driving signals.



the four driving data were used for GMM training, and the ex-
cluded data was used as a test. An average driver identification
rate was obtained from the four cross-validation tests.

5.2. Experimental Results

Driver identification experiments were conducted according to the
decision rule in Eq.(8). Figure 7 shows the results for the con-
ventional driver model using raw driving signals. In the figure,
velocity, following distance, and gas pedal position are denoted as
V. F, and G, and their dynamics as AV, AF, and AG, respectively.
Gas pedal signals with their dynamics outperformed the combina-
tion of velocity and following distance including their dynamics.
The best performance of a 72.9% identification rate was obtained
when using all three signals and their dynamics.

Figure 8 shows the results for the proposed driver model us-
ing cepstral coefficients obtained through spectral analysis. In
the figure, “c(0)—c(m)” represents m + 1 cepstral coefficients
in the lower quefrency range including from the O-th to the m-th
cepstral coefficients. Cepstral features achieved much better per-
formance than conventional features, and an identification rate of
89.6% was obtained. From the experimental results, we confirmed
that cepstral features representing the spectral envelope can cap-
ture drivers’ characteristics more efficiently than raw driving sig-
nals.

6. CONCLUSION AND FUTURE WORK

In this paper, we investigated the modeling of individualities in
driving behavior. Gas pedal signals were modeled with cepstral
features obtained through spectral analysis, and the distributions
of cepstral coefficients were modeled with GMMs. Driver mod-
els were evaluated in driver identification experiments, and cep-
stral features achieved an identification rate of 89.6%, which cor-
responds to 61% error reduction over the conventional feature.

We are conducting further experiments using the driving sig-
nals of 300 drivers collected in an actual vehicle on actual roads.
The selective use of driving signals while accelerating or slowing
down and the modeling of characteristics in longer-term driving
signals must be addressed in future work.
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