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A Combined Circuit for Multiplication
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Abstract—A combined circuit for multiplication and inversion in
���� � is proposed. In order to develop a combined circuit, we
start with combining the most significant bit first multiplication al-
gorithm and the modified extended Euclid’s algorithm by focusing
on the similarities between them. Since almost all hardware com-
ponents of the circuits are shared by multiplication and inversion,
the combined circuit can be implemented with significantly smaller
hardware than that necessary to implement both multiplication
and inversion separately. By logic synthesis, the area of the pro-
posed circuit is estimated to be approximately over 15% smaller
than that of previously proposed combined multiplication/division
circuits.

Index Terms—Galois field, inversion, multiplication.

I. INTRODUCTION

G ALOIS field plays important roles in error-cor-
recting codes and cryptography [1]. Such applications

can be accelerated with fast dedicated circuits for arithmetic
operations in . Among the basic arithmetic operations
in , multiplication and multiplicative inversion/division
are much more time-consuming than addition and subtraction.
Thus, various circuits for multiplication and inversion/division
in have been proposed [2]–[5].

Multiplication and inversion in are employed for
elliptic curve cryptography (ECC), which is one of the major
public key cryptosystems. Since is very large in ECC [1],[6],
realization of circuits for both operations yields large area. Thus,
the reduction of hardware of these circuits is important for area-
restricted devices like portable ones.

In this paper, we propose a combined circuit for multiplica-
tion and inversion in . In the circuit, multiplication and
inversion are carried out with the most significant bit (MSB)
first multiplication algorithm and the inversion algorithm pro-
posed in [4], which is based on the extended Euclid’s algorithm,
respectively. In order to develop a combined circuit based on
these algorithms, we start with combining them by focusing on
the similarities between them. Since almost all hardware com-
ponents of the circuit are shared by multiplication and inversion,
the circuit can be implemented with significantly smaller hard-
ware than that necessary to implement both multiplication and
inversion separately.
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Compared with previously proposed combined circuits for
multiplication and division, the circuit to be proposed has sev-
eral advantages. For example, although the area complexity of
[7] is , that of the circuit to be proposed is . The
circuits proposed in [8] and[9] are based on the Stein’s binary
greatest common divisor (GCD) algorithm for division and need
to reverse the order of the coefficients of inputs and output poly-
nomials for multiplication. Thus, the circuit proposed in [8] has
extra area for such pre- and postcomputation, and how to imple-
ment such computation is not described in [9]. In contrast, the
circuit proposed here does not need such computations.

We have synthesized the circuit to be proposed using 0.18 m
CMOS standard cell library, for several ’s, and estimated its
area and critical path delay. The area of the circuit and regis-
ters is significantly smaller than that of the previously proposed
combined multiplication/division circuits [8], [9].

This paper is organized as follows. The next section explains
algorithms for multiplication and inversion in on
which the circuit to be proposed is based. Section III combines
these algorithms to develop a combined circuit. Section IV
proposes a combined circuit and estimates its area and critical
path delay by logic synthesis.

II. PRELIMINARIES

Let

be an irreducible polynomial on , where .
Then, we can represent an arbitrary element in defined
by as

where .
Multiplication “ ” in is defined as a polynomial

multiplication modulo on . Multiplicative inverse
of in is defined as the element that

satisfies

A. MSB-First Multiplication Algorithm in

We combine the MSB-first multiplication algorithm with the
inversion algorithm shown later, because they are suited to be
combined. The MSB-first multiplication algorithm in
is as follows, where denotes the th coefficient of polyno-
mial . The operation “ ” denotes polynomial multipli-
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cation on . The notation denotes the degree of a
polynomial.

[Algorithm MSB]

(The MSB-first Multiplication Algorithm in )

Input: :

: and irreducible

Output:

1:

2: for to do

3: if then

4:

5: else

6:

7: end if

8:

9: end for

10: output as the result.

Note that, in the execution of the algorithm, although the de-
gree of exceeds , the variables ’s are not referred
to, for . Therefore, when we implement the algorithm as
a circuit, an -bit register is sufficient to store .

B. Yan and Sarwate’s Inversion Algorithm in

For a large field, the extended Euclid’s algorithm is often
employed for inversion/division because it can be implemented
easily. Actually, various circuits for inversion/division in

based on the extended Euclid’s algorithm have been
proposed. In the combined circuit to be proposed, inversion is
carried out with the algorithm proposed by Yan and Sarwate [4],
which is based on the extended Euclid’s algorithm and shown
later. Here, denotes the th coefficient of the polynomial

. is a variable for finding out timing of a swap of the two
polynomials, and , for mutual division.

[Algorithm YS]

(Yan and Sarwate’s Inversion Algorithm in [4])

Input: :

: and irreducible

Output:

1:

2:

3: for to do

4: if then

TABLE I
OPERATIONS OF ALGORITHM MSB IN AN ITERATION

5:

6:

7: else

8: if then

9:

10:

11: else

12:

13:

14:

15: end if

16: end if

17:

18: end for

19: output as the result.

Note that, at the end of the th iteration, all and are 0
for ’s outside the range , where and
denote the th coefficients of the polynomials and ,
respectively. Therefore, when we implement the algorithm as a
circuit, two -bit registers are sufficient to store and

by using a cyclic left shift instead of a logical left shift.
At the same time, we employ as the initial value of so
that the result will be stored in the register for .

III. COMBINED ALGORITHM FOR MULTIPLICATION/INVERSION

IN

In order to develop a combined circuit, we start with com-
bining algorithms MSB and YS by focusing on the similarities
between them. Tables I and II show the operations in an itera-
tion of algorithms MSB and YS, respectively.

The polynomial in algorithm MSB and the polynomial
in algorithm YS determine which operation is carried out

in an iteration. Therefore, we consider merging the two poly-
nomials first. We represent the obtained polynomial as .
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TABLE II
OPERATIONS OF ALGORITHM YS IN AN ITERATION

TABLE III
OPERATIONS OF ALGORITHM MULINV IN AN ITERATION

With Tables I and II, we also merge the polynomials and
in algorithm MSB with the polynomials and

in algorithm YS, respectively. We represent the obtained
polynomials as and , respectively. Note that, in
the case of multiplication, we must modify the algorithm so that
it satisfies at all times.

Next, we consider merging the reduction polynomials of the
two algorithms. The reduction polynomial of algorithm MSB is
the irreducible polynomial with degree that defines the field.
On the other hand, the reduction polynomial of algorithm YS
implemented as a circuit is the polynomial whose de-
gree is , because we employ the cyclic left shift instead of
the logical left shift in an -bit register, as described ear-
lier. Since it is desirable for very large scale integration (VLSI)
implementation that the degrees of the two reduction polyno-
mials are identical, we employ instead of as the
reduction polynomial in algorithm MSB. Along with this modi-
fication, we also modify the other polynomials, ,
and , as multiplied by . This modification is simply per-
formed by changing the initial values of them with the values
multiplied by .

Finally, we apply two efficient modifications. One is that we
employ and as the initial values of
and , respectively, in the case of multiplication. By this
modification, is always true in the execution of the algo-
rithm, and after iterations, the values of , and

will be , and , respectively. Therefore,
in the th iteration, the result will be
transferred to the register for that stores the result of in-
version. At the same time, we employ as the initial value of

in the case of inversion so that the result
will be stored in the register for , namely both the product
and the inverse will appear in the same position in the register.

The other is that we also merge the two polynomials,
in algorithm MSB and in algorithm YS, so that they can
share the register. It is because the polynomial in algo-
rithm MSB is not employed in algorithm YS, and the polyno-
mial in algorithm YS is not employed in algorithm MSB.
We represent the obtained polynomial as .

A combined algorithm for multiplication and inversion in
is as follows, where , and denote the th

coefficient of the polynomials , and , re-
spectively. mode is a control signal for selection of multiplica-
tion or inversion.

[Algorithm MULINV]

(A Combined Algorithm for Multiplication and Inversion
in )

Input: :

and irreducible

Output:

1: if then/*inversion*/

2:

3: ;

4:

5: else/*multiplication*/

6: ;

7: ;

8: ;

9: end if

10: for to do

11: if then

12: ;

13: ;

14: else

15: if then

16: ;
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Fig. 1. Block diagram of the proposed circuit.

17: ;

18: else

19:

;

20: ;

21: ;

22: end if

23: end if

24: if then

25:

26: end if

27: ;

28: end for

29: output as the result.

IV. COMBINED CIRCUIT

We have designed a sequential circuit based on algorithm
MULINV, which calculates operations of an iteration of the al-
gorithm in a cycle. Table III shows the operations in an iteration
in algorithm MULINV.

Fig. 1 shows a block diagram of the proposed circuit. Calc-1
and Calc-2 consist of Cell-Is and Cell-IIs,

respectively. Calc-1 updates and , and Calc-2
updates and in accordance with Table III.
Reg-BR, Reg-GS, Reg-PU, and Reg-AV are the registers for
storing , and , which have

-bit width, respectively. Fig. 2(a)–(c) shows design
examples of basic cells (Cell-I, Cell-II), and the controller in
Fig. 1, respectively. The control signals are calculated by the
controller as follows:

Table IV shows the comparison of the combined circuits that
have area complexity. The proposed circuit can be im-
plemented with smaller area, although it needs more clock
cycles for division than the other circuits. Note that gate count
in the table includes only gates for basic cells because the area
of the whole circuit is almost occupied by basic cells and regis-
ters when is large. Also note that we added multiplexers
(MUXs) to the circuits proposed in [8] and[9] to stop the opera-
tions after the circuit finished the multiplication. Otherwise, the
result of multiplication will change after clock cycles.

We described circuits based on algorithm MULINV with
Verilog-HDL for several ’s. For comparison, we also de-
scribed circuits based on the MSB-first multiplication and the
Yan and Sarwate’s algorithm, and the previously proposed
combined multiplication/division circuits in [8] and [9]. Note
that although the circuit in [9] needs to reverse the order of
the coefficients of inputs and output polynomials, we did not
include the cost of such pre- and postcomputation in the esti-
mation because they do not describe how to implement such
computation.

We synthesized them with Synopsys Design Compiler using
Rohm 0.18 m CMOS standard cell library provided by VLSI
Design and Education Center (VDEC), the University of Tokyo.
Table V shows the synthesis results. We set 0 as area constraint
and various values as critical path delay constraints, and syn-
thesized them with Design Compiler’s synthesis option “-in-
cremental mapping.” The figures in the table are the best
area–time product ones obtained with the synthesis. The area
of the proposed circuit is approximately over 15% smaller than
that of the combined multiplication/division circuits proposed
in [8] and [9].

V. CONCLUDING REMARKS

We have proposed a combined circuit for multiplication and
inversion in . In order to develop the combined circuit,
we have combined the MSB-first multiplication algorithm and
the Yan and Sarwate’s inversion algorithm by focusing on the
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Fig. 2. Basic cells and the controller of the proposed circuit. (a) Cell-I. (b) Cell-II. (c) Controller.

TABLE IV
COMPARISON OF COMBINED CIRCUITS

TABLE V
SYNTHESIS RESULTS (0.18 �M CMOS TECHNOLOGY)

similarities between them. Almost all hardware components of
the proposed circuit are shared by multiplication and inversion.

The area of the proposed circuit has been estimated with logic
synthesis using Rohm 0.18 m CMOS standard cell library.
The area of the circuit is significantly smaller than that neces-
sary to implement both multiplication and inversion separately
and that of the previously proposed combined multiplication/di-
vision circuits. Therefore, the proposed circuit is effective for
area-restricted devices.
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