
J. Fluid Mech. (2007), vol. 592, pp. 335–366. c© 2007 Cambridge University Press

doi:10.1017/S0022112007008531 Printed in the United Kingdom

335

Small-scale statistics in high-resolution
direct numerical simulation of turbulence:

Reynolds number dependence of
one-point velocity gradient statistics

T. ISHIHARA 1†, Y. KANEDA 1, M. YOKOKAWA 2,
K. ITAKURA 3 AND A. UNO 2

1Department of Computational Science and Engineering, Graduate school of Engineering,
Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

2Next-Generation Supercomputer R&D Center RIKEN, 2-1-1 Marunouchi, Chiyoda-ku,
Tokyo 100-0005, Japan

3Super Computer System Planning and Operations Department, Japan Agency for Marine–Earth
Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan

(Received 6 January 2007 and in revised form 1 August 2007)

One-point statistics of velocity gradients and Eulerian and Lagrangian accelerations
are studied by analysing the data from high-resolution direct numerical simulations
(DNS) of turbulence in a periodic box, with up to 40963 grid points. The DNS consist
of two series of runs; one is with kmaxη ∼ 1 (Series 1) and the other is with kmaxη ∼ 2
(Series 2), where kmax is the maximum wavenumber and η the Kolmogorov length
scale. The maximum Taylor-microscale Reynolds number Rλ in Series 1 is about 1130,
and it is about 675 in Series 2. Particular attention is paid to the possible Reynolds
number (Re) dependence of the statistics. The visualization of the intense vorticity
regions shows that the turbulence field at high Re consists of clusters of small intense
vorticity regions, and their structure is to be distinguished from those of small eddies.
The possible dependence on Re of the probability distribution functions of velocity
gradients is analysed through the dependence on Rλ of the skewness and flatness
factors (S and F ). The DNS data suggest that the Rλ dependence of S and F of
the longitudinal velocity gradients fit well with a simple power law: S ∼ −0.32Rλ

0.11

and F ∼ 1.14Rλ
0.34, in fairly good agreement with previous experimental data. They

also suggest that all the fourth-order moments of velocity gradients scale with Rλ

similarly to each other at Rλ > 100, in contrast to Rλ < 100. Regarding the statistics
of time derivatives, the second-order time derivatives of turbulent velocities are
more intermittent than the first-order ones for both the Eulerian and Lagrangian
velocities, and the Lagrangian time derivatives of turbulent velocities are more
intermittent than the Eulerian time derivatives, as would be expected. The flatness
factor of the Lagrangian acceleration is as large as 90 at Rλ ≈ 430. The flatness
factors of the Eulerian and Lagrangian accelerations increase with Rλ approximately
proportional to Rλ

αE and Rλ
αL , respectively, where αE ≈ 0.5 and αL ≈ 1.0, while those of

the second-order time derivatives of the Eulerian and Lagrangian velocities increases
approximately proportional to Rλ

βE and Rλ
βL , respectively, where βE ≈ 1.5 and βL ≈ 3.0.

† Author to whom correspondence should be addressed: ishihara@cse.nagoya-u.ac.jp.
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1. Introduction
Because of recent rapid developments in computational facilities and methods,

computational approaches are of increasing importance in the study of turbulence,
as in many other fields of science and technology. Among these approaches are those
based on direct numerical simulation (DNS) of turbulence, which can provide us with
detailed and accurate data of turbulence under well-controlled conditions. DNS can
be useful not only for practical applications, but also for the understanding of the
fundamental features of turbulence, especially the possible universality in the small-
scale statistics of turbulence at high Reynolds number, the exploration of which is
one of the most important challenges in modern turbulence study.

There have been extensive studies of turbulence based on DNS of incompressible
turbulence under simple boundary conditions. Simple boundary conditions, such as
periodic ones, reduce computational costs, and their use is consistent with the idea
of Kolmogorov (1941, hereafter K41), according to which the small-scale statistics
are insensitive to the details of the forcing and boundary conditions at large scales.
The resolution level in the DNS has been increasing rapidly with the developments
in supercomputing technology (e.g. see Ishihara & Kaneda 2002).

It should be recalled here, however, that the number of degrees of freedom (DOF)
increases rapidly with the Reynolds number, Re, and the DOF which can be treated in
the DNS is limited by the available computer memory and speed; thus the resolution
or Re achievable in DNS has until now been severely limited. On the other hand,
even if a universality of turbulence at small scales in the sense of K41 is true, it can
be realized only at sufficiently high Re. If Re is low, the flow may be sensitive to the
forcing and boundary conditions at large scales, and it is very unlikely to show the
universal features of turbulence at high Re. For example, in DNS with the number
of grid points, N � 512 or 1024, the width of the inertial subrange may still be too
narrow, as demonstrated by Ishihara & Kaneda (2002). Moreover, it is difficult to
know a priori how large Re must be to detect the universality. Some features of
turbulence observed at low or moderate Re may no longer be observed at high Re.
Little is known about the quantitative aspects of the Re dependence on the turbulence
statistics at high Re.

These considerations motivate us to perform DNS with Re as high as possible
to obtain some idea of the Re dependence on the statistics, or its approach to
universality in the asymptotic limit of Re → ∞. Fortunately, we could perform
high-resolution DNS of incompressible turbulence on the Earth Simulator (at Japan
Agency for Marine–Earth Science and Technology) with up to 40963 grid points,
which is 64 times larger than the 10243 in the largest previous DNS.

In this paper, we focus our attention on the one-point statistics of velocity gradients
in homogeneous isotropic turbulence. The statistics are dominated by small-scale
statistics of turbulence. If the small-scale statistics are universal in the sense of K41,
the universality must be exhibited in the statistics of the gradients. In this sense, the
statistics may be regarded as among the most fundamental statistics of turbulence,
and has attracted extensive studies by experiments as well as by DNS. Among these
statistics are the skewness S and flatness factor F of velocity gradients, studied
especially by experiments (e.g. see Tabeling et al. 1996; Sreenivasan & Antonia 1997;
Gylfason, Ayyalasomayajula & Warhaft 2004 and the references cited therein). Not
only have S and F been studied by DNS and experiments, but so have the other
higher-order moments of velocity derivatives (e.g. see Siggia 1981a; Kerr 1985; Belin
et al. 1997; Zhou & Antonia 2000).
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These studies raise several questions, among them the following.
(a) Is |S| a monotonically increasing function of Re? Experimental studies suggest

that |S| is an increasing function of Re for large Re, but DNS so far suggest that S

tends to be a constant for large Re.
(b) Is there any transition of the Re dependence of F? Tabeling et al. (1996)

suggested experimentally that there may be a transition of the Re dependence of F

at Rλ ≈ 700, but Gylfason et al. (2004) argued on the basis of their experiments that
there is no such transition.

(c) Do all the four rotational invariants of velocity gradients, in terms of which all
fourth-order moments of velocity gradients in homogeneous isotropic turbulence can
be expressed (Siggia 1981b; Hiero & Dopazo 2003), scale with Re similarly to each
other at high Re? By analysing his DNS data, Kerr (1985) argued that they scale
differently from each other. However, Rλ was only up to approximately 83. Can one
extrapolate the result to higher Rλ?

The intermittency of turbulence occurs not only in space, but also in time; thus it
is seen not only in the velocity gradients, but also in the time derivatives of turbulent
velocities. In this paper, we therefore study not only the one-point statistics of velocity
gradients, but also those of the Eulerian and Lagrangian accelerations and related
quantities, such as pressure gradients. Extensive studies have been made of these
statistics (e.g. see Gotoh & Rogallo 1999; Yeung 2002 and references cited therein,
e.g. Vedula & Yeung 1999; Gotoh & Fukayama 2001; La Porta et al. 2001, and Hill
2002a; Sawford et al. 2003; Biferale et al. 2004; Biferale et al. 2005; Yeung et al.
2006).

The purpose of this paper is to extend the studies of one-point statistics to higher
Re as a result of our high-resolution DNS data. Particular attention is paid to the
possible Re dependence of the statistics. It is hoped that the analysis presented in this
paper may provide a basis for further exploration of the universality of small-scale
statistics of turbulence, as well as for developing turbulence theories or models at
high Re.

This paper is organized as follows. Section 2 presents the DNS method, and § 3
shows the run conditions and turbulence characteristics. Section 4 is devoted to
one-point statistics of the velocity gradients and the related statistics, and § 5 to the
statistics of the Eulerian and Lagrangian accelerations and their time derivatives.
Section 6 presents an analysis of the statistics from the viewpoint of spectral
decomposition. Discussions are given in § 7, and § 8 provides the conclusions.

2. Method of simulation
We consider three-dimensional turbulence of incompressible fluid of unit density

that obeys the Navier–Stokes (NS) equation

∂

∂t
u + (u · ∇)u = −∇p + ν�u + f , (2.1)

with the continuity equation

∇ · u = 0. (2.2)

Here u, p, ν and f denote velocity, pressure, kinematic viscosity and external force,
respectively. The turbulence field is assumed to be periodic in each direction of the
Cartesian coordinates with a fundamental periodic box of size 2π, so that it can
be expressed as a Fourier series with both the minimum wavenumber kmin and the
wavenumber increment being 1.
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The NS equations are solved by a fully alias-free spectral method, where aliasing
errors are removed by the so-called phase-shift method, and we can keep all the
Fourier modes satisfying k < kmax ≡

√
2N/3, where k is the wavenumber and N the

number of grid points in each of the Cartesian coordinates in real space. The time
marching of the DNS is performed by a fourth-order Runge–Kutta method.

To maintain a statistically quasi-stationary state of turbulence, we need to force the
field. For this purpose, we may take as the force field a white noise in time. However,
introducing randomness externally may mix the intrinsic randomness because of the
inherent NS dynamics with external randomness, and it is quite unlikely that the
characteristic time of the external force at a large scale is as short as white noise.
We therefore chose to force the field in a deterministic way, as was done by Kerr
(1985), Vincent & Meneguzzi (1991) and Jiménez et al. (1993). The forcing is given

by f̂ (k) = −cû(k) in the wavevector space, where f̂ and û are Fourier transforms of
f and u, respectively. The value of c is set at non-zero only in the wavenumber range
k < Kc and is adjusted at every time step so as to keep the total kinematic energy
E almost time independent ( ≈0.5). In the runs reported below, we set Kc = 2.5. The
forcing is confined to a low wavenumber range so that it does not directly affect the
dynamics at the small scales.

In all the runs reported below, except those with N =4096, we used double-precision
arithmetic. The sustained performance of 16.4 Tflops was achieved in a DNS with
N = 2048 on the Earth Simulator. Further details of parallel computing on the Earth
Simulator are given in Yokokawa et al. (2002). In the runs with N = 4096, we also
used double-precision arithmetic for the evaluation of the nonlinear convolution
sums in the wavevector space, but we used single-precision arithmetic for the linear
viscous term and time marching to save the machine memory. Preliminary DNS with
N = 1024 showed the effect of reducing the precision to be insignificant, at least for
low-order statistics such as the energy spectrum (see Yokokawa et al. 2002; Kaneda
et al. 2003).

Prior to carrying out DNS with N � 512, we had performed them with N =256
by using a random initial field. The runs were continued until a certain time t = tF.
We then started new runs (i) reducing the kinematic viscosity ν, (ii) doubling N and
(iii) using the final state of the run with the smaller N as the initial state of the new
runs, and we continued the runs until a certain final time t = tF. A similar process
was repeated for larger N .

The statistics from the DNS may depend on the maximum wavenumber kmax

retained in the DNS. Previous studies suggest that it is desirable to take kmaxη > 1,
where η is the Kolmogorov dissipation length scale defined by η = (ν3/〈ε〉)1/4 (Jiménez
et al. 1993; Yamazaki, Ishihara & Kaneda 2002). A comparison of DNS with
different resolutions, with kmaxη = 0.5, 1.0 and 2.0, suggests that although the solution
trajectories in the phase space are sensitive to the resolution level, as would be
expected, the low-order statistics are insensitive to the resolution (Yamazaki et al.
2002). To get some idea of the possible dependence of the statistics on kmax, we
performed two series of DNS, Series 1 and Series 2, for which kmaxη ≈ 1 and kmaxη ≈ 2,
respectively. For comparison, we also performed a DNS with N = 512, kmaxη ≈ 4,
where the final state of Run 256-2 was used as the initial state. We use these data in
the following.

3. Run conditions and global turbulence characteristics
Table 1 summarizes some key values characterizing the runs, in which the

instantaneous mean energy dissipation rate 〈ε〉 and the integral length scale L are



Small-scale statistics of turbulence 339

Run N 10−3Re Rλ kmax 103�t 104ν 〈ε〉 L λ 103η T τη tF

256-1 256 0.936 167 121 1.0 7.00 0.0849 1.13 0.203 7.97 1.96 0.091 10
512-1 512 2.10 257 241 1.0 2.8 0.0902 1.02 0.125 3.95 1.77 0.056 10

1024-1 1024 6.71 471 483 0.625 1.1 0.0683 1.28 0.0897 2.10 2.21 0.040 10
2048-1 2048 16.1 732 965 0.4 0.44 0.0707 1.23 0.0558 1.05 2.13 0.025 10
4096-1 4096 36.5 1131 1930 0.25 0.173 0.0752 1.09 0.0339 0.51 1.89 0.015 4.525
256-2 256 0.318 94 121 1.0 20 0.0936 1.10 0.327 17.1 1.91 0.147 10
512-2 512 1.00 173 241 1.0 7.0 0.0795 1.21 0.210 8.10 2.10 0.094 10

1024-2 1024 2.31 268 483 0.625 2.8 0.0829 1.12 0.130 4.03 1.94 0.058 10
2048-2 2048 5.31 429 965 0.4 1.1 0.0824 1.01 0.0817 2.00 1.75 0.037 10
4096-2 4096 13.7 675 1930 0.25 0.44 0.0831 1.05 0.0515 1.01 1.82 0.023 3.8
512-4 512 0.323 95 241 1.0 20 0.0931 1.12 0.328 17.1 1.94 0.146 2

Table 1. DNS parameters and turbulence characteristics at the final time t = tF.

computed in terms of the three-dimensional energy spectrum E(k), as

〈ε〉 = 2ν

∫ kmax

0

k2E(k) dk, L =
π

2u′2

∫ kmax

0

k−1E(k) dk,

where 3
2
u′2 is the total kinetic energy E =

∫
E(k) dk. The Reynolds number Re is

defined as Re = u′L/ν. The Taylor microscale λ and the microscale Reynolds number
Rλ are given by λ=(15νu′2/〈ε〉)1/2 and Rλ = u′λ/ν, respectively, and the eddy turnover
time T and the Kolmogorov dissipation time scale τη are given by T = L/u′ and
τη = (ν/〈ε〉)1/2, respectively.

In table 1, �t/τη ≈0.02 in Series 1 and �t/τη ≈ 0.01 in Series 2, except for Run 256-1

and Run 256-2. In terms of TC ≡ �x/u′ ( ≈ 2π
√

3/N in our runs), �t is in the range
0.02 < �t/TC < 0.1. For example, in Run 4096-1 (4096-2), �t/τη ≈ 0.016 (0.011) and

�t/TC ≈ 0.094 (0.094). Note that τη/T =151/2α−1Rλ
−1, TC/T = 153/4Cα−1Rλ

−3/2 and

TC/τη =151/4CRλ
−1/2, where α ≡ 〈ε〉L/u′3, C ≡ �x/η and �x/η ≈ 2

√
2π/3 and

√
2π/3

in Series 1 and 2, respectively.

3.1. Time dependence of global statistics

Although the total kinetic energy E is kept almost time independent ( ≈0.5) in our
DNS, the turbulence statistics are not stationary in a strict sense. To examine the
possible time dependence of the statistics, we monitored the time dependence of
representative statistics during the DNS, some of which are shown in figure 1.

Figures 1(a) and 1(b) show the time dependence of 〈ε〉 and Rλ, respectively. It is
seen in figure 1(a) that in each run, 〈ε〉 increases rapidly at the initial stage, and
then after reaching a peak, say at time t = tP, decreases to a local minimum, say at
time t = tL. After that, its time dependence is rather weak. The times tP and tL are
smaller for the larger Reynolds number. This suggests that the transient time period
is shorter for the larger Reynolds number. This is also the case for Rλ in figure 1(b).
These results are consistent with a study by Ishihara & Kaneda (2002) on the time
dependence of various turbulence statistics for DNS with N up to 1024. Figure 1
presents an extension of the study for DNS with N up to 4096.

The DNS data give

tP ≈ 30τη, i.e. tP ≈ 7.7λ/u′ ∝ T/Rλ, (3.1)

except Run 256-1 and Run 256-2, which are started from a random initial field.
The estimate (3.1) implies that the transient time during which the dissipation range
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Figure 1. (a) Mean energy dissipation rate 〈ε〉, (b) Taylor-microscale Reynolds number Rλ,
(c) integral length scale L and (d) skewness of the longitudinal velocity derivative, vs. time t ,
for Series 1 (solid lines) and Series 2 (dashed lines). The values of ν and N were changed at
t = 10, 20, 30 and 40.

structure readjusts to the sudden decrease of ν is proportional to τη, and it decreases
with Rλ in proportion to R−1

λ , for given T .
Figure 1(c) shows the time dependence of the integral length scale L. Since u′ is

almost fixed in our DNS, λ, Rλ and η are determined by 〈ε〉, and the eddy turnover
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Figure 2. (a) Equivorticity surface showing the intense vorticity regions with |ω| >ω̄ + 4σ in
Run 4096-2, where ω is the vorticity and ω and σ are the mean and the standard deviation
of ω, respectively. The straight lines on the upper right corner show the lengths 100η, λ, and
L. (b) and (c) Intense vorticity regions in Run 1024-2 and Run 256-2, respectively. The frame
size of (a)–(c) is proportional to N . (d) Enlargement of (c).
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time T ≡ L/u′ and Re by L. In contrast to 〈ε〉 and Rλ, no sharp initial change is

seen in figure 1(c) for L. Throughout, L is approximately 1.0–1.3. Since u′ ≈ 1/
√

3
and L ≈ 1.15 in the runs, the eddy turnover time T = L/u′ is approximately 2; thus
t/T ≈ t/2.

Figure 1(d) shows the time dependence of the skewness factor of the longitudinal
velocity derivative defined by

S ≡
〈
(∂u/∂x)3

〉
〈
(∂u/∂x)2

〉3/2
. (3.2)

Because of the randomness of the initial field, S ≈ 0 at t = 0 in the starting runs with
N = 256. The skewness S increases rapidly in an initial transient period, then reaches
a state where the time dependence is not as strong. The time dependence of S is not
strong in the other runs with N � 512. Figure 1(d) shows that S is larger for the larger
Reynolds number (see § 4.2).

These results suggest that after a certain initial transient stage, which is shorter for
the larger Reynolds number in our DNS, the non-stationarity of the statistics is weak.
If we are interested in (quasi-) stationary statistics, rather than those in the transient
phase, we need to continue the runs at least until the time tL of the local minimum of
〈ε〉. In the following, we present the statistics of the final field at t = tF( > tL) of each
run, unless otherwise stated.

3.2. Visualization

The amount of data generated by simulations on an advanced supercomputer such as
the Earth Simulator is generally huge, and it is often difficult to extract an intuitive
understanding. A visualization may therefore provide an overview of the simulated
field before a detailed quantitative analysis of the data.

Figure 2(a) gives an example of such a visualization. It shows the intense vorticity
regions in Run 4096-2 (Rλ = 675). The displayed domain size is (4096�)2 × 2048�,
where V = (4096�)3 is the total volume of the fundamental periodic domain. For
comparison, the intense-vorticity regions in DNS with lower resolutions, N = 1024
and 256, in Series 2 are also plotted in figures 2(b) and 2(c), respectively. Each
figure also shows the integral length scale L, the Taylor microlength scale λ and
the Kolmogorov length scale η. The frame size of figure 2(a–c) is proportional to N .
Figure 2(d) is an enlargement of figure 2(c), and figures 3(a) to 3(d) shows increasingly
close-up views of figure 2(a).

The ratios L/η and λ/η are seen to be larger for the larger Reynolds number,
in agreement with Kaneda & Ishihara (2006), which confirmed that the DNS data
fit quite well with the scaling derived by a simple dimensional analysis based on
Kolmogorov’s idea:

N ∼ C1Re3/4, Rλ ∼ C2Re1/2,

L/η ∼ C3Re3/4, λ/η ∼ C4Re1/4,

where Re ≡ u′L/ν, and C1 is a constant that depends on kmaxη. According to
Kolmogorov, C2, C3, and C4 are universal constants at high Re. Table 1 gives C1 ≈ 1.5
in Series 1, and C1 ≈ 3.2 in Series 2 and

C2 ≈ 6.0, C3 ≈ 0.81, C4 ≈ 4.8

in both Series 1 and 2.
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A visualization of turbulence fields by DNS with low resolution or low Reynolds
number, such as that in figure 2(d), from DNS with N = 256 and Rλ = 94, might give
an impression that the turbulence field is dominated by a not so large number of
strong vortices, some of which may span the whole simulation domain. We might
then hope that the turbulence field may be well described by a dynamic system with
a small number of degrees of freedom representing the dynamics of strong vortices.
However, figure 2(a) and figures 3(a) to 3(d) suggest that this is not so at high
Reynolds number. The turbulence field at high Re consists of a huge number of small
vortices. They form clusters, and void regions are seen at various scales. The structure
of the clusters is different from that of the worms. It is very unlikely that such a
system could be represented as a dynamic system with a small number of degrees of
freedom. It is also unlikely that the statistics of the fine-scale structures of high-Re
turbulence are the same as those of low-Re turbulence.

These observations suggest the importance of not confusing statistics at low Re
and high Re. In the following, we analyse the small-scale statistics of turbulence while
taking into account the possible Re dependence of the statistics.

4. One-point statistics of velocity gradients
4.1. Probability distribution functions

The intermittency of turbulence on a small scale is manifested in the velocity gradients.
Figure 4 shows the velocity gradients, (a) ∂u/∂x and (b) ∂v/∂x, and two components of
vorticity, (c) ωx and (d) ωy , along a line in the direction of x at various Rλ. It provides
us with an intuitive idea of the increase of intermittency with the Reynolds number.
The figures suggest that the intermittencies of these quantities are qualitatively not
very different from each other.

An intermittency, such as that in figure 4, may be quantified in terms of probability
distribution functions (p.d.f.) or histograms. Figures 5(a) and 5(b) show p.d.f.’s of
the longitudinal velocity gradient ∂u/∂x for Series 1 and 2, respectively. If they were
Gaussian, the curves would be parabolic in figure 5. The figures show that they are far
from Gaussian. They have wide tails, which are wider for larger Rλ. Similar Rλ trends
have been reported for lower Rλ (e.g. see Jiménez et al. 1993; Gotoh, Fukayama &
Nakano 2002). The figures also suggest that the curves do not converge to a single
curve with the increase of Rλ, at least in the range of Rλ studied here. The same
is also true for the p.d.f.’s of the transversal velocity gradient ∂v/∂x and vorticity
component ωx , as respectively seen in figures 5(c) and 5(d). Figure 5(e) shows that
the normalized p.d.f. of ωx is almost identical to that of ∂v/∂x and that the tails of
the p.d.f.’s for ωx and ∂v/∂x are wider than for ∂u/∂x, and ωx and ∂v/∂x are more
intermittent than ∂u/∂x.

A close inspection of the figures reveals that wavenumber truncation, such as
kmaxη = 1 or kmaxη = 2, may affect the p.d.f.’s. To see this point more clearly, we
plotted the p.d.f.’s of ∂u/∂x at similar values of Rλ, from Series 1 and 2 in figure 5(f).
It is seen that the tail of the p.d.f. in Run 2048-2 (Rλ = 429) is wider than that in Run
1024-1 (Rλ = 471), in spite of Rλ in the former being smaller. A similar trend has also
been reported for lower Rλ in Jiménez et al. (1993). This suggests that p.d.f.’s for very
large |∂u/∂x| or |∂v/∂x| in Series 1 (kmaxη =1) are underestimated in comparison with
those in Series 2 (kmaxη = 2). This is presumably because the small-scale eddies with
very high k or high velocity gradients are less well resolved in DNS in Series 1 than in
Series 2, as is expected when viewed in terms of spectral cutoff filters of different filter
widths. (For the effect of wavenumber truncation, see also the discussion in § 4.4.)
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Figure 3(a, b). For caption see facing page.

4.2. Skewness of the longitudinal velocity gradient

Moments of the velocity gradients provide us with simple measures characterizing the
non-Gaussianity and the possible Rλ dependence of the p.d.f.’s. Among such moments
are the third-order moment or skewness S of the longitudinal velocity derivative
∂u/∂x defined by (3.2). It is zero if the p.d.f. is Gaussian. In homogenous isotropic
turbulence, any third-order moment of the velocity gradient tensor gij = (∂ui/∂xj )
can be expressed in terms of the skewness S defined by (3.2) (Champagne 1978). In
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Figure 3. (a) A closer view of the inner region of figure 2(a). (b) A closer view of the inner
region of (a). (c) A closer view of the inner region of (b). (d) A closer view of the inner region
of (c).

such turbulence, S may also be computed by

S = − 2

35

∫
k2T (k) dk(

〈ε〉/15ν
)3/2

, (4.1)
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Figure 4. Normalized velocity gradients (a) ∂u/∂x and (b) ∂v/∂x, and vorticity components
(c) ωx and (d) ωy , along the line y = z =0, for Run 256-2, Run 512-2, Run 1024-2, Run 2048-2
and Run 4096-2. The normalization is based on standard deviations. The curves for Run 512-2,
Run 1024-2, Run 2048-2 and Run 4096-2 are shifted upward by 10, 20, 30 and 40, respectively.

because

〈ε〉 = 15ν
〈
(∂u/∂x)2

〉
and

〈
(∂u/∂x)3

〉
= − 2

35

∫
k2T (k) dk,

where T (k) is the energy transfer function given by

T (k) = 2πk2[〈N̂(k) · û(−k)〉 + 〈N̂(−k) · û(k)〉]

and N̂(k) is the Fourier transform of −(u · ∇)u under an appropriate normalization.
We have confirmed that the value of S computed by (3.2) is almost identical to that
computed by (4.1).

Figure 6 plots the values of S in the present DNS, where time averages taken in
Series 2 are also plotted (the implication of the time average will be discussed in § 7.1).
The DNS and experimental data from figure 5 in Sreenivasan & Antonia (1997) and
the DNS data from Wang et al. (1996) and Gotoh et al. (2002) are also included in
the figure.

If only the data for Rλ < 200 were available, S would tend to a constant independent
of Rλ with the increase of Rλ. However, the data for larger Rλ(>200) show that S has
a weak dependence on Rλ at larger Rλ. Thus figure 6 presents an example that the
statistics at low Rλ(<200) cannot be extrapolated to higher Rλ(>200).

On the basis of the data at Rλ > 400 of Antonia, Chambers & Satyaprakash (1981),
Hill (2002a) proposed

−S ∼ 0.5(Rλ/400)0.11
(
∼ 0.26Rλ

0.11
)
, (4.2)
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Figure 5. The p.d.f.’s of ζ for (a) ζ = ∂u/∂x in Series 1, (b) ζ = ∂u/∂x in Series 2, (c) ζ = ∂v/∂x
in Series 2 and (d) ζ = ωx in Series 2. (e) The p.d.f.’s for ζ = ωx , ζ = ∂u/∂x and ζ = ∂v/∂x in
Run 2048-2. (f) A comparison of p.d.f.’s for ζ = ∂v/∂x in Run 1024-1 with Rλ = 471 (dashed
line) and in Run 2048-2 with Rλ = 429 (solid line). σ is the standard deviation of ζ in each
p.d.f.

and Gylfason et al. (2004) showed that

−S ∼ 0.33Rλ
0.09. (4.3)

fitted well their experimental data.
Our DNS values of −S for Rλ > 200, especially those in Series 1, agree well with

(4.3). However, a close inspection shows also that the DNS values of −S in Series 2
are larger than those in Series 1, and they are slightly larger than (4.2) and (4.3). A
least-square fitting of the data of Series 2 to ln(−S) ∼ α + βlnRλ yields

−S ∼ (0.32 ∓ 0.02)Rλ
0.11±0.01, (4.4)
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Figure 6. Skewness S of the longitudinal velocity gradient ∂u/∂x vs. Rλ. The filled triangles
(�) and circles (�) are the values at t = tF in Series 1 and 2, respectively; the large circles
denote the time averages of (Rλ, −S) over t from t = tF/2 to tF in each run of Series 2. The
symbols �, �,+ are from figure 5 in Sreenivasan & Antonia (1997), � from Wang et al. (1996),
and � from Gotoh et al. (2002); the crosses (+) are from experiments, while the others are
from DNS.

instead of (4.2) and (4.3); we confirmed that the fitting of the time-averaged data
instead of the instantaneous data leads to no significant changes in the result.

4.3. Flatness factor of the longitudinal velocity gradient

The non-Gaussianity or the intermittency and the possible Rλ dependence of the
p.d.f.’s may be characterized quantitatively not only by the skewness, but also by the
flatness factor defined as

F ≡ 〈(∂u/∂x)4〉
〈(∂u/∂x)2〉2

,

which is equal to (15/7)〈s4〉/〈s2〉2 in homogeneous and isotropic turbulence, where
s2 = sij sij , sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate-of-strain tensor and we use the
summation convention for repeated indices.

Figure 7 shows the flatness factor F in our DNS together with the DNS data by
Wang et al. (1996) and Gotoh et al. (2002), and also DNS and experimental data
from figure 6 in Sreenivasan & Antonia (1997). Here time averages taken for the data
of Run 2048-2 and Run 4096-2 are also plotted.

Tabeling et al. (1996) argued that there is a transition at Rλ ≈ 700 in the dependence
of F on Rλ. Such a transition is not seen in our DNS, although our data points are not
very dense. The absence of the transition is in agreement with a recent experimental
study by Gylfason et al. (2004).

The DNS data agree well with the atmospheric measurements of Antonia et al.
(1981) and are close to the empirical formula

F ∼ 1.36Rλ
0.31, (4.5)

used by Hill (2002a). They are also close to the recent experimental result

F ∼ 0.91Rλ
0.39, (4.6)

of Gylfason et al. (2004) for the Rλ range 100 � Rλ � 1000.
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Figure 7. Flatness factor F of the longitudinal velocity gradient ∂u/∂x vs. Rλ. Filled triangles
(�) and circles (�) are the values at t = tF in Series 1 and 2, respectively; large circles denote
the time-averages of (Rλ, −S) over t from t = tF/2 to tF in Run 2048-2 and Run 4096-2. The
symbols �, �,+ are from figure 6 in Sreenivasan & Antonia (1997), � from Wang et al. (1996),
and � from Gotoh et al. (2002); the crosses (+) are from experiments, and the others are from
DNS.

A close inspection shows that the DNS data of Series 2 are systematically larger than
those of Series 1, and a least-square fitting of the data of Series 2 to lnF = α + βlnRλ

gives

F ∼ (1.14 ∓ 0.19)Rλ
0.34±0.03. (4.7)

Both (4.5) and (4.6) are not very different from this power law.

4.4. Fourth-order moments of velocity gradients

In homogeneous isotropic turbulence, any fourth-order moment of the velocity
gradients gij ≡ ∂ui/∂xj is expressed in terms of the following four rotational invariants
(Siggia 1981b; Hiero & Dopazo 2003),

I1 ≡ 〈s4〉, I2 ≡ 〈s2ω2〉, I3 ≡ 〈ωisijωkskj 〉, I4 ≡ 〈ω4〉.
If the p.d.f. of gij were Gaussian, then the normalized invariants defined by

F1 ≡ 15

7

I1

〈s2〉2
(=F ), F2 ≡ 3

I2

〈ω2〉〈s2〉 , F3 ≡ 3
I3

〈ω2〉〈s2〉 , F4 ≡ 9

5

I4

〈ω2〉2
,

would be 3, 3, 1 and 3, respectively.
Table 2 shows the values of F1, F2, F3 and F4 from our DNS. In figure 8, we plot

them together with the DNS data by Kerr (1985). The DNS data in Series 1 and the
time averages in Run 2048-2 and Run 4096-2 are also plotted. It is seen in figure 8
that the values are far from Gaussian and also that inequalities F4 >F2 > F1 > 3F3 > 3
hold for around Rλ > 300.

The data of Run 512-4 are not plotted in figure 8 because they are almost identical
to those of Run 256-2. Table 2 shows that the results of these runs are not very
different from each other. This suggests that the results are not sensitive to the
wavenumber truncation, kmax, provided that kmaxη � 2. (Regarding the possible effects
of wavenumber truncation, see, for example, Jiménez et al. 1993, Yamazaki, et al.
2002, and recent studies by Yakhot & Sreenivasan 2005 and Yeung et al. 2006.)
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Run 256-1 512-1 1024-1 2048-1 4096-1 256-2 512-2 1024-2 2048-2 4096-2 512-4

Rλ 167 257 471 732 1131 94.3 173 268 429(446) 675(680) 94.6
−S 0.505 0.519 0.558 0.579 0.600 0.525 0.544 0.569 0.615(0.602) 0.642(0.648) 0.517
F1 5.89 6.66 8.20 9.44 10.7 5.55 6.37 7.30 9.37(8.84) 10.5(10.7) 5.42
F2 6.91 7.86 9.62 11.0 12.4 6.64 7.73 8.86 11.4(10.8) 12.8(13.1) 6.31
F3 1.02 1.19 1.50 1.77 2.08 0.827 1.02 1.19 1.55(1.45) 1.75(1.79) 0.827
F4 9.00 10.9 13.3 15.2 17.0 7.92 10.1 11.9 15.7(14.7) 17.7(18.1) 8.04

Table 2. DNS values of Rλ, −S, F1, F2, F3 and F4 at t = tF. Time-averages from t = tF/2 to tF
in Run 2048-2 and Run 4096-2 are also shown in parentheses.
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Figure 8. F1, F2, 3F3 and F4, vs. Rλ at t = tF in Series 1 and 2. Time averages of F1, F2, 3F3

and F4 in Run 2048-2 and Run 4096-2 are plotted by �, �, �, and �, respectively. The dashed
lines (- - -) are from Kerr (1985).

By analysing the data of DNS up to Rλ ≈ 83, Kerr (1985) argued that the four
invariants I1, I2, I3 and I4 scale with Rλ differently. On the other hand, by analysing
the data of experiments up to Rλ ≈ 100, Zhou & Antonia (2000) argued that they
scale similarly.

To see the difference or similarity of the scaling with Rλ of the four rotational
invariants, we plot in figures 9(a) to 9(c) their ratios I2/I1, I3/I1 and I4/I1 from our
DNS. The figure suggests the following:

(i) the invariants scale with Rλ differently from each other for around Rλ < 100,
but

(ii) they scale similarly to each other, i.e. the Rλ-dependence of the ratios is weak,
for around Rλ > 100 in Series 2.
The difference of the present observation (ii) from Kerr’s is presumably due to the
difference in the range of Rλ. Though observation (ii) appears to be in agreement
with Zhou & Antonia (2000), it is only for Rλ > 100, but in Zhou & Antonia (2000),
Rλ was up to 100. For Rλ < 100 in our DNS, they scale differently from each other.

Note also that the slopes of the ratios in Series 1 are slightly different from those in
Series 2. The data of Series 1 underestimate the ratios, I4/I1, I2/I1 and I1/I3, compared
with those of Series 2, presumably because of insufficient resolution at small scales,
as noted at the end of § 4.1. The underestimate of I4/I1 in Series 1 together with the
inequality F4 > F1 suggests that the insufficient resolution at small scales has a larger
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Kerr (1985) are also plotted by +.

effect on I4 than on I1. Similarly, the underestimates of I2/I1 and I1/I3 in Series 1
and the inequalities F2 > F1 > 3F3 suggest that the effect of insufficient resolution on
I1 is smaller than that on I2, but larger than that on I3.

5. Eulerian and Lagrangian acceleration
The intermittency of turbulence occurs not only in space, but also in time; thus it

is seen not only in the velocity gradients, but also in the time derivatives of turbulent
velocities.
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N 256 512 1024 2048 4096

Series 1 2.85 2.94 2.87 2.82 2.86
Series 2 2.88 2.85 2.92 2.86 2.96

Table 3. Flatness of ui in the runs of Series 1 and 2.

Let us write the NS equation (2.1) symbolically as

u(1) ≡ a ≡ ∂u
∂t

= M : uu + Lu, (5.1)

where we have ignored the external force, a is the Eulerian acceleration, and M : uu,
and Lu stand for the nonlinear and linear terms in the NS equation (2.1), respectively.
Then the Eulerian time derivatives of u(1) ≡ a are as follows:

u(n+1) ≡ (∂/∂t)n+1u =

n∑
m=0

nCmM : u(n−m)u(m) + Lu(n), (5.2)

where nCm = n!/[(n − m)!m!].
The Lagrangian time derivative is defined as D/Dt ≡ ∂/∂t + (u · ∇), so that for the

Lagrangian acceleration A of a fluid particle (5.1) gives

A =
Du
Dt

=

[
∂

∂t
+ (u · ∇)

]
u = u(1) + (u(0) · ∇)u(0). (5.3)

Similarly, we have

DA
Dt

=
D2

Dt2
u =

[
∂

∂t
+ (u · ∇)

]2

u

= u(2) + (u(1) · ∇)u(0) + (u(0) · ∇)u(1) + (u(0) · ∇)A (5.4)

(see Kaneda, Ishihara & Gotoh 1999, for a systematic derivation of the higher-order
time derivatives).

5.1. Probability distribution functions

Figure 10 shows the p.d.f.’s of (a) the velocity ui , (b) the Eulerian acceleration
ai = ∂ui/∂t , (c) the Lagrangian acceleration Ai ≡ Dui/Dt , (d) the Eulerian time
derivative ∂ai/∂t = ∂2ui/∂t2 and (e) the Lagrangian derivative DAi/Dt = D2ui/Dt2.
We computed the time derivatives using (5.1)–(5.4), in order to avoid errors associated
with the time discretization.

It is observed in figure 10(a) that the p.d.f.’s of ui are fairly close to, but not exactly
the same as, Gaussian. Table 3 lists the flatness of ui in the runs of Series 1 and 2
and shows that the flatness of ui is fairly close, but a little smaller than, Gaussian
value 3, in agreement with DNS by Gotoh et al. (2002).

Figures 10(b) to 10(e) show that all the tails of the p.d.f.’s for ai , ∂ai/∂t , Ai

and DAi/Dt are wider for larger Rλ. The comparisons between the p.d.f.’s of
∂ai/∂t = ∂2ui/∂t2 and ai ≡ ∂ui/∂t show that the tails of the p.d.f.’s for ∂ai/∂t = ∂2ui/∂t2

are wider than those for ai ≡ ∂ui/∂t , i.e. the former is more intermittent than the
latter, as is expected from the fact that the time derivative in (5.1) and (5.2) includes
operations that excite high-frequency modes. The same is also true for Lagrangian
derivatives; DAi/Dt = D2ui/Dt2 is more intermittent than Ai ≡ Dui/Dt .
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Figure 10. P.d.f.’s of (a) velocity ui , (b) Eulerian acceleration ai = ∂ui/∂t , (c) Lagrangian
acceleration Ai = Dui/Dt , (d) ∂ai/∂t = ∂2ui/∂t2 and (e) DAi/Dt = D2ui/Dt2, normalized by
the standard deviations.

The comparisons between figures 10(b) and 10(c), and between figures 10(d) and
10(e) show that Lagrangian time derivatives are more intermittent than the Eulerian
time derivatives. This is in accordance with the understanding that the Eulerian
time-dependence is dominated by the sweeping effect of the energy-containing eddies.
Therefore they are less intermittent than the Lagrangian time dependence, which is
dominated by interactions among the smaller eddies (e.g. see Kraichnan 1964 and
Kaneda et al. 1999).

5.2. Reynolds number dependence of moments

To quantify the Reynolds number dependence of the p.d.f.’s or the degree of
intermittency, we plot the skewness and flatness factors of Eulerian and Lagrangian
accelerations in figure 11. The flatness factors are tabulated in table 4. Figure 11(a)
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Figure 11. (a) Skewness of ai = ∂ui/∂t (�) and Ai = Dui/Dt (�), and (b) flatness factors of
ai (�), Ai (�) and ∂p/∂xi (×). Squares (�) are experimental data for Ai by La Porta et al.
(2001).

Run 256-2 512-2 1024-2 2048-2 4096-2

Rλ 94.3 173 268 429 675
〈ai

4〉/〈ai
2〉2 10.7 14.8 17.4 26.9 −

〈Ai
4〉/〈Ai

2〉2 15.4(15.7) 33.6(34.3) 52.2(53.2) 94.8(96.5) −(148)
〈bi

4〉/〈bi
2〉2 52.0 126 183 460 −

〈Bi
4〉/〈Bi

2〉2 162 705 2460 21345 −

Table 4. Flatness factors of the time derivatives of turbulent velocity fields in the runs
of Series 2; ai = ∂ui/∂t , Ai = Dui/Dt , bi = ∂ai/∂t = ∂2ui/∂t2, and Bi = DAi/Dt = D2ui/Dt2.
Flatness factor of ∂p/∂xi is shown in parentheses for comparison.

shows that the skewness factors of ai and Ai are almost zero independently of Rλ.
This is consistent with the symmetry of the p.d.f.’s of ai and Ai observed in figure
10(b, c). Figure 11(b) shows that the Lagrangian accelerations are more intermittent
than the Eulerian ones, and that〈

ai
4
〉/〈

ai
2
〉2 ∝ Rλ

αE ,
〈
Ai

4
〉/〈

Ai
2
〉2 ∝ Rλ

αL

fit well with the DNS, where αE ≈ 0.5 and αL ≈ 1.0. Figure 11(b) also shows that the
flatness factor of Ai is almost identical to that of ∂p/∂xi . A plot (not shown) similar
to figure 11(b) for bi = ∂ai/∂t and Bi = DAi/Dt suggests that〈

bi
4
〉 / 〈

bi
2
〉2 ∝ Rλ

βE ,
〈
Bi

4
〉 / 〈

Bi
2
〉2 ∝ Rλ

βL

fit fairly well with the DNS, where βE ≈ 1.5 and βL ≈ 3.0.
La Porta et al. (2001) measured the fluid particle acceleration experimentally and

showed that the acceleration is very intermittent; its flatness factor exceeded 70 for
Rλ > 500. The flatness factor in our DNS is seen in figure 11(b) to be close to the
experimental values for Rλ < 300, but it is systematically larger than the experimental
values and exceeds 90 even at Rλ =429. Recently the flatness factors of Ai were
obtained by tracking fluid particles in high-resolution DNS of turbulence (Biferale
et al. 2005; Yeung et al. 2006) and also by processing the Eulerian velocity field in
the same way as in this paper (Yeung et al. 2006). Our DNS values are systematically
larger than the values obtained by tracking fluid particles, especially at high Reynolds
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Figure 13. P.d.f.’s of (a) pressure gradient ζ = ∂p/∂xi and (b) viscous term ζ = ν∇2ui . Both
∂p/∂xi and ν∇2ui are normalized by the standard deviations.

number. This is consistent with the results in Yeung et al. (2006), but the reason
remains to be explored.

It is seen in figure 10 that the p.d.f.’s of ∂ai/∂t = ∂2ui/∂t2 and DAi/Dt = D2ui/Dt2

have very wide tails. To see this more clearly, we plot the weighted p.d.f.’s (ζ/σ )nσP (ζ )
for ζ = ∂ai/∂t (n= 3, 4, 5, 6) and ζ = DAi/Dt (n= 3, 4) in figures 12(a) and 12(b),
respectively, where σ 2 = 〈ζ 2〉 and P (ζ ) is the p.d.f. of ζ that gives

〈ζ n〉 =

∫ ∞

−∞
ζ nP (ζ ) dζ. (5.5)

Figures 12(a) and 12(b) show that ζ nP (ζ ) for ζ = ∂ai/∂t (n= 5, 6) and for
ζ = DAi/Dt (n= 4) at high Rλ are increasing functions of ζ for at least ζ/σ < 60.
This shows that ∂ai/∂t and DAi/Dt are highly intermittent and that the sixth-order
moment of ∂ai/∂t and the fourth-order moment of DAi/Dt at large Rλ are sensitive
to very rare events, for which ζ may be as large as ζ/σ > 60.

5.3. Acceleration resulting from the pressure gradient and the viscous drag

From (5.3), the Lagrangian acceleration Ai of a fluid particle may be written as

A = −∇p + ν∇2u, (5.6)

This consists of the acceleration resulting from the pressure gradient and the viscous
drag. Figure 13 shows the p.d.f.’s of these two contributions; ∂p/∂xi is more
intermittent than ν�ui . This observation is consistent with previous studies (e.g.
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Figure 14. (a) 〈A · A〉/(〈ε〉3/2ν−1/2) vs. Rλ. The solid line is (5.10).
(b) 〈A · A〉1/2/{ν2〈∇2u · ∇2u〉1/2} vs. Rλ. The solid curve is by (5.9) and (5.10).

see Tsinober, Vedula & Yeung 2001). A comparison of the flatness of ∂p/∂xi with
that of Ai in figure 11(b) shows that they are near to each other, though the flatness
of ∂p/∂xi is slightly larger than that of Ai .

For incompressible homogeneous turbulence 〈∇p · u〉 = 0, so that (5.6) gives

〈A · A〉 = 〈∇p · ∇p〉 +
〈
ν2∇2u · ∇2u

〉
. (5.7)

Figures 14(a) and 14(b) show the DNS values of 〈A · A〉 normalized by 〈ε〉3/2ν−1/2

and the square root of the ratio of 〈A · A〉/〈ν2∇2u · ∇2u〉, respectively. The DNS
values by Vedula & Yeung (1999) and Gotoh & Fukayama (2001), which are in good
agreement with the present DNS, are also included in the figures. No systematic
dependence of the normalized values of 〈A · A〉 on kmaxη is seen. Figure 14(b) shows
that ν2〈∇2u · ∇2u〉1/2 is much less than 〈A · A〉1/2; the ratio of the former to the latter
ranges from 1/8 to 1/10 for 300 <Rλ < 1200.

By surveying the existing DNS and experimental data, Hill (2002a) proposed the
following empirical formula for the covariances in (5.7) at Rλ > 400:

〈∇p · ∇p〉/
(
〈ε〉3/2ν−1/2

)
∼ 3.1HχF 0.79 ∼ 3.9HχR0.25

λ ∼ 2.5R0.25
λ , (5.8)

〈ν2∇2u · ∇2u〉/
(
〈ε〉3/2ν−1/2

)
=

35

2
15−3/2 |S| ∼ 0.08R0.11

λ , (5.9)

and

〈A · A〉/
(
〈ε〉3/2ν−1/2

)
∼ 2.5R0.25

λ + 0.08R0.11
λ , (5.10)

for homogeneous and isotropic turbulence. Figure 14 shows that the DNS data fit
well with these formulae.

In (5.8), Hχ is a constant defined by

Hχ = 〈∇p · ∇p〉/
(

4

∫ ∞

0

r−3D1111(r) dr

)
, (5.11)

in which D1111(r) is the fourth-order velocity structure function defined by
D1111(r) = 〈(u1(x + r) − u1(x))4〉, and u1 is a velocity component parallel to the
separation vector r . Vedula & Yeung (1999) measured the values of Hχ at Rλ < 240
using DNS of turbulence and found that the values approach an asymptotic value
of about 0.65. In figure 15, we plot the values of Hχ in our DNS; the values are
estimated from the DNS data for 〈∇p · ∇p〉 and D1111(r). The figure shows that the
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values of Hχ are insensitive to kmaxη and suggests that Hχ approaches a constant
(approximately 0.65) for large Rλ.

The comparison of the covariances 〈∇p · ∇p〉 and 〈(∇2p)2〉 yields a length scale ηp

such that

η2
p ≡ 〈∇p · ∇p〉

〈(∇2p)2〉 .

In the theory of anomalous scaling of structure functions proposed by Yakhot (2003),
the assumption that ηp and η have similar scaling with respect to Rλ plays a key role.
It may therefore be of interest to examine this with the DNS data. Figure 16 shows
DNS data for the covariance 〈ε〉3/2ν−1/2 and the ratio ηp/η: the dependence of the
ratio on Rλ is weak at large Rλ, and the data of Series 2 (Series 1) gives the estimate
ηp/η ∼ 3.0(3.2) at large Rλ. Note that the small scale is not very well resolved in
Series 1.

6. Spectral analysis
6.1. Skewness

Some idea of the dependence of S on Rλ discussed in § 4.1 may be obtained by using
k2T (k) = 2νk4E(k), which holds in the wavenumber range where the external force is
negligible in statistically stationary homogeneous isotropic turbulence. This equality
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enables us to rewrite (4.1) as

−S ∼ 4

35
153/2

∫ ∞

0

x4f (x) dx, (6.1)

where f (kη) ≡ E(k)/(〈ε〉ν5)1/4 and x ≡ kη.
Figure 17 shows the integrand x4f (x) in (6.1) for various Rλ in Series 2. It is seen

that
(i) the integral in (6.1) is dominated by the contribution from the near dissipation

range (x = kη ≈ 1),
(ii) x4f (x) is insensitive to Rλ at x < 0.5, but
(iii) it is not as insensitive to Rλ at 0.5 <x(<2.0) and
(iv) x4f (x) is larger for the larger Rλ at 0.5 <x.

These facts imply that S may be sensitive to the Rλ dependence of the spectrum
E(k) in the near dissipation range x ≈ 0.5. The observation (iv) is consistent with the
increase of −S with Rλ as seen in figure 6.

A recent DNS analysis by Ishihara et al. (2005) suggests that f (x) in the near
dissipation range x ≈ 1 fits well with F (x) =Cxα exp(−βx), where C, α, β are constants
independent of x. By comparing the energy spectrum in Run 256-2 with that in Run
512-4, they confirmed that

(i) there is no significant difference in f (x) between these two runs in the
wavenumber range x < 1.7, and

(ii) the function F (x) fits well with the DNS data of f (x) not only in the range
x ≈ 1, but also up to x ≈ 4.

The results (i) and (ii) encourage us to use an approximation such as∫ ∞

0

x4f (x) dx =

∫ 0.5

0

x4f (x) dx +

∫ ∞

0.5

Cxα+4 exp(−βx) dx, (6.2)

in which f (x), C, α and β are estimated from the data of the DNS with kmaxη ≈ 2.
We confirmed that the value of S computed by (6.2) is close to the one by (3.2) or
(4.1). For example, the difference is only approximately 0.5% in Run 4096-2.

According to the analysis by Ishihara et al. (2005), as Rλ → ∞, then C, α, β approach
constants independent of Rλ in agreement with Kolmogorov, but the approach is very
slow. This implies that (i) the observed dependence of S on Rλ may be attributed to
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Figure 18. kηD(k)/(ν−5〈ε〉7)1/4 at t = tF in Series 2.

the dependence of these constants on Rλ at finite Rλ, and (ii) as Rλ → ∞, S approaches
a constant independent of Rλ, but the approach may be very slow.

6.2. Flatness factor of the longitudinal velocity gradient

Let D(k) be the spectrum of 〈s4〉 such that 〈s4〉 =
∫ ∞

0
D(k) dk. Then

F =
15

7

∫ ∞

0

D̃(x) dx, (6.3)

where D̃(kη) = D(k)/(ν−5〈ε〉7)1/4, and x = kη. Figure 18 show the spectrum xD̃(x) at
t = tF in Series 2. Since D̃(x)dx = xD̃(x) d(ln x), the height of xD̃(x) in the figure is
proportional to the contribution to the integral (6.3) from the range (ln x, ln x+d[ln x]).

Note that to rigorously evaluate D(k) from û(k) (|k| � kmax), one has to perform a

fast Fourier transform of s2 with N/2 > 2kmax because ŝ2(k) has non-zero modes for

|k| < 2kmax. Here we do not perform such a costly computation, so that
∫ kmax

0
D(k) dk

does not exactly give 〈s4〉. However in our computation of D(k), the alias error in

computing ŝ2(k) was removed as in Ishihara et al. (2003), so that D(k) for k < kmax is
free from any alias error, and therefore has no artificial peak at the highest available
mode, in contrast to k4E(k).

It is observed from figure 18 that
(i) the dominant contribution to the integral (6.3) comes from the near dissipation

range 0.1 <x < 1, but
(ii) there is a substantial contribution not only from the near dissipation range,

but also from the range x < 0.1,
(iii) xD̃(x) increase with Rλ at all x, and
(iv) the relative contribution from x < 0.1 to the integral increases with Rλ.

Observation (iii) is consistent with the increase of F with Rλ. Observations (ii) and
(iv) imply that not only the dissipation range, but also the range x < 0.1 is responsible
for the Rλ-dependence of F .

6.3. Fourth-order moments of velocity gradients

Let W (k) and Ω(k) be the spectra of 〈sijωj simωm〉 and 〈(ω2/2)2〉, respectively. Then
F3 and F4 can be expressed in the forms

F3 =
3

2

∫ ∞

0

W̃ (x) dx, F4 =
9

5

∫ ∞

0

Ω̃(x) dx, (6.4)
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Figure 20. (a) Trajectories in the (−S,Rλ)-plane from t = 0 to t = tF. Solid lines are the
trajectory from t = tF/2 to t = tF. Circles are the averages over t from t = tF/2 to t = tF in each
run. (b) A close-up view of (a) for the trajectories in Run2048-2 and Run 4096-2. Filled squares
are the points at t = 5.2, 6.8, 8.4 and 10 in Run 2048-2, and filled circles t = 2.6, 3.2 and 3.8 in
Run 4096-2.

respectively, where x = kη. Figures 19(a) and 19(b) show the spectra xW̃ (x) and xΩ̃(x),
respectively, at various Rλ. It is seen that

(i) there is no substantial contribution to F3 from the range x < 0.1 (figure 19a),
(ii) the dominant contribution to the integral of F4 is from the near dissipation

range (x ≈ 0.5), but
(iii) there is a non-negligible contribution to F4 not only from the range x > 0.1,

but also from x < 0.1 (figure 19b), as with F1 = F .
It was shown in Ishihara et al. (2003) that D̃(x) ∼ Ω̃(x) at x < 0.1, but D̃(x) � Ω̃(x)
at x > 0.1, as is confirmed by figures 18 and 19(c). This implies that the relative
influence on F4 from the range x < 0.1, which is determined by Ω̃(x), compared with
that from x > 0.1 is weaker than that on F1.

7. Discussion
7.1. Mutual relations between one-point statistics of velocity gradients

The analyses in § 4 show that the DNS data fit well with the simple power-law
dependence of S, F1, F2, F3 and F4 on Rλ. However, a close inspection of instantaneous
statistics at various times reveals that the dependence may be not as simple in a
strict sense. This is demonstrated by figures 20(a) and 20(b). The former shows the
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N 256 512 1024 2048 4096

Series 1 0.494 ± 0.010 0.520 ± 0.002 0.552 ± 0.005 0.578 ± 0.007 0.605 ± 0.002
Series 2 0.518 ± 0.008 0.544 ± 0.004 0.573 ± 0.005 0.602 ± 0.006 0.648 ± 0.003

Table 5. Time average and the standard deviation of −S from tF /2 to tF
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Figure 21. (a) DNS values of F1, F2, 3F3 and F4 vs. Rλ at t = tF in Series 2. DNS values at
t =5.2, 6.8 and 8.4 in Run 2048-2 and those at t = 2.6 and 3.2 in Run 4096-2 are also plotted.
Time averages for Run 2048-2 and Run 4096-2 are shown by large symbols. The straight line
is (4.7). (b) The data in (a) are plotted against −S. The straight lines are (7.1).

trajectories of runs in Series 2 in the (Rλ, −S)-plane, and the latter shows a close-
up view of the trajectories for Run 2048-2 and Run 4096-2. It might appear from
figure 20(a) that after a transient period, the trajectory of each run converges to a
point, while figure 20(b) shows that the trajectory continues to move in a complicated
way even after the transient period. Regarding the latter, however, the standard
deviation of the values of −S over the interval from t = tF/2 to tF in each run is not
large and at most a few percent of the mean, as seen in table 5.

The time averages of Rλ and −S over the interval from t = tF/2 to tF in each run
are plotted in the (Rλ, −S)-plane in figure 20(a, b), showing that

(i) the instantaneous values of −S in each run have a complex Rλ-dependence,
even in the quasi-stationary state after the transient period, but

(ii) the time average of −S (circles), in contrast to the instantaneous value, has a
simpler Rλ-dependence.

Figure 21(a) plots the values of F1, F2, F3 and F4 as a function of Rλ, and figure
21(b) plots them as a function of −S, in which we plot not only time averages, but also
instantaneous values at various times for Run 2048-2 and Run 4096-2. Figure 21(a)
shows that

(iii) the instantaneous values of F1, F2, F3 and F4 depend on Rλ in a complicated
way, and

(iv) their dependences on Rλ and time correlate well with each other.
Figure 21(b) shows

(v) not only the time averages, but also the instantaneous values of F1, F2, F3 and
F4 have a much simpler dependence on S than on Rλ.

A least-square fitting of the data in figure 21(b) to lnFn = αn + βn ln(−S) gives

Fn ∼ Cn(−S)βn (n = 1, 2, 3, 4), (7.1)
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Figure 22. The data in figure 21 are plotted against RA. The straight lines are the least
square fits to the instantaneous data for RA > 7.5.

where ln Cn =αn and

(C1, β1) = (41.5 ∓ 0.8, 3.09 ± 0.04), (C2, β2) = (52.4 ∓ 1.3, 3.16 ± 0.05),

(C3, β3) = (8.2 ∓ 0.4, 3.46 ± 0.09), (C4, β4) = (90 ∓ 6, 3.6 ± 0.1).

The power law F1 ∼ 41.5(−S)3.09 is consistent with the relation between F and S

obtained from (4.4) and (4.7). However, note that the deviation of the data from the
power laws is much less in figure 21(b) than in figures 6 and 7.

7.2. Reynolds number based on Lagrangian acceleration

Hill (2002b) proposed the Reynolds numbers RA and R∇p defined by

RA = 〈A · A〉1/2
/

〈ν2∇2u · ∇2u〉1/2,

R∇p = 〈∇p · ∇p〉1/2
/

〈ν2∇2u · ∇2u〉1/2,

respectively, and argued that

RA ∼ R∇p ∼ (2.0F 0.79/0.3|S|)1/2, (7.2)

which is obtained using (5.9), (5.9) and Hχ ≈ 0.65, may be related to F by a power
law, provided that S is related to F by a power law.

Figure 22 gives the DNS values of F1(= F ), F2, 3F3 and F4 as a function of RA. It
shows that

(i) DNS values of the four rotational invariants are related well to RA by power
laws for RA > 7.5 or so, but

(ii) the deviations of the instantaneous values from the power laws are not as small
as those in figure 21(b).
Figure 21(b) has suggested that not only the time-averaged values, but also the
instantaneous values of the four rotational invariants are related well to −S by power
laws. Figures 22 and 21(b) show that regarding the instantaneous values, the relation
between −S and the invariants is simpler than that between RA and the invariants.

Note that ⎛
⎜⎝

−S

F1

F3

F4

⎞
⎟⎠ ∝

∫ ⎛
⎜⎝

k5E(k)
kD(k)
kW (k)
kΩ(k)

⎞
⎟⎠ d(lnk),
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while (
〈∇p · ∇p〉
〈(∇2p)2〉

)
=

∫ (
k3P (k)
k5P (k)

)
d(lnk).

An inspection of the spectra shows that k5E(k), kD(k), kW (k), kΩ(k) and k5P (k) as a
function of ln(kη) have their peaks at kη ≈ 0.6, but k3P (k) has its peak at kη ≈ 0.25.
This implies that the dominant contribution to −S, F1, F3, F4 and 〈(∇2p)2〉 comes
from the near dissipation range, but that to 〈∇p · ∇p〉 it is from the wavenumber
range slightly lower than the near dissipation range.

8. Conclusions
In this paper we have studied one-point statistics of velocity gradients and Eulerian

and Lagrangian accelerations on the basis of the data from high-resolution DNS of
turbulence with the number of grid points up to 40963 and Rλ up to 1130 (Series 1) or
675 (Series 2). To obtain a better understanding of the relation between the one-point
statistics, we used not only the instantaneous statistics at t = tF, but also time averages
over the time interval from t = tF/2 to tF in Run 2048-2 and Run 4096-2 in § 4.

Particular attention was paid to the possible dependence of the statistics on the
Reynolds number Re. As quantitative measures of the Re dependence of the p.d.f.’s
of the velocity gradients, we considered the skewness and flatness factors of the
gradients. The DNS data show that the skewness S and flatness factors F of the
longitudinal velocity gradients fit well with power laws

S ∼ −(0.32 ∓ 0.02)Rλ
0.11±0.01 and F ∼ (1.14 ∓ 0.19)Rλ

0.34±0.03.

This power-law dependence on Rλ is consistent with previous experimental studies
(Sreenivasan & Antonia 1997; Gylfason et al. 2004). No transition in the Rλ

dependence of S at Rλ ≈ 700 is visible in our DNS, in contrast to Tabeling et al.
(1996).

The observed dependences of the skewness and flatness factors on Re or Rλ imply
that the p.d.f.’s are also Re dependent. Their power law dependences imply that within
the Re-range we studied, the DNS do not support the conjecture that the p.d.f.’s tend
to certain universal forms independent of Re with the increase of Re.

The DNS values of normalized rotational invariants Fn(n= 1, 2, 3, 4) proposed by
Siggia (1981b) are far from the Gaussian values and increase with Rλ. The DNS data
suggest that for Rλ > 100, in contrast to Rλ < 83 reported by Kerr (1985), all of the
invariants scale with Rλ similarly to each other.

In a strict sense, turbulence characteristics including Rλ, 〈ε〉, S and L fluctuate in
time even in the quasi-stationary state after the transient period. As a consequence,
the normalized invariants, Fn, also fluctuate in time to some extent. A close inspection
suggests that the time dependences of the Fn are similar to each other and correlate
better with S than with Rλ.

We have also analysed the statistics of accelerations. It was confirmed that for both
the Eulerian and Lagrangian velocities, the second-order time derivatives are more
intermittent than the first-order derivatives and that the Lagrangian time derivatives
of turbulent velocities are more intermittent than the Eulerian time derivatives, as
would be expected. The flatness factors of the Eulerian and Lagrangian accelerations
increase with Rλ as ∝ Rλ

αE and ∝ Rλ
αL , respectively, where αE ≈ 0.5 and αL ≈ 1.0.

The flatness factor of the Lagrangian acceleration is >90 at Rλ ≈ 430. The DNS data
show that the second-order Eulerian and Lagrangian time derivatives of the velocity
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are highly intermittent and that their flatness factors increase with Rλ as proportional
to Rλ

βE and Rλ
βL , respectively, where βE ≈ 1.5 and βL ≈ 3.0.

The spectral analysis presented in § 6.1 suggests that the observed dependence of S

on Rλ may be attributed to the dependence of the energy spectrum on Rλ at finite Rλ

and that, as Rλ → ∞, S approaches a constant independent of Rλ, but the approach
may be slow.

S, F1(= F ), F3 and F4 can be expressed as integrals of normalized spectra with
respect to x ≡ kη from x =0 to ∞. The dominant contribution to any of these integrals
is mainly from the near dissipation range. However, there is substantial contribution
to F1 and F4 not only from the range x > 0.1, but also from x < 0.1. These results
imply that S, F1(= F ), F3 and F4 are mainly dominated by the small-scale statistics
of turbulence, but the statistics of eddies with sizes larger than around 10η also have
a non-negligible influence on F1 and F4, i.e. F1 and F4 are more sensitive to the
large-scale structure of turbulence than S and F3 are. Since the influence from the
range x < 0.1 on F1 as compared with that from x > 0.1 is stronger than that on F4

(Ishihara et al. 2003), F1 is expected to be more sensitive to the large-scale structure
of turbulence than F4.

The computations were carried out on the Earth Simulator at Japan Agency
for Marine–Earth Science and Technology and on the HPC2500 system at the
Information Technology Center of Nagoya University. This work was supported by
Grant-in-Aids for Scientific Research (B)17340117, (C)17560051 and (C)19560064,
from the Japan Society for the Promotion of Science, and also by a Grant-in-Aid for
the 21st COE program “Frontiers of Computational Science”.
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