
Decidability of Termination for Semi-Constructor TRSs,

Left-Linear Shallow TRSs

and Related Systems

Yi Wang∗ and Masahiko Sakai

Graduate School of Information Science, Nagoya University

Furo-cho, Chikusa-ku, Nagoya, 464-8603 Japan

{ywang80@trs.cm.,sakai@}is.nagoya-u.ac.jp

September 12, 2006

Abstract

We consider several classes of term rewriting systems and prove that termination is de-
cidable for these classes. By showing the cycling property of infinite dependency chains, we
prove that termination is decidable for semi-constructor case, which is a superclass of right-
ground TRSs. By analyzing argument propagation cycles in the dependency graph, we show
that termination is also decidable for left-linear shallow TRSs. Moreover we extend these by
combining these two techniques.

1 Introduction

Termination is one of the central properties of term rewriting systems (TRSs for short). We say
a TRS terminates if it does not admit any infinite reduction sequences. Termination guarantees
that any expression cannot be infinitely rewritten, and hence the existence of a normal form for it.
As we go from simple to more general classes of term rewriting systems, the difficulty of deciding
termination increases until it becomes undecidable. It is meaningful to identify the decidability
barrier and study decidability issues for some intermediate classes, especially if these classes are
expressive enough to capture interesting rules.

As a generalization of the decidable classes of ground TRSs [7] and right-ground TRSs [4],
the class of semi-constructor TRSs is studied. A TRS is called semi-constructor if every defined
symbol in the right-hand sides of rules takes ground terms as its arguments. By showing the cycling
property of infinite dependency chains, we give a positive answer to this problem.

The class of shallow TRSs has been attracting some interests from researchers due to the
decidability of reachability and joinability problems for this class [3, 8, 10, 13]. A TRS is called
shallow if all variables in l, r occur at positions with depth 0 or 1 for each rule l → r. In 2005, the
affirmative result on termination of TRSs that contains right-linear shallow rules was shown by
Godoy and Tiwari [5]. Here we propose a technique based on the analysis of argument propagation
in the dependency graph.

Combining the two techniques for semi-constructor case and shallow case, we prove the decid-
ability of termination for the following TRSs:

1. right-linear reverse-growing TRSs with all the dependency pairs being shallow or right-ground

2. left-linear growing TRSs with all the dependency pairs being shallow or right-ground.

The organization of this paper is as follows. In Section 2, we review preliminary definitions
of term rewriting systems and introduce basic definitions and results concerning dependency pair
method that will be used in Section 3. In Section 3, we give the definition of loop, head-loop and
cycle first, then list our results and give their proofs. In Section 4, we compare our results with
some existing results.

∗Presently, with Financial Services Dept., Accenture Japan Ltd.

1

2 Preliminaries

We assume the reader is familiar with the standard definitions of term rewriting systems [2] and
here we just review the main notations used in this paper.

A signature F is a set of function symbols, where every f ∈ F is associated with a non-negative
integer by an arity function: arity : F → N(= {0, 1, 2, . . .}). Function symbols of arity 0 are called
constants. The set of all terms built from a signature F and a countable infinite set V of variables

such that F ∩ V = ∅, is represented by T (F ,V). The set of ground terms is denoted by T (F , ∅)
(T (F) for short). We write s = t when two terms s and t are identical. The root symbol of a term
t is denoted by root(t).

The set of all positions in a term t is denoted by Pos(t) and ε represents the root position. We
denote the subterm ordering by E, that is, t E s if t is a subterm of s, and t C s if t E s and t 6= s.
The depth of a position p ∈ Pos(t) is |p|. The height of a term t is 0 if t is a variable or a constant,
and 1 + max({height(si) | i ∈ {1, . . . , m}}) if t = f(s1, . . . , sm). Let C be a context with a hole �.
We write C[t] for the term obtained from C by replacing � with a term t.

A substitution θ is a mapping from V to T (F ,V) such that the set Dom(θ) = {x ∈ V | θ(x) 6= x}
is finite. We usually identify a substitution θ with the set {x 7→ θ(x) | x ∈ Dom(θ)} of variable
bindings. In the following, we write tθ instead of θ(t).

A rewrite rule l → r is a directed equation which satisfies l 6∈ V and Var(r) ⊆ Var(l). A term

rewriting system TRS is a finite set of rewrite rules. If the two conditions l 6∈ V and Var(r) ⊆ Var(l)
are not imposed, then we call it eTRS. We use R−1 for the reverse eTRS of R; R−1 = {r → l | l →
r ∈ R}. The reduction relation →R⊆ T (F ,V) × T (F ,V) associated with a TRS R is defined as
follows: s →R t if there exist a rewrite rule l → r ∈ R, a substitution θ, and a context C such that
s = C[lθ] and t = C[rθ]. The subterm lθ of s is called a redex and we say that s is reduced to t by
contracting redex lθ. The transitive closure of →R is denoted by →+

R. The transitive and reflexive
closure of →R is denoted by →∗

R. If s →∗
R t, then we say that there is a reduction sequence starting

from s to t or t is reachable from s by R. A term without redexes is called a normal form. A
rewrite rule l → r is called left-linear (resp. right-linear) if no variable occurs twice in l (resp. r).
It is called linear if it is both left- and right-linear. A TRS is called left-linear (resp. right-linear,
resp. linear) if all of its rules are left-linear (resp. right-linear, resp. linear).

For a TRS R, a term t ∈ T (F ,V) terminates if there is no infinite reduction sequence starting
from t. We say that R terminates if every term terminates.

For a TRS R, a function symbol f ∈ F is a defined symbol of R if f = root(l) for some rule
l → r ∈ R. The set of all defined symbols of R is denoted by DR = {root(l) | ∃l → r ∈ R}. We
write CR for the set of all constructor symbols of R which is defined as F\DR. A term t has a
defined root symbol if root(t) ∈ DR.

Let R be a TRS over a signature F . F] denotes the union of F and D
]
R = {f] | f ∈ DR} where

F ∩D
]
R = ∅ and f] has the same arity as f . We call these fresh symbols dependency pair symbols.

Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with f defined, we write t] for the term f](t1, . . . , tn).
If l → r ∈ R and u is a subterm of r with a defined root symbol, then the rewrite rule l] → u] is
called a dependency pair of R. The set of all dependency pairs of R is denoted by DP(R).

For TRSs R and C, a (possibly infinite) sequence of the elements of C s
]
1 → t

]
1, s

]
2 → t

]
2, . . .

is an (R, C)-chain if there exist substitutions τ1, τ2, . . . such that t
]
iτi→∗

Rs
]
i+1τi+1 holds for every

s
]
i → t

]
i and s

]
i+1 → t

]
i+1 in the sequence. An (R, DP(R))-chain is called dependency chain.

Theorem 1 ([1,6]) For a TRS R, R does not terminate if and only if there exists an infinite
dependency chain.

The nodes of an (R, C)-graph denoted by G(R, C) are the elements of C and there is an edge from
a node s] → t] to u] → v] if and only if there exist substitutions σ and τ such that t]σ→∗

R u]τ . An

(R, DP(R))-graph is called dependency graph and denoted by DG(R). Note that the dependency
graph is not computable in general. However, our results will work on any approximation of the
dependency graph. We say a graph is an approximate graph of a (R, C)-graph G if it contains G

as a subgraph and root(t) = root(u) for each arrow from a node s] → t] to u] → v]. We remark
that there exists at least one computable approximate graph for every (R, C)-graph.

The special notations “(R, C)-chain” and “(R, C)-graph” adopted in this paper is for handling
left-linear TRSs as right-linear ones. For example, we will use an (R−1, DP(R)−1)-chain”.

2

3 Decidability of Termination Based on Cycle Detection

Infinite reduction sequences are often composed of cycles. A cycle is a reduction sequence where
a term is rewritten to the same term. More generally, a loop is a reduction sequence where an
instance of the starting term re-occurs as a subterm. It is obvious that a loop gives an infinite
reduction sequence. In fact, the usual way to deduce non-termination is to construct a loop.

Definition 2 (Loop, Head-Loop, Cycle)

1. A reduction sequence loops if it contains t′ →+
R C[t′θ] for some context C, substitution θ

and term t′. Similarly, a reduction sequence head-loops if containing t′ →+
R t′θ, and cycles if

containing t′ →+
R t′.

2. A term t loops (resp. head-loops, resp. cycles) with respect to R if there is a looping (resp.
head-looping, resp. cycling) reduction sequence starting from t.

3. A TRS R admits a loop (resp. head-loop, resp. cycle) if there is a term t such that t loops
(resp. head-loops, resp. cycles) with respect to R.

Proposition 3 The following statements hold:

1. If t cycles, then t head-loops. If t head-loops, then t loops.

2. A TRS does not terminate if it admits a loop or a head-loop or a cycle.

Example 4 Let R1 = {f(x) → h(f(g(a))), g(x) → g(h(x))} and t = f(x). We can con-
struct the following reduction sequence by only applying the former rule: f(x) → h(f(g(a))) →
h(h(f(g(a)))) → · · · which loops with C = h[�], θ = {x 7→ g(a)} and t′ = f(x). Notice there are
more than one looping reduction sequences for R1.

Naturally, the observation above inspires us to find some class of TRSs, whose non-termination
is equivalent to the existence of loops. If we are able to check the existence of loops, then termination
of such a class becomes decidable.

The following theorem lists our main results and will be proved in the following subsections.

Theorem 5 Termination of the following classes of TRSs is decidable:

1. semi-constructor TRSs

2. right-linear shallow TRSs

3. left-linear shallow TRSs

4. right-linear rev-growing TRSs with all the dependency pairs being shallow or right-ground.

5. left-linear growing TRSs with all the dependency pairs being shallow or right-ground.

3.1 Semi-Constructor TRSs

Definition 6 (Semi-Constructor TRS) A term t ∈ T (F ,V) is a semi-constructor term if every
term s such that s E t and root(s) ∈ DR is ground. A TRS R is a semi-constructor system if r is
a semi-constructor term for every rule l → r ∈ R.

Example 7 The TRS R2 = {f(x) → h(x, f(g(a))), g(x) → g(h(a, a))} is a semi-constructor
system.

Proposition 8 A TRS R is called right-ground if for every l → r ∈ R, r is ground. The following
statements hold:

1. Right-ground TRSs are semi-constructor systems.

2. For a semi-constructor TRS R, rules in DP(R) are right-ground.

For a given TRS, let T∞ denote the set of all minimal non-terminating terms, here “minimal”
is used in the sense that all its proper subterms terminate.

3

Definition 9 (C-min) For a TRS R, let C ⊆ DP(R). An infinite reduction sequence in R ∪ C in

the form t
]
1→

∗
Rt

]
2→Ct

]
3→

∗
Rt

]
4→C · · · with ti ∈ T∞ for all i ≥ 1 is called a C-min reduction sequence.

We use Cmin(t]) to denote the set of all C-min reduction sequences starting from t].

Proposition 10 ([1,6]) Given a TRS R, we have the following statements:

1. If there exists an infinite dependency chain, then Cmin(t]) 6= ∅ for some C ⊆ DP(R) and
t ∈ T∞.

2. For any sequence in Cmin(t]), reduction →R takes place below the root while reduction →C

takes place at the root.

3. For any sequence in Cmin(t]), subsequence s]→∗
R∪Ct] implies s→∗

RC[t] for some context C.

4. For any sequence in Cmin(t]), there is at least one rule in C which is applied infinitely often.

Lemma 11 For a TRS R, if sq ∈ Cmin(t]) loops, then sq head-loops.

Proof: Let sq ∈ Cmin(t]) loops, then there is a subsequence t
]
k→

+
R∪CC[t]kθ] in sq. From Prop.10–(2)

and the fact that dependency pair symbols appears only in dependency pairs, we have C[t]
kθ] = t

]
kθ,

which implies that sq head-loops. �

Lemma 12 For a TRS R, if sq ∈ Cmin(t]) loops, then there is a term t
]
k in sq such that tk loops

with respect to R.

Proof: From Lemma 11 and Prop. 10–(3). �

Lemma 13 For a semi-constructor TRS R, the following statements are equivalent:

1. R does not terminate.

2. There exists l] → u] ∈ DP(R) such that sq cycles for some sq ∈ Cmin(u]).

Proof: (2⇒1): It is obvious by Lemma 12. (1⇒2): By Theorem 1, there exists an infinite
dependency chain. By Prop. 10–(1), there exists a sequence sq ∈ Cmin(t]). By Prop. 10–(4), there
is some rule l] → u] ∈ C which is applied at root reduction in sq infinitely often. By Prop. 8–(2),
u] is ground. Thus u] cycles in the form u]→∗

R∪DP (R) · →{l]→u]}u
] in sq. �

Notice that non-termination of semi-constructor systems depends on the existence of a cycling

dependency chain, which represents the cycle “u]→∗
R∪DP (R) · →{l]→u]}u

] in sq” in the proof of

Lemma 13. Here, cycle is guaranteed by the fact that DP(R) is right-ground.
Proof: (Theorem 5–(1)) The decision procedure for termination of semi-constructor TRS R

is as follows: consider all terms u1, u2, . . . , un corresponding to the right-hand sides of DP(R) =

{l]i → u
]
i | 1 ≤ i ≤ n}, and simultaneously generate all reduction sequences with respect to R

starting from u1, u2, . . . , un. It terminates if it enumerates all reachable terms exhaustively or it
detects a looping reduction sequence ui →

+
R C[ui] for some i.

Suppose R does not terminate. By Lemma 12, 13 and the groundness of ui’s, we have a looping
reduction sequence ui →

+
R C[ui] for some i and C. Hence we detect non-termination of R. If R

terminates, then the execution of the reduction sequence generation stops finally since it is finitely
branching. Thus we detect termination of R after finitely many steps. �

Next we make a natural extension by relaxing the condition for assuring cycling, which is mainly
used in the Subsection 3.3.

Lemma 14 Let R be a TRS whose termination is equivalent to the non-existence of a depen-
dency chain that contains infinite use of right-ground dependency pairs. Then termination of R is
decidable.

Proof: We apply the above procedure starting from terms u1,u2,. . . ,un, where u
]
i ’s are all ground

right-hand sides of dependency pairs. Suppose R is non-terminating, we have a dependency chain
with infinite use of a right-ground dependency pair. Similarly to the semi-constructor case, we
have a loop ui →

+
R C[ui], which can be detected by the procedure. �

4

Example 15 Let R3 = {f(a) → g(b), g(x) → f(x), h(a, x) → h(b, x)}. We can compute the
dependency graph. It has only one cycle, which contains a right ground node. From Lemma 14
we can show termination of R3 by the procedure starting from g(b).

3.2 Right-Linear Shallow or Left-Linear Shallow TRSs

In this subsection, we show how to analyze cycle of dependency chains that consist only of right-
linear shallow dependency pairs and then show the decidability of termination for right-linear
shallow TRSs and left-linear shallow TRSs.

Definition 16 (Shallow TRS) A rewrite rule l → r is shallow if all variables in Var(l) ∪ Var(r)
occur at positions with depth 0 or 1. An eTRS is shallow if all its rewrite rules are shallow.

Example 17 TRS R4 = { f(x, y) → f(g(a), y), f(g(a), z) → f(z, b) } and R5 = { g(x, x) →
f(x, a), f(c, x) → g(x, b), a → c, b → c } are shallow.

We say that T is joinable to s if ∀t ∈ T. t →∗
R s and T is joinable if it is joinable to some s.

From now on, we assume R in which both of the following properties are decidable.

Ground Reachability: t →∗
R s for given ground terms t and s.

Ground Joinability: T is joinable for a given set T of ground terms.

For dependency chains composed of shallow dependency pairs, all informations carried by
variables are passed to the next dependency pairs in its derivation. For example, consider R5 and
an infinite sequence of dependency pairs:

g](x, x) → f](x, a), f](c, x) → g](x, b), g](x, x) → f](x, a),

It is a dependency chain because we have a derivation:

g](c, c) → f](c, a) = f](c, a) → g](a, b) → · → g](c, c) → f](c, a) → · · · .

In order to analyze such information flows caused by variables, we introduce some notions.
We refer the set of variables appears in a rule l → r as V ar(l → r). We represent mappings
∆ : V → P(T (F)) as {x 7→ ∆(x) | x ∈ Dom(∆)} in similar to substitutions.

Definition 18 (Labeling Function) Let R and C be eTRSs and AG be an approximate graph
of (R, C)-graph. Let p be a path nd1, nd2, nd3 · · · in AG. A labeling function Lp that associate
each positive integer i with a pair of a node ndi and a mapping ∆ : V ar(ndi) → P(T (F)) is
defined as follows:

1. Let nd1 be f](t1, . . . , tn) → g](s1, . . . , sm). Then Lp(1) = (nd1, ∆1) where ∆1(x) = ∅ for
x ∈ V ar(nd1).

2. Let ndi = h](v1, . . . , vk) → f](u1, . . . , un), Lp(i) = (ndi, ∆i) and ndi+1 = f](t1, . . . , tn) →
g](s1, . . . , sm). Then Lp(i + 1) = (ndi+1, ∆i+1) where

∆i+1(x) = {uj | j ∈ {1, . . . , n} ∧ tj = x ∧ uj 6∈ V} ∪
⋃

j∈{1,...,n}∧tj=x∧uj∈V

∆i(uj)

for x ∈ V ar(ndi).

Example 19 Consider R = R5 and C = { g](x, x) → f](x, a), f](c, x) → g](x, b) } ⊂ DP(R5).
The labeling function for a path N1, N2, N1, . . . is L(1) = (N1, {x 7→ ∅}), L(2) = (N2, {x 7→ {a}}),
L(3) = (N1, {x 7→ {a, b}}), L(4) = (N2, {x 7→ {a}}), L(5) = (N1, {x 7→ {a, b}}), . . ., where
N1 = g](x, x) → f](x, a) and N2 = f](c, x) → g](x, b). (See Fig. 1)

Definition 20 (Argument Propagation Cycling) Let Lp be a labeling function over p =
nd1, nd2, nd3, We say a finite sequence of labels Lp(I), Lp(I + 1), . . . , Lp(J) is an argument

propagation cycling (APC for short) if Lp(I) = Lp(J) and the following conditions, called smooth-

ness condition, are satisfied for all i (I ≤ i < J):

5

N1 =

4

N3 =

x

x

x

∆i(x)

b

N1 =

x

x

x

a

x

x

N2 =

c

x

x

b

1 2

L(i)

ndi

i

c

3

a

(

f]

(
)

(
)

g]

)

g]f]

(
)

∅ {a, b}{a}

(
)

g] f] f]

)
(

)
(

)
(

{a}

g]

Figure 1: Labeling for Example 19

6

)
(

)

y

y

yx

xx

(
f]

N3 =

{b}

{a}

g]

b

5

N1 =

(

f]

(

x y

y

x
))

g]

a

{a}

{b}

(

N3 =

4

)
(

{b}

g]

)
{a}

y

y

yx

xx

f]

N2 =

3

(

f]

(

x

y

))

g]

y

x

b

a

{b}

{a}

g]

x

y

{b}

{a}

(
)

2

N3 =

f]

(

x

x

y

y

))

1

g]

y

x

(

f]

N1 =

)
(

∅

∅

y

b

x

aL(i)

∆i(y)

∆i(x)

ndi

i

Figure 2: Labeling for Example 22

1. ∆i(x) is joinable for each x ∈ Dom(∆i).

2. For all j (1 ≤ j ≤ n) such that tj 6∈ V ,

(a) ∆i(uj) is joinable to tj if uj ∈ V ;

(b) uj is reachable to tj if uj 6∈ V .

where
Lp(i) = (v] → f](u1, . . . , un), ∆i) and
Lp(i + 1) = (f](t1, . . . , tn) → s], ∆i+1) .

We say an APC is minimal if all its proper subsequences are not APC.

Example 21 Consider the labeling function L in Example 19. The sequence L(2), L(3), L(4) is
a minimal APC.

One may think that every minimal APC contains no repetition of a same node except the edges.
However it is not correct in general as shown by the following example.

Example 22 Consider a TRS R6 = { g(x, y) → f(y, b, x, a), g(x, y) → f(y, a, x, b), f(x, x, y, y) →
g(x, y) } and C = DP(R6). The minimal APC over a path N1, N3, N2, N3, N1, . . . is the se-
quence L(2), L(3), . . . , L(6) as shown in Fig. 2 and L(2), L(3), L(4) is not an APC. Indeed
N3, N2, N3, N2, . . . is not a dependency chain.

Lemma 23 For an eTRS R such that ground reachability and ground joinability are decidable
and for a shallow eTRS C, the existence of APC is decidable.

Proof: Firstly we take an approximate graph G of (R, C)-graph. The procedure tries searches
starting from every node in G. In traversing edges, it quits if an APC is found and backtracks
traversal if the path does not satisfy the smoothness condition. The correctness of this procedure
is obvious. The range of the labeling function is finite since the possible elements in ∆k(x) of the
labeling function are ground terms at depth 1 that occurs in the right-hand side of nodes. Since the
smoothness condition is decidable by the assumption, termination of the procedure is guaranteed.
�

6

For an APC (ndI , ∆I), . . . , (ndJ , ∆J), RanD denotes union of ranges of all ∆is contained in
the APC, that is RanD = Ran(∆I) ∪ Ran(∆I+1) ∪ · · ·Ran(∆J) where Ran(∆i) = {∆i(x) | x ∈
Dom(∆i)}. From the smoothness condition 1, each set S ∈ RanD of terms is joinable to a term s,
which we denote by a function Ev : P(T (F)) → T (F) where Ev(∅) is assined by a fresh variable.

We say that a natural extension of (R, C)-chain · · ·nd−1, nd0, nd1 is backward-infinite. In order
to avoid confusion, we sometimes say that an infinite (R, C)-chain is forward-infinite. Next lemma
will formally express the relation between an APC and an infinite (R, C)-chain.

Lemma 24 Let R be an eTRS and C be a right-linear shallow eTRS. Then,

1. there exists a forward and backward-infinite (R, C)-chain if there exists an APC, and

2. there exists an APC if there exists a forward or backward-infinite (R, C)-chain.

Proof: We firstly show the former part. Let Lp(I), . . . , Lp(J) be an APC over a path
nd1, · · · , ndI , · · · , ndJ . The following procedure constructs substitutions τI , · · · , τJ so as to obtain
a cyclic (R, C)-chain ndIτI→∗

RndI+1τI+1→∗
R · · ·→∗

RndJτJ .

1. Firstly, do the following repeatedly while applicable, starting with empty substitutions τi = ∅
(I ≤ i ≤ J).

• Let ndi = v] → f](u1, . . . , un) and ndi+1 = f](t1, . . . , tn) → s]. Set τi := τi ∪ {uj 7→
tjτi+1} if I ≤ i < J , uj ∈ V − Dom(τi) and tjτi+1 6∈ V for some j ∈ {1, . . . , n}.

• Set τJ := τI if τJ 6= τI .

2. Secondly, do the following repeatedly while applicable.

• Let ndiτi = v] → f](u1, . . . , un) and ndi+1τi+1 = f](t1, . . . , tn) → s]. Set ∆i :=
∆i[uj 7→ ∆i+1(tj)] if I ≤ i < J , uj , tj ∈ V and ∆i(uj) 6= ∆i+1(tj) for some j ∈
{1, . . . , n}, where ∆[x 7→ T] denotes a mapping ∆′ such that ∆′(x) = T and ∆′(y) =
∆(y) for y 6= x.

• Set ∆J := ∆I if ∆J 6= ∆I .

3. Thirdly, do the follwing

• Set τi := τi ∪ {x 7→ Ev(∆i(x))} for x ∈ V ar(ndi) − Dom(τi).

Note that the uniqueness of each substitution τi is guaranteed by the right-linearity of nodes.
This procedure eventually stops and construct a cyclic (R, C)-chain from the smoothness of the
APC. Hence the existence of an forward and backward-infinite (R, C)-chain is easily shown.

Next, we argue that there exists an APC over a given forward-infinite (R, C)-chain. Let the

(R, C)-chain be nd1, nd2, . . . where ndi = t
]
i → s

]
i ∈ C. There exists an APC (with smoothness

condition ignored) over the path. Note that it is also possible even if the given chain is backward-
infinite one · · · , nd−1, nd0, nd1, since we can choose a natural number N small enough such that
an APC can be found along the path ndN , ndN+1, · · · , nd0, nd1. Let the APC be L(I), · · · , L(J).

We have an sequence t
]
IτI →C s

]
IτI →∗

R t
]
I+1τI+1 →C s

]
I+1τI+1 →∗

R∪C · · · →∗
R∪C t

]
JτJ →C s

]
JτJ ,

where t
]
i → s

]
i is a rule in L(i). The satisfaction of the smoothness condition follows from the

traces of the reductions of ground terms at depth 1 in the sequence. �

The following example is helpful for understanding the first step of the procedure in the above
proof.

Example 25 Consider the APC L(2), L(3), L(4) from a path nd1, nd2, . . . (see Fig. 1). We show
the existence of cycling reduction sequence t →+

R∪C t. The first step of the procedure in the
proof of Lemma 24 produce substitutions τ2 = τ3 = τ4 = {x 7→ c} and the remaining steps do
nothing. We have f](c, c) →C g](c, b) →∗

R g](c, c) →C f](c, a) →∗
R f](c, c) from the sequence

nd2τ2, nd3τ3, nd4τ4.

The following example is helpful for understanding the second and the third step of the proce-
dure in the above proof.

7

x

x

x

a

N1 =

x

x

x

a

N2 =

x

x

x

b

1 2

L(i)

ndi

∆i(y)

i

∆i(x)

N2 =

x

x

x

b

5

N1 =

4

N3 =

x

y

x

y

3

N3 =

x

y

x

y

6 7

∅ {a} {a}

{b}

{a, b} {a, b} {a, b}

{b}

g]

(

f]

)

(

))

f]

((

))

f]

(h]

)

g]

(
)

h]

((h] g]

(
)

h]

))

f]

(

f]

((

g]

)

g]

(
)

(

))

x

N1 =

{a, b}

x

x a

Figure 3: Labeling for R9

Example 26 Consider the following TRS R7 = { g(x, x) → f(x, a), f(x, x) → h(x, b), h(x, y) →
g(x, y), a → c, b → c } and C = { g](x, x) → f](x, a), f](x, x) → h](x, b) h](x, y) → g](x, y) } ⊂
DP(R7). It has an APC L(4), L(5), L(6), L(7) for a labeling function L in Fig. 3. According to the
procedure in the proof of Lemma 24, the first step produce τ4 = τ5 = τ6 = τ7 = ∅ and the second
step changes ∆6 so that ∆6(y) = {a, b}. Hence we obtain substitutions τ4 = τ5 = τ7 = {x 7→ c}
and τ4 = {x 7→ c, y 7→ c} by the third step since Ev({a, b}) = c. Therefore, we have g](c, c) →C

f](c, a) →∗
R f](c, c) →C h](c, b) →∗

R h](c, c) →C g](c, c) from the sequence nd4τ4, . . . , nd7τ7.

Next, based on Lemma 24, we give proofs for Theorem 5–(2) and (3).
Proof: (Theorem 5–(2)) Let R be a right-linear shallow TRS. Then, DP(R) is also right-linear
shallow. We know ground reachability and ground joinability of right-linear shallow TRSs are
decidable [3, 9, 10, 13]. By Lemma 23, we can decide the existence of APC. Thus we can decide
the existence of a forward-infinite (R, DP(R))-chain by Lemma 24. The theorem follows from
Theorem 1. �

Proof: (Theorem 5–(3)) Let R be a left-linear shallow TRS. Then R−1 and DP(R)−1 are right-
linear shallow eTRSs We know ground reachability and ground joinability of right-linear shallow
TRSs are decidable [3, 9, 10, 13]. By Lemma 23, we can decide the existence of APC. If an APC
exists, we have a backward-infinite (R−1, DP(R)−1)-chain from the former part of Lemma 24,
which shows the existence of a forward-infinite (R, DP(R))-chain. If no APC exists, we have
no backward-infinite (R−1, DP(R)−1)-chain from the latter part of Lemma 24, which shows the
non-existence of a forward-infinite (R, DP(R))-chain. The theorem follows from Theorem 1. �

3.3 Combining the two techniques

In this subsection, we combine the techniques in the above two subsections and show the decid-
ability of termination for some larger classes. This is based on the following lemma.

Proposition 27 For TRSs R, C and C ′ such that C ⊇ C′, the following statements are equivalent.

1. There exists an infinite (R, C)-chain.

2. There exists an infinite (R, C ′)-chain or there exists an infinite (R, C)-chain with infinite use
of pairs in C − C′.

Proof: Since the latter implies the former trivially, we show the converse. Suppose we have an
infinite (R, C)-chain nd1, nd2, . . . with finite use of pairs in C − C ′. Letting ndn is the last use of a
pair in C − C′, the infinite subsequence ndn+1, ndn+2, . . . is a (R, C′)-chain. �

Definition 28 (Growing TRS) A rewrite rule l → r is growing if all variables in Var(l)∩Var(r)
occur at positions with depth 0 or 1 in l. An eTRS R is growing if every rewrite rule in R is
growing and R is rev-growing if R−1 is growing.

Example 29 TRS R8 = { f(a, x) → g(x, b), g(x, y) → h(x, p(x, y)), h(c, x) → f(x, x) } is left-
linear growing.

Proof: (Theorem 5–(4)) Let R be a right-linear rev-growing TRS with DP(R) being shallow or
right-ground. Let Cs be the set of all shallow pairs in DP(R). We know ground reachability and

8

ground joinability of right-linear rev-growing TRSs are decidable [10, 13]. Since Cs is right-linear
shallow, we can decide the existence of APC by Lemma 23. If an APC exists then we have an
infinite (R, Cs)-chain by Lemma 24, which implies that R is non-terminating. Otherwise, from
Prop. 27, it is enough to decide the existence of an infinite (R, DP(R))-chain with infinite use of
pairs in DP(R) − Cs, which is a set of right-ground pairs. This is decidable from Lemma 14. �

Proof: (Theorem 5–(5)) Let R be a left-linear growing TRS with DP(R) being shallow or right-
ground. Let Cs be the set of all shallow pairs in DP(R). Then R−1 is right-linear rev-growing and
C−1

s is right-linear shallow. Since we know ground reachability and ground joinability of right-linear
rev-growing TRSs are decidable [10, 13], we can decide the existence of APC by Lemma 23. If an
APC exists then we have a backward-infinite (R−1, C−1

s)-chain by Lemma 24, which implies the
existence of an infinite (R, Cs)-chain and hence R is non-terminating. Otherwise, from Prop. 27,
it is enough to decide the existence of an infinite (R, DP(R))-chain with infinite use of pairs in
DP(R) − Cs, which is a set of right-ground pairs. This is decidable from Lemma 14. �

4 Comparison

In this section, we compare our results with some existing results.

Lemma 30 For a semi-constructor TRS R, the following statements are equivalent:

1. R does not terminate.

2. DG(R) contains a cycle.

Proof: Suppose R does not terminate. There exists an infinite dependency chain by Theorem 1.
Hence the dependency graph must have a cycle, otherwise it causes a contradiction.

Conversely, for every edge from a node s] → t] to a node u] → v] in a cycle, there exists a
substitution τ such that t] →∗

R u]τ . Thus we can easily construct an infinite dependency chain. �

Lemma 31 The dependency graph of semi-constructor TRSs is not computable.

Proof: By encoding Post’s Correspondence Problem. Let {〈ui, vi〉 ∈ Σ+ × Σ+ | 1 ≤ i ≤ n} be a
finite set of PCP pairs.

TRS R9 =

{ε → ei(ε) | 1 ≤ i ≤ n}∪
{ε → f(c, d)}∪
{b → a(b), b → a(ε) | b ∈ {c, d}, a ∈ Σ}∪
{f(x, x) → g(x, x)}∪
{ei(g(ui(x), vi(y))) → g(x, y) | 1 ≤ i ≤ n}∪
{ei(g(ui(ε), vi(ε))) → ε | 1 ≤ i ≤ n}

Defined symbol of R9 is {ε, c, d, f} ∪ {ei | 1 ≤ i ≤ n}, R9 is a semi-constructor TRS and it is a
variant of the example in [12]. Notice that the following statement is true: in DG(R9), there is an

edge from node ε] → e
]
1(ε) to node e

]
1(g(u1(ε), v1(ε))) → ε] if and only if PCP has a solution. �

Note that reachability problem is undecidable for linear semi-constructor TRSs [11]. However
this fact is not enough to prove the above lemma because the use of reachability in dependency
graphs are limited.

In the reference [9], Middeldorp proposed a decision procedure for termination of right-ground
TRSs which is dependency graph based. Denoting growing approximation dependency graph by
DGg(R), he showed that for right-ground TRS R, DG(R) = DGg(R), that is, the dependency graph
of the right-ground TRS is computable. Thus, the decision procedure proposed is that: compute
the dependency graph of R using the growing approximation and then check the existence of cycles.
For semi-constructor case, we also have Lemma 30 to assure that semi-constructor TRS terminates
if and only if there is no cycles in the dependency graph. However, the dependency graph based
method can not be applied to semi-constructor case, since its dependency graph is not computable
by Lemma 31.

The following theorem shown by Godoy and Tiwari [5] is also given as a corollary of Theorem 5–
(4) since TRSs in this class satisfy the assumption of our theorem.

Theorem 32 ([5]) Termination of TRSs that consist of right-linear shallow rules, collapsing rules
and right-ground rules is decidable.

9

Nagaya and Toyama [10] obtained the decidability result for almost orthogonal growing TRSs.
We claim that the applicable classes of Nagaya’s method and ours do not cover each other. Con-
sidering R4 in Example 17 and R8 in Example 29: R4 is left-linear shallow, but it is not almost
orthogonal since there is a non-trivial critical pair 〈f(g(a), z), f(z, b)〉; DP(R8) does not fit either
of the applicable classes we proposed, but it is orthogonal.

5 Conclusion

One research direction on termination is to find more general classes of TRSs whose termination
is decidable. We proposed several positive results listed in Theorem 5.

We propose some conjectures and list them as follows:

Conjecture 33 Termination of right-linear rev-growing TRSs with all the dependency pairs being
left-linear is decidable.

Conjecture 34 Termination of left-linear growing TRSs with all the dependency pairs being
right-linear is decidable.

Conjecture 35 Termination of shallow TRSs is undecidable.

Acknowledgement

We would like to thank Ashish Tiwari and the anonymous referees for their helpful comments
and remarks. We are particularly grateful to one of anonymous referees who indicated the idea
for combining our methods (Prop. 27). This work is partly supported by MEXT.KAKENHI
#18500011 and #16650005.

References

[1] T. Arts and J. Giesl: Termination of term rewriting using dependency pairs. Theoretical
Computer Science 236 (2000) 133–178.

[2] F. Baader and T. Nipkow: Term rewriting and all that. Cambridge University Press (1998).

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and M. Tommasi:
Tree automata techniques and applications (1997).
http://www.grappa.univ-lille3.fr/tata/

[4] N. Dershowitz: Termination of linear rewriting systems. Proc. of the 8th international collo-
quium on automata, languages and programming, LNCS 115 Springer-Verlag (1981) 448–458.

[5] G. Godoy and A. Tiwari: Termination of rewrite systems with shallow right-linear, collapsing
and right-ground rules. Proc. of the 20th international conference on automated deduction,
LNAI 3632 (2005) 164–176.

[6] N. Hirokawa and A. Middeldorp: Dependency pairs revisited. Proc. of the 15th international
conference on rewriting techniques and applications, LNCS 3091 (2004) 249–268.

[7] G. Huet and D. Lankford: On the uniform halting problem for term rewriting systems. Tech-
nical Report 283 INRIA (1978).

[8] F. Jacquemard: Decidable approximations of term rewriting systems. Proc. of the 7th inter-
national conference on rewriting techniques and applications, LNCS 1103 (1996) 362–376.

[9] A. Middeldorp: Approximating dependency graphs using tree automata techniques. Proc. of
the international joint conference on automated reasoning, LNAI 2083 (2001) 593–610.

[10] T. Nagaya and Y. Toyama: Decidability for left-linear growing term rewriting systems. Proc.
of the 10th international conference on rewriting techniques and applications, LNCS 1631
(1999) 256–270.

10

[11] I. Mitsuhashi, M. Oyamaguchi, Y. Ohta and T. Yamada. The joinability and unification
problems for confluent semi-constructor TRSs. Proc. of the 15th international conference on
rewriting techniques and applications, LNCS 3091 (2004) 285–300.

[12] I. Mitsuhashi, M. Oyamaguchi and T. Yamada: The reachability and related decision problems
for monadic and semi-constructor TRSs. Information Processing Letters 98 (2006) 219–224.

[13] T. Takai, Y. Kaji and H. Seki: Right-linear finite path overlapping term rewriting systems
effectively preserve recognizability. Proc. of the 11th international conference on rewriting
techniques and applications, LNCS 1833 (2000) 246–260.

11

