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Analytical Solution of the Continuous Cellular
Automaton for Anisotropic Etching

Miguel A. Gosdlvez, Yan Xing, and Kazuo Sato

Abstract—The fabrication of micro- and nanoelectromechanical
systems (MEMS/NEMS) is based on a wide variety of growth
and etching technologies sequentially applied throughout process
flows which may involve a dozen or more steps, their realistic
simulation having become an essential part of the overall design.
By focusing in the simulation of anisotropic etching as a com-
plex example of microfabrication, in this paper, we show how to
solve analytically the time evolution of the continuous cellular
automaton method, thus providing a particularly suitable choice
for the realization of realistic simulations for MEMS and NEMS
applications. This paper presents a complete theoretical derivation
of the analytical solution based on geometrical and kinetic aspects
of step flow on any surface, including a new classification of the
surface sites based on a mean-field treatment of the propagation
of the steps. The results of the corresponding simulations are in
good agreement with the experiments. The study can be seen as an
example of a general procedure that is applicable to other interface
propagation problems. [2007-0167]

Index Terms—Anisotropic etching, cellular automata (CA),
simulation, step flow, surface processing.

I. INTRODUCTION

NISOTROPIC wet chemical etching of crystalline silicon
is a popular process for the fabrication of micro- and
nanoelectromechanical systems (MEMS and NEMS). Although
alternative technologies such as deep reactive ion etching
(DRIE) have penetrated into the territories that are once ex-
clusive of wet etching, the higher costs and, particularly, the
limitations for batch processing using DRIE still make chemical
etching the most affordable method for the reliable production
of 3-D structures with multipurpose functionalities.
In spite of its wide use, the simulation of etching for MEMS
applications has been so far a partial success only. One has to
distinguish between two types of simulations: 1) those aiming at
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the prediction of the propagation of the etch front in engineering
applications, often involving the combination of etching with
other micromachining techniques, and 2) those targeting at the
understanding of the process at the atomistic scale, including
the description of a large variety of etched surface mor-
phologies. Generally, the engineering applications have been
dominated by the so-called geometrical simulators [1]-[4],
where the etch front is described as a collection of planes
(or facets) propagating along their normals according to the
measured etch rates [5], [6]. Although these simulators have
described successfully the propagation of the etch front in
complicated geometries, their major drawback is the need of a
full orientation-dependent etch rate database, such as ODETTE
[6]. The larger the number of measured etch rates for different
surface orientations, the more accurate the simulations become.
The fact that so many etch rates are needed reminds of a “brute
force” approach. Although interpolation has been successfully
used between similar etching conditions, in practice, simulating
the process under new etching conditions becomes a challenge
requiring the measurement of the complete set of etch rates.
On the other hand, the atomistic simulators based on Monte
Carlo (MC) and cellular automata (CA) methods have been suc-
cessfully used for the understanding of the etching anisotropy
as well as for explaining a wide variety of morphologic features
originating from the process. In particular, the MC methods
have shown that the relative stability of certain surface sites
can have dramatic effects on the morphology and that diffusion
transport and micromasking have a larger role than originally
anticipated, leading to the formation of step bunches, pyramidal
and trapezoidal hillocks, zigzag structures, and polygonal steps
[7]-[10]. Most importantly, the use of these methods has pro-
vided a clearer picture of etching as a step-flow process [11]. In
spite of this overall success, the MC methods have not been able
to describe satisfactorily the propagation of the etching front
for engineering applications, except with limited success [12].
In this respect, the CA simulators [13]-[16] have performed
better, although also with limitations in spite of the accumu-
lated tradition [17], [18]. Recently, Zhou et al. [19], [20] have
presented a surface-site indexing scheme based on counting the
numbers of interior and surface nearest neighbors (17 and 1s,
respectively) and next nearest neighbors (2¢ and 2s) of the
surface atoms, enabling more accurate CA simulations by pro-
viding better control over the fast etching planes. Although this
suggests that the main reason for a traditionally limited success
in the atomistic engineering simulations is an incomplete char-
acterization of the surface sites involved in etching, this paper
stresses the perspective that it is equally important (if not more)
to incorporate the step-flow aspects of the process directly into
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the CA simulation. When doing so, a complete understanding
of the mechanism can be achieved, thus enabling the analytical
solution of the dependence of the surface etch rates on the
atomistic reaction rates.

The importance of the step-flow aspects of anisotropic etch-
ing is due to the high stability of the (111) crystallographic
surface against etching, which promotes the formation of (111)
terraces separated by steps. Anisotropic etching consists essen-
tially on the removal of atoms from the steps, giving rise to
step propagation. This step-flow nature was established in the
early 1990s through a combination of in situ STM observations
[21], theoretical analogies between etching and growth [22],
and microscopy and spectroscopy experiments [23]-[25]. The
idea of step flow matured during the late 1990s, resulting in
the development of atomistic etching simulators that use step
propagation in one way or another [7], [12], [26], [28], [29].
Earlier MC [30]-[33] and CA [17], [18] simulators did not
recognize the importance of step flow. Even today, the pre-
sentation and discussion of CA models for the simulation of
anisotropic etching [15], [16] typically disregard the role of
step flow. In this paper, we show how the step-flow aspects
of etching are incorporated into the otherwise geometrical
evolution provided by a CA simulation approach.

The step-flow analysis presented in this paper has been
possible due to the explicit development of a tool for the visual-
ization of step propagation on any generic surface using the CA
method. The tool is a user-oriented simulator which we refer
to as “VisualTAPAS.” It allows inspecting the geometry and
the surface-site configurations for any {hkl} surface orientation
as well as monitoring the evolution of the surface according
to a number of methods, including the CA. In addition to
the pedagogical value, the tool also allows the simulation of
anisotropic and DRIE etching for rather complicated MEMS
systems. The simulator can be freely downloaded from the
web [34]. VisualTAPAS stands for “Visual Three-dimensional
Anisotropic Processing at All Scales.”

This paper focuses on the detailed analysis of the geometry
and the kinetics of step flow on any generic surface orientation.
As a result of the analysis, a consistent classification of the
surface sites is introduced, which enables a robust theoretical
description of the analytical form of the etch rate when the
process is simulated with a CA. We use a continuous CA
(CCA), which is a generalization introduced by Zhu and Liu
[14], [15] for the CA method. In the CCA method, the silicon
substrate is described as a collection of sites which can be
fully or partially occupied by atoms, and the propagation of the
surface is described as the overall result of gradually decreasing
the occupation of the sites according to the site-dependent
removal rates of the atoms.

This paper focuses on the CA approach partly because this
type of method is strongly emerging not only for growth and
etching but also for fluid flow (diffusion limited), reacting
systems in chemistry, pattern formation, development of or-
ganisms and ecosystems, traffic design and analysis, or even
urban growth. The CA method can reliably include both wet
and DRIE etching (as well as different growth technologies)
in the simulation tools for the design of MEMS and NEMS.
In comparison to the more traditional geometrical simulators

[4], [5], the atomistic modeling provides a natural link between
surface processing, bulk micromachining [13], [19], and struc-
ture analysis [35], [36] through the atomistic discretization of
the system. It also provides the possibility to understand the sys-
tem evolution as the result of a characteristic step-flow process,
gaining valuable insight as compared to the propagation of
planes in the geometrical approach.

The exact solutions for the etch rates make the realization
of accurate simulations of anisotropic etching possible. This
is achieved through a fitting procedure in which the atomistic
removal rates appearing in the analytical expressions are solved
in terms of the experimental values of the etch rates for several
surface orientations used as inputs. The comparison of the
results from the simulations to available experiments demon-
strates the validity of the theoretical analysis. This reduces
the amount of input experimental etch rates necessary for
simulating the process accurately.

This paper has been organized into three major sections
in addition to this Introduction. Sections II and III constitute
the core of the study and may become rather technical as the
purpose of this paper is to provide a self-contained analysis of
all the features that need to be considered in order to derive the
analytical expressions. In Section II, we introduce new notation
and a new systematic classification of the surface sites based on
the concepts of restriction and edging. These concepts allow us
to differentiate between sites that are close to the steps—both
on the upper and lower terraces—and sites that are far. Together
with the fundamental idea of step flow, the two concepts are a
key element without which the analytical solution of the etch
rates in Section III would be an impossible task. In order to
make the classification of the sites more comprehensive, we
include a detailed analysis of the underlying crystallographic
geometries in Sections II-A—C, showing that many of the sur-
faces can be themselves classified into three families which ac-
tually share many aspects, most importantly, restriction and
edging. In Section IV, we present the fitting procedure through
which the atomistic rates for the different atoms can be
obtained, and we compare the results of several simulations to
the experiments, showing very good agreement. In Sections V
and VI, we present a discussion of the merits and limitations of
our approach and the conclusions of this paper, respectively.

II. ORIENTATION-DEPENDENT GEOMETRY AND
CLASSIFICATION OF THE SURFACE SITES

As mentioned already, wet etching is essentially a step-flow
process [11]. Depending on the nature of the steps, there are
differences in the details of the step propagation, and it becomes
useful to classify the surfaces according to the steps appearing
on them. In this section, the geometry of the different surface
orientations is analyzed from the perspective of step flow. In
turn, this makes the derivation of the etch rates for arbitrary
orientations easier (Section III).

In this paper, we distinguish between five types of surfaces,
namely, the M, L, H, V, and K surfaces. Although the full
details of this classification are presented in the succeeding
discussions, a quick reason for the five surface types is as
follows. On misaligned (111) surfaces, traditionally, one finds
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two types of steps: the monohydride (M) and the dihydride (D)
terminated steps, with the peculiarity that the latter can ap-
pear as two different realizations: the horizontal (H) and the
vertical (V) step dihydrides. As a result, one can distinguish
between M, H, and V misaligned (111) surfaces. In addition,
when a full row of M step atoms is removed, a complete row
of singly bonded trihydride-terminated atoms is left behind.
We refer to these atoms as lollies and denote them with the
symbol L (more about this name later). The corresponding L
surfaces are essentially equivalent to the M surfaces, except for
the nature of the sites located right at the step. This is similar to
the H and V surfaces, which are equivalent except precisely
at the steps. In addition to these four surfaces, we need to
include misaligned (110) surfaces characterized by displaying
steps made of kink sites (K). This gives a total of five step
types and, correspondingly, five kinds of surfaces. Due to the
strong relation between the M and L surfaces and the H and
V surfaces, one can eventually distinguish between three main
surface families: the M, D, and K families. The M family
contains M and L realizations, and the D family contains H
and V realizations. The K family has a single realization only.

In spite of the technical details, one should keep in mind
that the purpose of this section is to describe the geometrical
similarities between the three main surface families. These
similarities justify the definition of the concepts of restriction
and edging, which provide a simple, yet powerful, means of
classifying the numerous surface sites appearing during the
step-flow-based propagation of the surfaces. The analogies
between the three families are summarized in the value of the
step-to-terrace ratio (to be introduced later), which is almost
identical across the three families, as will be shown.

In addition to the geometrical aspects related to the step
flow, the analysis that will be discussed later provides a useful
background for understanding which experimental etch rates
(i.e., from which orientations) are essential for the successful
realization of a fitting procedure that allows performing accu-
rate atomistic simulations of etching, as shown in Section IV.
This is important in order to appreciate the significant reduction
in the number of experimental etch rates that is necessary
for simulating the process in comparison to the geometrical
methods.

A. M Surface Family

The M family refers to vicinal (111) orientations whose ideal
crystallographic cut displays monohydride sites located at the
steps, as shown in Fig. 1(a) and (b). These step sites are tra-
ditionally denoted as step monohydrides (SMs) to differentiate
them from the terrace monohydrides (TMs) appearing at the
terrace regions [25]. As shown in Fig. 1(c) and (d), the M family
contains the (h+2 h+2 h)and (h h 1) subfamilies,
where h is an integer h > 1 and h > 2, respectively. The nota-
tion (h+2 h+2 h) issubjected to division by a common
multiplier of the resulting (A &k 1) values.

The (h4+2 h+2 h) subfamily displays an increasing
number of terrace sites as h is increased. It is simple to
check that (h+2 h+2 h) has exactly h TM sites per
terrace area. For instance, the inspection in Fig. 1(c) shows that
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Fig. 1. Examples of surfaces from the M family. (a) Side view of (553)
showing the TM and SM sites. (b) Close-up 3-D view of (553). (¢) The Mt
subfamily. (d) The Mg subfamily. Angles are with respect to (111).

(442)(= (221)) has two TMs in each terrace, (553) has three,
(664)(= (332)) has four, etc. . .. If we define the step-to-terrace
ratio p as the ratio of the number of step sites to the number of
terrace sites, then we have p = 2/h. Here, the numerator 2 is
due to the fact that every step is made of two rows of SM sites,
as shown in Fig. 1(b). Due to this feature, we will refer to the
SM steps as “SM row pairs.”

In contrast, as h increases the (. h 1) subfamily shows
an increasing number of steps (i.e., SM row pairs) and a
decreasing number of terraces, as shown in Fig. 1(d). In fact,
in this whole family, each terrace has been reduced to a single
TM row. As h increases, the structure of the surface displays
a characteristic pattern that depends on whether & is even or
odd. As an example, (331) shows one SM row pair for each
TM row, whereas (441) shows a more complicated structure
consisting of two SM row pairs, one TM row, one SM row
pair, and one TM row. This structure forms a basic pattern that
is repeated periodically. For simplicity, we may refer to this
repeated structure as [2, 1, 1, 1]. If we now consider the (551)
orientation, the repeated structure is [2, 1, 2, 1], i.e., two SM
row pairs, one TM row, two SM row pairs, and one TM row.
Similarly, the repeated block becomes [3, 1, 2, 1] for (661)
and [3, 1, 3, 1] for (771), as explicitly shown in Fig. 1(d).
Thus, for the generic (A h 1) surface, the repeated block is
[h/2,1,h/2 —1,1]if hisevenand [(h —1)/2,1,(h —1)/2,1]
if h is odd. In spite of this difference between the even and
odd indices, the step-to-terrace ratio for the whole (b h 1)
subfamily is calculated simply as p = h — 1. For the even case,
one has p = (2(h/2) +2(h/2—-1))/(1 + 1) = h — 1. For the
oddcase,p=(2(h—1)/2+2(h—-1)/2)/(14+1) =h —1.

Since the most essential difference between the
(h+2 h+2 h)and(h h 1)subfamiliesis the relative
number of terrace and step sites, we will refer to them as the
terrace-rich M surfaces (or, simply, the My family) and the
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Fig. 2. Definition of the lolly sites giving rise to the L family, a small variation
of the M family. (a) and (b) M and L realizations of (553), respectively.

step-rich M surfaces (or Mg family), respectively. This feature
is reflected in the value of the step-to-terrace ratio, which is
less than one for the former (p = 2/h < 1) and larger than one
for the latter (p =h — 1 > 1).

Note that (331) can, in principle, be considered as an element
of both the Mt and Mg families. However, it unambiguously
belongs only to the (b h 1) family (Mg) since the terrace
regions contain a single TM row, which is a prevailing char-
acteristic of the rest of the Mg orientations. This is in contrast
to the M surfaces, which have two or more TM rows at the
terrace areas. The number of TM rows in the terrace regions
is important because the TM rows located at the edges of the
region (i.e., in close proximity to the steps) can be classified
as different sites from those at the center region, as will be
explained in detail in Section II-D. This makes the terraces of
the M family behave in a different manner from the terraces
of the Mg orientations.

When one of the SM rows in the SM row pair is removed,
as shown in Fig. 2, a complete row of singly bonded trihydride
sites is left behind. We refer to these sites as lollies or lollipops
(L). This type of site is described in growth as an “adatom,”
particularly when the singly bonded atom occurs on a terrace.
Since, in etching, we remove the atoms instead of adding them,
we prefer the use of the term “lolly,” which, in our opinion, is
quite descriptive of the corresponding geometry. This gives rise
to the L surface family, which is equivalent in every respect to
the M family, except for the fact that the steps are single L rows
instead of SM row pairs and the terraces in the Lt subfamily
(h+2 h+2 h)have h+ 1 TM rows instead of h for the
M subfamily.

B. D Surface Family

The D family contains surface orientations whose ideal crys-
tallographic cut displays dihydride sites located at the steps,
as shown in Fig. 3(a)—(d). Traditionally, there are two types
of step dihydrides, namely, the horizontal and the vertical step
dihydrides (HSD and VSD, respectively) [25]. The difference
depends on whether the dihydride unit containing the silicon
atom and the two hydrogens lies on a plane that is (almost)
horizontal or (almost) vertical with respect to the terrace plane,
which is assumed horizontal [cf. Fig. 3(b) and (d)]. During etch-
ing, particularly using the CCA method, the VSD sites appear
after the removal of the HSDs, and reversely, the HSDs appear
after removing the VSDs. Accordingly, one may consider that
the D family has two alternative realizations, the H and V

(B11),(411),(511),(611),(711), ..., (100)

54.74°
43.31°

(h11)=(111),
h>) —

( 29.50°

38.94°

Fig.3. Examples of surfaces from the D family. (a)—(b) Side and 3-D views of
(533) showing the HSD sites. (c)—(d) Side and 3-D views displaying the VSD
sites. (e) The D subfamily. (f) The Dg subfamily. Angles are with respect
to (111).

families, equivalent in every respect except for the nature of
the sites located exactly at the steps. This is similar to the case
of the M and L realizations of the M family.

As in the case of the M family, the D family also contains two
subfamilies, namely, the (h+2 h h)andthe (h 1 1)
surfaces, where h > 1 and h > 2, respectively. The two sub-
families differ in the relative number of steps and terraces, with
the former being terrace-rich (and, thus, referred here as the Dt
family) and the latter being step-rich (and, thus, referred here as
the Dg family).

The step-to-terrace ratio for the Dp family (h+2 h h)
is p = 1/h since, in this case, there is only a single HSD row
per step (in comparison, the Mt surfaces have two SM rows
per step) and there are h TM sites per terrace area, as a simple
inspection in Fig. 3(e) shows. As an example, (755) has five
TMs in each terrace, (644)(= (322)) has four, (533) has three,
etc. ... In a similar manner, the step-to-terrace ratio for the Dg
subfamily (A 1 1) is calculated as p = (h — 1)/2. This is
very similar to the case of the Mg orientations, where p =
h — 1, the difference being the number of rows making the step
in each case (two for the M family and one for the D family). As
in the case of the Mg surfaces, the odd and even Dg orientations
display a different structure, described as [h/2,1,h/2 — 1,1] if
his even and [(h —1)/2,1,(h —1)/2,1] if h is odd. If h is
even, one has p = (h/2+ (h/2 - 1))/(14+1) = (h—1)/2.1f
hisodd, p=((h—1)/2+ (h—1)/2)/(1+1)=(h—1)/2.
Thus, (311) has 1 step site per terrace site, (411) has 3/2 = 1.5,
(511) has 4/2 = 2, and so on. Note that the step-to-terrace ratio
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Fig. 4. Examples of surfaces from the K family. (a), (b) Side and 3-D views
of (530). (c) The K subfamily. (d) The Kg subfamily. Angles are with respect
to (110).

for the Dt and Dg subfamilies is independent of whether we
consider HSD or VSD terminated surfaces.

As in the case of (331) for the M family, (311) can, in
principle, be considered as a representative of both the Dy and
Dg surface families. However, as before, for the M family, the
fact that the TM sites appear as a single row in the Dg family
transforms them into a different site type than the TM sites
observed in the D orientations. As a result, (311) is a member
of the Dg family and not of the D family. This will be shown
in detail in Section II-D.

C. K Surface Family

The previous division of vicinal (111) orientations into the
M and D families is the result of a purely geometrical de-
scription of the corresponding crystallographic cuts. A similar
characterization can be performed for vicinal (110) surfaces
inclined toward (100). As shown in Fig. 4(a), in this case, the
regions appearing as “terraces” are actually made up of SM
sites (in comparison to the TM sites appearing on the real (111)
terraces), and the “steps” are made up of kink (K) sites (instead
of pure step sites as in the previous families). Thus, we define
the K family as composed by (110) stepped surfaces whose
ideal crystallographic cut displays K sites at the “steps” and
SM sites at the “terraces.” We stress that, for the K family, the
terms “steps” and “terraces” are only used as an extension of
the analysis of vicinal (111) planes.

As in the case of the M and D families, the K family
also contains two subfamilies, namely, (h+2 h 0) and
(h 1 0), where h > 1 and h > 2, respectively. The two
subfamilies differ in the relative number of K and SM sites,
with the former family being terrace-rich (and, thus, referred
here as the K1 family) and the latter being step-rich (and, thus,
referred here as the Kg family).

The step-to-terrace ratio for the (h+2 h 0) or Kt sub-
family is p = 1/h since there are h SM rows per terrace and
one single K row per step. For the (A 1 0) or Kg family,
one has p = (h —1)/2, which is similar to the case of the
Dg and Mg families. This is due to the fact that identical
alternations between groups of steps and single-row terraces
occur in the three step-rich families (Mg, Dg, and Kg), resulting
in completely equivalent structures for the even and odd h
values across the three families.

As in the case of (331) for the M family and (311) for the
D family, (310) can be considered as a representative of both the
K and Kg subfamilies. However, because the SM sites appear
as a single row in the terrace regions of the Kg family, they
correspond to a different site type than the SM sites observed in
the Kt orientations, explaining why (310) is a member of the
Kg family and not of the K family.

Table I summarizes the most distinctive geometrical features
of the M, D, and K families. The symmetry between the three
families is notorious.

D. Edging and Restriction: Classification of the Surface Sites

The previous similarities between the M, D, and K families
highlight the fact that the terrace width in all three families
shrinks down gradually as we move away from (111) and (110),
eventually becoming a single-row terrace once we enter the
step-rich subfamilies (Mg, Dg, and Kg). In order to account
for the orientation dependence of the etch rate, this change
in the environment of the terrace sites (and, accordingly, of
the other sites also) should be taken into consideration. The
simplest way to do this is to recognize the different terrace
sites as different site types. For instance, the sites located at the
center of a wide terrace region can be considered to be different
from those located near the steps. Following this idea, we define
two additional site types or variants of the traditional terrace
sites: the edge and restricted terrace sites.

“Restriction” refers to the situation where a step is close to
the terrace site, thus restricting the amount of space around that
site. This is schematically shown in Fig. 5(a), where restriction
by M and H steps is highlighted in blue and red, respec-
tively. The M-restricted terrace site is denoted as TM, and the
H-restricted terrace site is denoted as TH, with the traditional
TM sites at the center region of the terrace denoted simply as
T. The M and H step sites correspond to the previously denoted
SM and HSD sites according to the standard notation.

Restriction can also occur due to the proximity of V and
L steps, as shown in red and blue in Fig. 5(b), respectively. The
L-restricted and V-restricted terrace sites are denoted as T and
TV in Fig. 5(b). The V step sites correspond to the previously
denoted VSD sites (standard notation).

In a similar manner, the term “edging” is used to describe
a terrace site that is located at the edge of a terrace region in
the proximity of a step. As an example, there are edge terrace
sites at the M, H, V, and L steps, as shown in Fig. 5(a) and (b).
The edge location is denoted using a subindex, in opposition
to restriction, which uses a superindex. For instance, the edge
terrace at the M step is denoted by Ty;. Similarly, Ty describes
the edge terrace at a V step.
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TABLE 1
MAIN SURFACE FAMILIES AND THEIR SUBFAMILIES. p IS THE STEP-TO-TERRACE RATIO (SEE TEXT).
X1 = TERRACE-RICH X SUBFAMILY. Xg = STEP-RICH X SUBFAMILY

Family Sub-family p Comments
Mr 2/h | A step contains two SM rows (row-pair)
M (h+2 h+2 h), h > 1 There are h TM sites per terrace region
(M and L Mg h-1 [h even: [h/2,1,h/2-1,1]-structure
realizations*) (hhl),h>2 h odd: [(h-1)/2,1,(h-1)/2,1]-structure
D 1/h  |A step contains only one HSD or VSD row
D (h+2 h h), h> 1 There are h TM sites per terrace region
(H and V Dg (b-1)/2[h even: [h/2,1,h/2-1,1]-structure
realizations) (h11),h>2 h odd: [(h-1)/2,1,(h-1)/2,1]-structure
Kr 1/h | A step contains only one K row
K (h+2h 0), h> 1 There are h SM sites per terrace region
Ks (h-1)/2[h even: [h/2,1,h/2-1,1]-structure
(h10), h>2 h odd: [(h-1)/2,1,(h-1)/2,1]-structure

(*) In the L realization, steps contain a single L row and there are 141 TM sites per terrace region.

M-restricted M step . (a) , H-rest}r[icted H step
M T
:.]TM_ _ILC
C €
) L 1; g M T l,l” Tn ( )
jllTM_ FOATTY T IIITEYT _r,J’__
ey
L-restricted M step V-restricted H step
/ .
M-restricted L step (b) ¢ H-restricted V step
M
/gt =
d) T T % i ®
j& &ATx TTT TT \A,v, .rl }J/__
mﬁ*ﬁ'
L-restricted L step | \ V-restricted V step

Fig. 5. Examples of edge and restricted terrace sites.

As a matter of fact, restriction can also occur for the edge
sites, as schematically shown in Fig. 5(c)—(f). As an example,
Fig. 5(f) shows that an H step can restrict the edge terrace at
the V step, giving rise to the T {,I sites. In a similar manner, the
other restricted edge sites are denoted by the symbols T, Tk,
TH, TY, and so on.

In addition to the use of the superindex- and/or subindex-
based symbols to denote the sites, we find it useful to intro-
duce an alternative acronym-based notation in which we use
“XR-ETY” to refer to the T% sites. As an example, LR-ETM,
which we read as “L-Restricted Edge Terrace at M,” stands for
TY;. Some additional examples are as follows: HR-T for TH,
read as “H-Restricted Terrace,” when the terrace is restricted by
the proximity of an H step; ETM for Ty, read as “Edge Terrace
at M,” when the terrace is at the edge of an M step; VR-ETH for
TV, read as “V-Restricted Edge Terrace at H,” when the terrace
is at the edge of an H step and is simultaneously restricted by
a V step. The similarity between the two notations is apparent.
The restricting agent goes to the front, and the edge location
goes to the end of the acronym, whereas the symbol displays
the restricting agent as a superindex, and the edge location as a
subindex.

Fig. 6 shows an exhaustive collection of all the sites that can
be identified through the arguments of restriction and/or edging
in the M and D families. The figure describes how some of the
site names change depending on the proximity of the restricting
step. For instance, in Fig. 6(a), the T site changes into an MR-T

site when the restricting M step is close enough. Similarly, the
ETM site changes into MR-ETM. In this case, the resulting site
is identical to an M site, at least as far as the first and second
neighbors of the two sites are concerned. Note that there are
four different L sites in Fig. 6, namely, L(M), LLETM), L(ETH),
and L(T). These correspond to the lollies (or trihydrides) that
are formed when removing a whole row (or layer) of M, ETM,
ETH, and T sites, respectively, as shown in the fourth row of
Fig. 6(b) and (d) (darker background color). We read the names
of these lolly sites as follows: For L(M), we say “L of M,”
which is a shorter version of “Lolly of the M-site,” i.e., the
lolly site that is created by removing the M atoms. Similarly,
we say “L of T” when reading L(T), “L of ETM” for L(ETM),
and so on.

As one might guess, restriction and edging are not exclusive
features of the M and D families, and one can consider similar
spatial environments for the “terrace” sites in the proximity
of the K “steps” (K family) and also for the dihydride-rich
“terrace” regions in the Dg subfamily. In order to systematically
characterize the additional configurations, we need to consider
an extended set of basic sites, as shown in Table II. In this set,
the D and A sites are added to the already introduced T, M, H,
V, L, and K. As described in the table, the D sites appear on the
(100) “terraces” of the Dg subfamily, which simply correspond
to (100) crystallographic cuts [see Fig. 3(f)]. As in the case of
the K family, the use of the term “terrace” to refer to these
dihydride-rich flat regions is an abuse of terminology, but it
helps in underlining the similarities between all the families.
The A sites simply correspond to the monohydrides located
at the steps between the dihydride-rich plateaus in the Dg
subfamily [see Fig. 3(f)].

All the sites that can be identified for the K and Dg families
have been gathered in Fig. 7. Here, we follow the same acronym
notation as before, but substituting the “T” in XR-ETY by the
corresponding “terrace” site (M or D). As an example, EMK
denotes the “Edge Monohydride at K and AR-EDA stands for
“A-Restricted Edge Dihydride at A.” Note that restriction by the
K “steps” affects the “terrace” sites at two different distances,
which we denote by using the KR(1) and KR(2) acronyms. For
instance, the KR(2)-EMK site is an Edge Monohydride at K
(EMK) restricted by the K step at the longer distance. We read
it as “K-Restricted level 2 Edge Monohydride at K.”
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Fig. 6. Examples of sites.

TABLE II K step A step
BASIC SURFACE SITES (@) K restriction (b) A restriction

Symbol Name Std ‘Where is it found?

T Terrace monohydride | TM (111)-terraces

M step Monohydride SM (110)-"terraces’ and

M-steps in Mr-family

H |Horizontal step dihydride| HSD H-steps in Dp-family

A\ Vertical step dihydride |VSD V-steps in Dp-family

K Kink - K-’steps’ in Kp-family

D Dihydride - (100)-"terraces’

A Another monohydride - A-’steps’ in Dg-family

L Lolly - |Any singly-bonded trihydride site

We have gathered all the surface sites in Table III, showing
both the corresponding symbols and acronyms. The symbols
are a particularly compact manner to refer to the sites as far as
one remembers that the superindex denotes restriction and that
the subindex corresponds to the edge location. In this respect,
the acronyms are more advantageous, as the incorporation
of the letters R and E reminds one on how to read them.
This comes at the expense of a less compact representation.
In addition, Table III includes a column labeled “Std” for the
traditional (or standard) names, which are available only for a
few sites, and a final column showing in which figure each site  Fig. 7. Examples of sites.
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TABLE 1II
CLASSIFICATION OF SITES ACCORDING TO RESTRICTION AND EDGING FOR STEP FLOW

#[Symbol| Acronym [ Std [(n1,n2)](n1,ng,05)[(nf,nf,n3,03) Figure
1|0 |LHR-T - G| (3,92) (0,3,4,7) 6(i)
2 [Tk LR-T - B | (3,9,2) (0,3,6,5) 6(b,e,f)
3TV [MVR-T - (3,100 | (3,9,1) (0,3,3,7) 6(1)
4TV VR-T - (3,100 | (3,9,1) (0,3,5,5) 6(d,g,h)
5 |TMH  IMHR-T - (39 | (3,90) (0,3,2,7) 6(i)
6 T or |MR-T or - 39 | (3,90) (0,3,4,5) 6(a,b,c)
TH HR-T 6(c,d,g), 7(b)
7|T T T™ | (3,9) | (3,9,0) (0,3,6,3) 6(a-i)
8 |[MX  [KR(1)-M -1 (39 | (3881 (1,2,3,6) 7(a)
9 IME!  |KR(1)-EMK| - | (3,8) | (3,7,1) (1,2,2,6) 7(a)
10|TH VR-ETH - (38 | (8,7,1) (1,2,3,5) 6(g)
11|A or |A or - (3,7) (3,7,0) (1,2,2,5) 6(c), 7(b)
TH HR-ETH
12| Ty ETH - 37 | (3,7,0) (1,2,4,3) |6(c,d,g), 7(b)
13[Ty or [LR-ETMor | - | (3,9) | (3,7,2) (2,1,4,5) 6(c)
ME LR-M 6(b)
14|M¥2  |KR(2)-M - B 8,7,0) (2,1,1,6) 7(a)
15|M or |M or SM | (3,7) (3,7,0) (2,1,2,5) |6(a,b,e), 7(a)
™ MR-ETM
16| Ty ETM - B | 8,7,0) (2,1,4,3) 6(a,b,c)
17|ME2 [KR(2)-EMK| - | (3,6) | (3,6,0) (2,1,0,6) 7(a)
18| My EMK - | (3,6) | (3,6,0) (2,1,1,5) 7(a)
19D LR-D - [ (2,10) | (2,6,4) (0,2,5,5) 7(b)
20(DA  |AAR-D - (2,8 | (26,2) (0,2,2,6) 6(g), 7(b)
21|D4 AR-D - 28 | (26,2 (0,2,3,5) 7(b)
22|Dor |Dor - (28) | (2,6,2) (0,2,4,4) 6(h), 7(a,b)
vYor |VR-Vor
KX |KR(1)-K
23| vH HR-V - @27 | (26,1) (0,2,3,4) 6(d)
24|V \ VSD| (2,7) | (2,6,1) (0,2,5,2) 6(d,g,h)
25 [HE LR-H - 129 T 254 (1,1,4,5) 6(d)
26| H or HSD| (2,7) | (2,5,2) (1,1,2,5) 6(c,d,h)
DA AR-EDA
27Dy EDA - 1@ ] 252 (1,1,3,4) 7(b)
28| KB |KR(2)-K - @28 | (2,51 (1,1,2,4) 7(b)
29| K K -] (26) | (251 (1,1,3,3) 7(b)
30|L(T) [L(D) @Y [ (1,3,6) (0,1,6,3) 6(b)
31|L(Ty) |L(ETM) -l | (1,34) (0,1,4,3) 6(b)
32|L(Ty) |L(ETH) -l | (1,34) (0,1,5,2) 6(b)
33|L(M)  |L(M) -4 | (1,34 (0,1,6,1) 6(b)

can be found. The central columns containing numbers corre-
spond to three different classification schemes characterizing
each site according to its neighborhood. The (n1, n2) column
displays the number of first and second neighbors, the (ni,
nd, nb) column offers a split count of the second neighbors
into direct and indirect second neighbors [13], and the (nf,
nY, n3, nb) column shows a split count of both the first and
second neighborhoods into surface and bulk neighbors. The
latter classification is due to Zhou et al. [19], and as can be seen,
it is very useful in order to unambiguously distinguish between
all the sites contained in the table.

III. ANALYTICAL SOLUTION OF THE ETCH
RATES IN A CCA

As the central goal of this paper, we consider in this section
the derivation of the analytical expressions for the etch rates of
the different surface orientations in terms of a limited number
of atomistic removal rates. The previous section has provided
the necessary notation to effectively describe the realization

of step flow on a wide variety of surfaces. This includes the
definition of the restricted and edge terrace (and step) sites.
In this section, we proceed first by presenting the fundamental
ideas of the simulation method, providing then the full details
of the theoretical derivation.

In the CCA method for the simulation of anisotropic etching,
the substrate is treated as a collection of crystallographic sites
(or, in general, cells) which can be fully or partially occupied
(e.g., by atoms or any other “occupants”). The atoms have asso-
ciated removal rates which depend on the site type (or cell type)
they occupy, and the propagation of the surface is described
as the overall result of gradually decreasing the occupation of
the surface sites (or cells) according to the removal rates of the
atoms (or occupants).

When we use the term “occupation” of a site, it corresponds
to the “mass” of the occupying atom in the original presentation
of the CCA method by Zhu and Liu [15]. We prefer to avoid the
“mass” terminology for the following reasons: 1) The equations
that we derive for the time dependence of the occupation of
a site are based on a nondimensional character, which the
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(a)-(b): L(M) is removed, M emerges
(b)-(f): Occupation of M decreases

(£)-(g): M is removed, ETM becomes L(M)
(g)-(h): Occupation of L(M) decreases

Fig. 8. Example of time evolution using the CCA method for (775). Time increases from (a) to (h).

occupation satisfies but the “mass” does not; 2) the crucial idea
or starting principle of the CCA method is to recognize that the
rate of decrease of the occupation of a site is equal to the rate of
removal of the corresponding atom, without any need to involve
the “mass” of the atoms; and 3) by decoupling the occupation
of the sites from inherent properties of the occupants such as the
“mass,” the underlying geometrical nature of the CCA method
can be perceived better.

If a site is on the surface, its occupation 7 has a value in
the range [0, 1]. When the occupying atom first emerges to
the surface due to the removal of neighboring atoms, m is 1.
When the site is completely empty, m becomes 0. At every
time step, the value of 7 is reduced by an amount At from its
previous value, where At is the time increment (not necessarily
constant) and r is the (possibly time-dependent) removal rate
of the atom. This reduction in the occupation results simply
from the fact that the rate of change in the occupation of the
site (—(Aw/At)) is equal to the rate of the removal of the atom
populating it (r), i.e., —(An/At) = r. In differential form, this
is written as

dm
priie (1)

As an example, Fig. 8 shows the changes observed in the
occupation of different surface sites during a sequence of con-
stant time steps in the CCA evolution of the (775) orientation.
In Fig. 8, the occupation of a surface site is described by
the size and color of the occupying atoms, with the larger
darker spheres corresponding to a larger occupation and the
smaller lighter spheres being closer to the empty state. The bulk
sites, whose occupation is 1, are represented by gray spheres
with an arbitrary intermediate size. This allows highlighting
the atoms which belong to the interface, separating them from
the bulk. For this particular case, the rates of the removal of
L(M), M, ETM, and T atoms satisfy the condition rL) >
M > rETM > T, chosen to mimic the step flow on this
surface. In Fig. 8(a), site L(M) has a small occupation (small
light-colored sphere), and the occupying atom has a large rate
TLOM) therefore, this atom will be removed next. As shown
in Fig. 8(b), this leads to the emergence of site M. As a new
member of the surface, site M exhibits a value of 1 for the
occupation [largest blue ball in Fig. 8(b)]. Since the removal
rate for an M atom is larger than for ETM (ry > rrrM), the
evolution in Fig. 8(b)—(f) essentially consists on the reduction

of the occupation of M. Note that the occupation of all the other
sites (including ETM, T, MR-T.. . .) is also reduced, although
this is not noticeable in the figure due to their small removal
rates, resulting in small changes in occupation (—rgyanAt =
Amgman) and, thus, in the size and color of the corresponding
spheres. In Fig. 8(g), M has been removed, and site ETM has
become an L(M). In Fig. 8(h), the occupation of L(M) has
been reduced, which is accompanied by small reductions in
the occupation of the other sites, almost unnoticeable due to
the small changes in the sizes of the spheres. At this point, the
system is back on state (a), and the same processes will be
repeated.

Note that the only physical input used for the evolution
shown in Fig. 8 is that etching proceeds as a step-flow process,
which is enforced by requiring that the removal rate of the
terrace atoms is very low as compared to the rest of the atoms
(rr < Tothers)- As shown in the following section, except for
this physical insight, the CCA 1is essentially a geometrical
method in which the advancement of a crystallographic plane
is replaced by the propagation of the occupation field defined
all over the smaller constituting elements of the plane, i.e., the
surface sites (or cells).

Taking into account that the removal rate of a surface atom
will typically change with time (e.g., due to a change in the
neighborhood, such as the ETM becoming an L(M) in the pre-
vious example), we can formally describe the value of the
occupation at any instant ¢ by integrating (1) to arrive at the
following integral form:

m(t)=1— [ r(t")dt 2)
/

where the initial condition 7(0) = 1 has been used. When the
atom is removed at time ¢t = 7, we have w(7) =0, and (2)
becomes

T

/r(t’)dt' =1. 3)

0

Equation (3) provides a way to calculate the elapsed time 7
between the birth and the removal of a surface atom if we know
the history of the atom, i.e., if we know how many times the
site type of the atom changes, what are the removal rates for
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those site types, and what is the time interval spent as each
type. As an example, the L(M) atoms in Fig. 8 emerge to
the surface as LR-T type and successively become MR-T, T,
and ETM atoms before they are converted into the L(M) type,
which is when they are removed. Equation (3) will become our
working principle in order to derive the analytical expressions
that describe the overall etch rate of any surface orientation as
a function of the atom removal rates and a few geometrical
features.

A. Derivation of the Etch Rates

We are interested in the determination of the overall etch rate
of any surface orientation when the propagation of the surface
is realized by using the CCA method, e.g., as shown in Fig. 8.
In most cases, the structure of the surface repeats itself after
some time period. For instance, in Fig. 8, the period spans two
events, namely, the removal of the M and L(M) atoms. Due to
this feature, the etch rate can be calculated as the ratio of the
advanced distance in one such period to the corresponding time

- AH _ AHp + AHg

R="7r = Atp + Atq

“)
Here, AHp and AHq are the changes in the average height
of the surface when the atoms of generic types P and Q are
removed, respectively, and Atp and Atq are the corresponding
time increments. In Fig. 8, the generic sites P and Q are M and
L(M), respectively.

1) Determination of the Change in the Average Height:
In order to determine AHp and AHgq, we use the spatial
periodicity of the surface in the horizontal direction and re-
strict the analysis to one such repeated structure, as shown in
Fig. 9. Before the removal of a row of M atoms, the average
height of the surface is (H)") = (SN, H;)/N = (H, + Ho +
-+« + Hy)/T7, where N = 7 is the number of surface atoms in
the repeated region. After the removal of the M-type atoms,
the average height is (H)\/) = (SNE ;) /N = (Ha + Hj +
.-+ Hg)/7. Thus, the change in the average position of the
surface is

Ay = (1Y — ()
_ Hg— Hy

T

Hir-t— Hum
7

_dcosa
N

&)

Note that dcos o = Hy — Hyg-7 is the projection (along the
z-direction) of the distance between the removed (M) and the
emerging (LR-T) atoms. This result can be generalized, and
the change in the average height can be obtained simply as the
projection (along the z-direction) of the distance between the
removed (R) and the emerging (E) atoms divided by the number
of atoms in the repeated structure
Hy — Hgy, dr_E COS

AHp = =P = T 6)

Fig. 9. Geometry for the determination of AHyp and A Hy,(apy on (775).

For instance, the removal of the L(M) atoms on (775) in Fig. 9
leads to the expression
Hy — Hyou lcos

Low - - ™

which corresponds to substituting in (6) the emerging atom E
by M and the removed atom R by L(M). Similar expressions
are found for other surface orientations involving the removal
and the emergence of other atom types, and (6) is always found
to be valid.

Note that, in Fig. 9, d=1= (\/§a/4), where a is the
lattice parameter of the conventional unit cell of the diamond
structure of crystalline silicon (a = 5.43 A). Since a can
be understood as the angle between the planes (775) and
(111), we have cosa =[(1,1,1)-(7,7,5)]/(vV/1%2 + 12 + 12
VT2 4+ 72 +52) = 19/(v/3v123). Similarly, 3 is the angle
between (775) and (111). Thus, one gets cos 8 = [(1,1,—1) -
(7,7,5)]/ (/124 12+ (-1)2V/72+ 72+ 52) = 9/(v/3V/123).
As a result, the total displacement in the average position of
the surface is

AH =AH\ + AHy v
V3a(cos o + cos f3)
4.7
a
= ——. 8
VI3 ®
Following the same recipe, the previous result can be easily
generalized for the whole M subfamily (h+2 h+2 h) to
which (775) belongs (h = 5). One finds

B (3h+4)a
4(h +2)V3h? +8h + 8

3 (h+4)a
4(h +2)V/3h?* +8h + 8

AH =AHy + AHy )
. — (11)
V3h? 4+ 8h +8

Note that the horizontal periodicity (i.e., the number of
atoms in the horizontally repeated structure) in this family is
h + 2 since there are h terrace sites and two step sites (M and

AHy = €))

(10)
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TABLE 1V

AH = AHp + AHg FOR THE MAJOR SURFACE FAMILIES UNDER STEP FLOW. STEP PROPAGATION INVOLVES THE REMOVAL OF ROWS OF
TYPE P AND Q ATOMS IN ALTERNATION (@ = 5.43 A Is THE LATTICE PARAMETER OF THE CONVENTIONAL UNIT CELL)

Family h Condition Case P Q —AHp —AHQ —AH
(100) D - 2 - g
_ V2a _ _a_
(110) M 1 2+/2
a V3a _a_
(111) T L(T) Ve 2 N
Ko any TK > TEMK h > 2 K - _ - [ - S—
24/2h2 +4h+4 24/2h2 +4h+4
(h+2 h 0)
Kg odd TKR(2)—K > h >3 KR(2)-K - — - R T—
@ 24/h241 2y/h241
(h 1 0) even TKR(1)—EMK __a _ __a
R(L) 44/h2 41 44/ h241
M any ™M > TETM h>2 M L(M) (8htd)a (htd)a g
4(h+2)\/3h2+8h+8 4(h+2)\/3h2+8h+8 \/3h2+8h+8
(h+2 h+2 h) ™M < TETM L(ETM) ETM
2(h+Da 2(h—Da a
odd ™ > "ETM h >3 M L(M) —_— —_—
4hy/2h2 41 4hy/2h2 41 V2h2+1
Mg ™ < TETM L(ETM) ETM
(h h 1) even ™ > TETM M L(M) 2(htla 2(h=Va —l
8hy/2h2 41 8h4/2h2 +1 24/2h2+1
™M < TETM L(ETM) ETM
any (rg > ra —) h =2 H v (Bht2)a (h+2)a el
4(h+1)\/3h2+4h+4 4(h+1)\/3h2+4h+4 \/3h2+4h+4
D rH > "ETH h>3 H v
(h42 h ) (ri < TA —) —2 | L(ETH) A (Bht2)a (ht2)a a
4(h+1)\/3h2+4h+4 4(h+1)\/3h2+4h+4 \/3h2+4h+4
rg < "ETH h >3 | L(ETH) ETH
_ h+2)a ha —a
odd (rg > ra —) h =23 H \% — (h+2)a
2(h+1)y/h242 2(h+1)y/h2+2 Vh2+2
rEDA > TA h>5 EDA HR-V
(rg < ra —) h =3 L(ETH) A
Dg rEDA < TA h>5 L(ETH) A
h+2)a ha - S
(h 11) even (rg > ra —) h=4 H A% — (ht2)a
4(h+1)\/h2+2 4(h+1)y/h242 24/ h2+2
TEDA > TA h>6 EDA HR-V
(rg < TA —) h=4 | L(ETH) A
TEDA < TA h >6 L(ETH) A

ETM) (see Fig. 1). Interestingly, the expression for AH for
the whole family does not change when the relative removal
rates of the M and ETM atoms are inverted, thus providing a
different realization of step flow on these surfaces. In Figs. 8
and 9, etching proceeds as a step-flow process where the M
and the L(M) atoms are removed sequentially. This is due to
the choice that ry; > rgrMm. In the reverse case, "erm > ™M,
etching still occurs as a step-flow process, but now, it proceeds
by sequentially removing the ETM and L(ETM) atoms. In this
case, one gets

(h+4)a
C4(h+2)V3RE +8h + 8

(Bh+4)a
4(h+2)V3hZ + 8h + 8
AH = AHgry + AHpmmy)

 V3h2+8h+8

AHgrm = 12)

AHyET™M) = (13)

which demonstrates that the total advancement of the surface is
identical in both realizations of the step-flow process.

A similar geometrical analysis can be carried out for the
other surface families (Mg, D, Dg, KT, and Kg). The results
of such study have been gathered in Table IV. In some cases,
AH takes different values depending on whether the Miller
index h is even (h = 2n) or odd (h = 2n + 1). However, it
does not typically depend on the particular realization of step
flow obtained by changing the relative values of the removal
rates for sites located right at the steps and at the edges of the
steps. One should realize, however, that certain choices of the
removal rates can produce a rather complicated nonstep-flow
time evolution (Section I1I-A2).

2) Determination of the Time Increment: In order to de-
termine the time increments Atp and Atq corresponding to
the atom removals at the P and Q generic sites [see (4)], we
pay attention to the site-type history of each atom and use
(3) to generate two implicit equations containing the two time
increments. By solving the resulting system of equations, the
time increments can be determined.
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Current Current Exposed Exposed Occupation will

neighborhood occupation as site  for time  be reduced by
m =1 HR-T  Atgrn THR-TAlETH
Ty = M — THR-TAtETH HR-T  Atyern) rar-1Atiern)
T3 = Ty — THR-TAtL(ETH) T Atgry rrAtgra
Ty = T3 — roAtgry ETH  Atyern) reraQtnern)
5 = Ty — rETHALL(ETH) ETH  Atgry reraAlgTH
g = T5 — reTutepry = 0 removed = -

Fig. 10. History of the ETH atoms according to the CCA evolution of (533) with r,(gTs) > reTH > TH > T'T.

Current Current Exposed Exposed Occupation will
neighborhood  occupation as site  for time be reduced by
=1 LR-H  Atygern rLr-nAtyerm
Mg = M — rLR—u At ETH) H Atgry  multgru
. M3 =My — rgAlgrh L(ETH) Atyern) TuernAtuers)
Ty = 73 — ryEtH)AtyErn) = 0 removed - -

Fig. 11. History of the L(ETH)atoms according to the CCA evolution of (533) with TL(ETH) > TETH > 'H > I'T.

As an example, Figs. 10 and 11 show the site-type history
of the ETH and L(ETH) atoms for a step-flow realization
of etching on the (533) orientation when rrgTm) > rETH >
rg > rr. According to the first row in Fig. 10, the ETH
atoms appear on the surface as type HR-T, and observe the
removal of ETH atoms, which lasts for a time AtgTy. Thus,
their occupation is reduced by the amount rygr-rAtgry, as
shown in row 2. At this stage, the atoms are still considered
as type HR-T since their neighborhoods, which reach to the
second neighbors (but not further), have not changed. In this
state, the atoms will be exposed to the etchant for a time
Aty gTH), Which is necessary to remove the L(ETH) atoms.
As a result, their occupation is reduced by rur-TAtyETH)
from the previous value, as shown in row 3. At this stage, the
atoms have become of type T and remain as such for a time
Atgry, which is the interval required for the ETH atoms to
be removed. In row 4, the current occupation of the atoms has
been reduced accordingly. Now, the atoms have become type
ETH and will be exposed to the etchant during the removal of
the L(ETH) atoms, resulting in a reduction of their occupation
by the amount rgra Aty ETH). After this, in row 5, the atom
type has not changed since the state of the neighborhood has not

changed either. Now, it is the time for the atoms themselves to
leave, reducing their occupation by rgrpAtgry and reaching
the zero value, as shown in row 6. We can expand the equation
in row 6 to get

rur-TAteTH + rur-1AtyETH) + rTAlETH

+ reruAtyern) + reraAtern = 1. (15)
Equation (15) can be directly compared to (3). It states that the
total reduction in the occupation of the atoms is 1. Note that
(15) can be simply written by summing all the elements of the
fifth column in Fig. 10 and equating them to 1. This simple
rule makes it very easy to apply (3) to each particular example.
For instance, by considering the fifth column in Fig. 11, we can
write down the equation for the history of the L(ETH) atoms as
follows:

rLr-aAtLETH) + ruAteTH + rLETH) AtETH) = 1. (16)

Equations (15) and (16) form a system of two equations with
two unknowns, namely, Atgry and Aty g1 . The system can
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be rewritten in matrix form as

A B

THR-T + 7T + TETH THR-T + TETH

TH TLR-H + TL(ETH)
~~ —_———
¢ D
. = . a7
<AtL(ETH) 1 {17
Solving the system, we get
D-B
At = 18
ETH = 55— po (13)
A-C

At = 1
LETH) = 15~ po (19)
Therefore, the total time increment At = Atp + Atq =
Atgra + Aty erh) is calculated as

A+D) - (B+0)

|
Al = AD — BC

(20)

The etch rate R = AH /At for (533) can then be written as in
(21), shown at the bottom of the page, by using the value of AH
from Table V (corresponding to the row for Dt and h = 3) and
the value for At obtained from (17) and (20).

The previous derivation of the etch rate for (533) assumes
that rgrg > rg. In the reverse situation, rg > rgry, step flow
will proceed by a sequential removal of H and V atom rows.
Taking into account the site-type history for these two atoms,
as shown in Fig. 12, it is straightforward to derive the system
of two equations for the corresponding time increments Aty
and Aty using the general principle of (3). In matrix form, the
system of equations is written using the values for A, B, C, and
D given in Table V (corresponding to the row for D, riy >
reTH, and A = 3). Thus, the etch rate of (533) becomes

Risoay = — —2 ru(rve-T + 1+ TV + V)
(533) V43 (TH+TVR-T+TETV +7V — THR-T — TETH)
ra > rETH.  (22)

Although AH remains the same for both realizations of step
flow, the final expression for the etch rate is very different
depending on the relative rates of the H and ETH atoms.
Similar studies can be performed for other surface orienta-
tions in order to derive the etch rate of the plane as a function of
the removal rates of the atoms appearing on the surface. In most
cases, it is even possible to write down a global expression for
the etch rate of each main surface family M, Mg, D, etc. ..
depending only on the Miller index h and the removal rates.
The results of the study are summarized in Table V, which
displays the values of matrix coefficients A, B, C, and D.
In some cases, such as the Mg family with odd values for h
and v > rETM, the global expression cannot be obtained. In

these cases, we offer one or two examples of values for specific
orientations. Also, there are situations such as that for (441)
when ryr > rgrv, Which lead to a very complex evolution
of the surface, involving more than two time increments and,
thus, larger matrices and more coefficients than A through D.
As it turns out, these cases are not essential for the overall
performance of a CCA simulation and can normally be avoided.

For completeness and reference, Table VI shows the etch
rate of the three main orientations and the first two surfaces of
each subfamily under the specified particular set of conditions.
In spite of the simplicity of the step-flow process enforced on
each surface, the final expressions for the etch rates are rather
complex. Under more complex choices for the removal rates,
the equations become even more complicated, and in some
cases, they cannot be determined explicitly.

IV. FIT TO EXPERIMENTS

Once the equations linking the etch rate of each orientation to
the atomistic removal rates have been determined, it is natural
to wonder whether it is possible to solve these equations for the
removal rates using the experimental etch rates as an input. For
instance, it is straightforward to solve rp and ry if the etch
rates of (100) and (110) are known. Is it also possible to solve
the rest of the equations in Table VI?

Unfortunately, in that form, the equations cannot be solved as
they are strongly coupled, and more importantly, they contain
a large number of unknowns, easily surpassing the number of
equations. In fact, the large number of variables in comparison
to the number of equations becomes a serious limitation when
one considers the typical number of experimental etch rates
available (which corresponds to the number of equations in the
system), normally including only the three main orientations
and a few other planes.

A. Procedure

For the purpose of fitting the atomistic removal rates, we
consider a simplified version of the equations based on a
reduction in the number of different removal rates, as shown in
Table VII. In these equations, the effect of restriction on the etch
rates has been dropped (i.e., disregarded), and only the effect of
edging is maintained. As an example, the restricted site MR-T
is considered to have the same rate as the unrestricted T, i.e.,
rMR-T = 1. The same happens to LR-M, which is considered
as M, and the scheme is similarly applied to other restricted
sites. Also, according to the notion of a neighborhood contain-
ing up to the second neighbors, site ETV is actually identical to
T. Thus, ryvr-grv = rETv because of disregarding the effect
of restriction, and rgryv = rT because the neighborhoods are
identical. As a result, rvr_gTV = T'T.

On the contrary, the effect of edging on the etch rates is
considered to be a key feature of the overall analysis and

a (rar-t + 71+ 7ETH)("LR-H + TL(ETH)) — (THR-T + TETH)TH

R(533) = 7\/473

, TETH > TH 2D

T + TLR-H + TL(ETH) — TH
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Current Current Exposed Exposed Occupation will
neighborhood occupation as site  for time be reduced by
=1 H Aty rulty
my =m —rglAtgy =0 removed - -
Current Current Exposed Exposed Occupation will
neighborhood  occupation as site  for time be reduced by
m =1 VR-T Aty rvR_T Aty
Ty = M — ryvR-TAby HR-T Aty rHR—TA g
T3 = Ty — rHR—TA g T Aty roAty
Ty = my — rrAty T Aty roe Aty
s = my — rrAty ETV Aty reTv Aty
= 75 — rervAty ETH Aty reralAty
= 76 — reTulty Vv Aty rv Aty
=m; — ryAty =0 removed - -

Fig. 12. History of the H and V atoms according to the CCA evolution of (533) with ry > rg > rgTy > 1.

TABLE VI
SOME EXAMPLES OF ETCH RATES FOR STEP FLOW ACCORDING TO THE CCA METHOD (a = 5.43 A Is THE LATTICE PARAMETER
Rigo = 3rp
Ri10 = 5%mm
_ _a_ TTTL(T)
B = V3 rrtrLem
a
Kt R0 = 12 (rkr(1)-M + TKR(2)-EMK + TK) rK > TEMK
p— a 2
Rs30 = 5= (rkr(1)-M + 'KR(2)-M T TEMK + 'K)
— - a
Ks R3i0= —zm(rKR(l)—EMK + TKR(2)-K) TKR(2)-K > TKR(1)—~EMK
p— a a 2
Ruo = ;= @rery-emx +rp + 2rKR(2)—K)
_ o rmr—rtrrtrerm)(ree—M+ro@T™) ) M (PMR—THTETM)
My Ran = 6 TT+HTLR—MTTLETM) —TM TETM > TM
R _a (rMp—TH2rr+reT™)(rLR-M+rLETM)) — M (MR- THrT+TETM) I
553 — /59 TTHTLR—M+TLETM) —TM
4 (Me—1+7TETM)(TLR—_MFTLETM)) T
Ms  Rsn = V19 T™™MR—T+TLR—M +TETM+TL(ETM) —27M TETM > TM
R o @rvp_THrvM+2rer™)(rLr-MA2rMtroery ) —3rM MR- TH2rM+TETM)
441 — 233 TMR—T+H'ETM +TLR—M+TL(ETM) —2TM
_ _a ru(rve_T+reTv+rv)
Dr Ran 2v/6 THHTVR—TH+TETV+TV —THR—T —TETH TH > TA
Reng — —2 ra(rve-T+rT+rETV V) o>
533 43 ””H+T(VR—T+TETV+)TV*THR—T*””ETH H ETH
_ _a TH(IM'VR-ETV+TvV
Ds  Rsn = V11 reE+rvR—ETV TV —TA TH > TA
R _ _a ra(rvr_gra+rat+rar_v)—2ra(rve_r+rvR_eTH+rER_V+TrV) »
411 2~/ 18( ) TA—TVR.—T)—TV—TH
rAR—D+7TEDA)(FVR-_BETH+THR-V)—TATH
Rs11 = 22 TEDA > TA

3v/3 rAR-D+TEDA+TVR-BTHHTHR-V—TA—TH
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TABLE VII
SIMPLIFIED EQUATIONS CORRESPONDING TO TABLE VI AFTER DROPPING RESTRICTION
Rigo = 3rp
Rio = 555
_ _a_ _TTTL(T)
R = V3 rT+TL(T)
a7 -
Kr Roiw = 75z (rm + revk + k) TK > TEMK
Rss0 = 5755 (2rm + rEMK + 7K) ”
Ks  Rsi0 = 575 (rkr(1)-EMK + ) K > 'KR(1)—EMK
Rao = ;= (2rkr(1)-emx +rp +2rk) 7
— o @rrtrer™) M FrLeETM)) —rMPTHTETM)
Mt Rox = § P TETM > TM
Resoq — @ @Brr+rer™) rm+rLET™)) =M (2rT+TETM)
553 — /59 rT+TL(ETM) ,
q (rrtreTm)(rMtrLeTM) -y . .
Ms  Rsa = V19  rTHrETMAHTL(ETM) —TM TETM > M
Ry — —a @rr+ryu+2rerv) Brv+rLeTa ) —3rM (rTH2rM+rETM) 9
441 — —
2v/33 TTHTETM +TL(ETM) —TM
_ _a ra (2rrt+rv)
Dy Ron = 26 TH+7'”I(“+7'V—7'}3)’TH TH > TA
_ _a ra(3rr+rv R
Rsss = 43 "”H‘H”(TJFTV*)TETH "H > TETH
— _a__ra(rr4rv) .
Ds  Rsn= V11 ratrod+rv—ra TH > TA
R _ _a rulrera+ratrv)=2ru(rr+rerat2rv) v
A1 = 918 TA—TT—TV—TH
R511 _ _a (rp+7reDA) (TETHATV)—TATH FEDA > TA

3y/3 rD+TEDA+TETH TV —TA—TH

should be maintained. After all, the restricted sites appear in
the equations only because of the initial history of the sites that
emerge to the surface, before they become active as an edging
species (such as ETH, ETM, EMK, or EDA), a pure step site
(such as M, H, V), or a kink site (such as K or A). From
this point of view, dropping restriction and keeping edging are
justified as a means to reduce the number of different rates.
There is only one exception to this rule, namely, the site KR(1)-
EMK. It is maintained since it enables fitting the orientations
(210) and (310) simultaneously.

Typically, after this simplification, it is only possible to use
one orientation from each subfamily in order to carry out the
fit due to the similarity between the resulting equations. As an
example, we can use the experimental etch rate for (210) or
(530), but not both. If we fit, e.g., (210), we can only hope
that the calculated/simulated etch rate of (530) will be close
to the experimental value, or the other way around. Similarly,
in the case of the Mt and Mg subfamilies, only one of the four
orientations shown in Table VII can typically be used for the
fitting procedure. We have found that this approach is typically
acceptable, often involving an error of about 5%, which is
normally less. An exception to this case is the Dg subfamily,
where both (211) and (311) can be fitted simultaneously.

The fitting procedure typically consists on using the etch
rates for nine orientations [e.g., (100), (110), (111), (210),
(310), (331), (211), (311), and (511)] in order to obtain values
for rp, ™, T, TK> TEMKS TKR(1)-EMK> "TETM> TH> TV, TETH>
TA,TEDA, and 1y, = 71,(1) = rr,(ETM)- This is done as follows.

1) rp and ry are obtained trivially from R0y and (110,
respectively.

2) A value for rk is chosen so that rx > rp, and the values
for remk and TkRr(1)-EMK are obtained by solving from
the equations for (210) and (310), respectively. Change

rk if necessary in order to ensure that rx > rgyk and
TK > T'KR(1)-EMK-

3) A value is chosen for ri,(1) such that rp,(7y > rx and rr
is solved from the equation for (111).

4) Choose rpETM) = rL(T) and obtain rgrym from the
equation for (331). If rgy > 7y, g0 to the next item
in this list. Otherwise, recalculate rgpTy by setting
riony = rier) and using Rzs1) = (a/v/19)(ra(2rr +
rLany)/ (Pt + v+ rLany — 7ETM)). This  expression
for the etch rate of (331) is obtained from the Mt row
of Table V after dropping restriction.

5) Choose values for rg and rvy such that rv > rg, and
obtain values for rgr, 7a, and rgpa from the equations
for (211), (311), and (511), respectively. We need to
ensure that the choice of ry > rg produces ryg > 74,
TH > TETH, and rgpa > T'a.

B. Results

We have applied the previous fitting scheme to different
experimental conditions, including 30%, 40%, and 50% KOH
at 70 °C and 20% TMAH at 80 °C using data from previous
studies [5], [27]. As an example, Fig. 13 shows a comparison of
the simulated and experimental etch rates for orientations in the
{110} crystallographic zone. The experimental data correspond
to a vertically DRI etched wagon wheel pattern whose wedges
are wet-etched in 50% w/v KOH at 70 °C [27]. Each simulation
point corresponds to one surface orientation simulated using the
CCA method. In this figure, the difference between (a) and (b)
underlines the existence of certain flexibility when performing
the fitting procedure presented in Section IV-A. In both cases,
the specific orientations used for the fit are plotted using trian-
gles, differing only in the choice of one single orientation used
for describing the shape of the maximum around {110}. For
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Comparison of the simulated and experimental etch rates for orientations in the {110} crystallographic zone. (a) and (b) differ in the choice of

one orientation for fitting the shape of the maximum around (110). Experimental data from DRI etched wagon wheel anisotropically etched in 50% w/v KOH at

70 °C [27]. Etching is simulated on each orientation separately.

Fig. 14. Comparison of experiment (a)—(b) and simulation (c)—(d) for a misaligned mask pattern, as shown in (e). The simulations assume 30% w/v KOH
at 70 °C [27]. Experimental images (30 wt.% KOH at 80 °C) from Collection of Examples, SIMODE: A simulation tool for orientation-dependent etch processes,

pp- 33-34, © 2001 Gesselschaft fur Mikroelektronikan-wendung Chemnitz mbH.

case (a), the fitted surfaces are as follows (triangles from left to
right): {111}, {211}, {311}, {911}, {100}, {331}, and {110}.
Case (b) uses {661} instead of {331}. In both cases, {210}
and {310} in the {100} crystallographic zone were also fitted.
Case (a) describes step flow around {111} more accurately, and
case (b) describes the region of the {110} maximum better.
Although none of the two cases provides a perfect match, the
overall description of the etch rate anisotropy is good. Further
discussion about fitting the shape of the {110} maximum is
provided in the Discussion section (Section V).

Beyond the comparison of the etch rates for a multitude
of surfaces, Figs. 14-17 show realistic simulations and their
comparison to available experiments from the literature. Con-
sidering that the etch rates from the studies in [5] and [27]
(which we use to fit the removal rates) do not always match

the experimental conditions of the shown experiments, the
accuracy of the simulations is very good. The program used
for the simulations (“VisualTAPAS”) can be freely downloaded
from http://www.fyslab.hut.fi/~mag/VisualTAPAS/Home.html.

V. DISCUSSION

The fabrication of MEMS and NEMS devices using bulk
and surface micromachining is based on the sequential ap-
plication of complex process flows involving numerous steps.
An efficient design requires the use of realistic and accurate
simulations of each individual process. In the previous sections,
we have shown that it is possible to solve analytically the
time evolution of the CCA method, making it particularly
suitable for the realization of realistic simulations of anisotropic
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Fig. 15. Convex corner undercutting simulated for 30% w/v KOH at 70 °C.
Experimental image from [28] corresponds to 33 wt.% KOH at 80 °C. Repro-
duced with permission (© IEEE 2001).

(d)

(e)

®

Fig. 16. Convex corner compensation simulated for 30% w/v KOH at 70 °C.
Experimental images from [28] correspond to 33 wt.% KOH at 80 °C. Repro-
duced with permission (© IEEE 2001).

etching. In particular, Sections II and III have presented a
theoretical description of the orientation dependence of the
etch rate in terms of the most active atomistic removal rates
based on the fulfillment of step propagation on each family of
surface orientations. In Section IV, we have shown that the
approach is both flexible and accurate for the simulation of
anisotropic etching for engineering applications. As compared
to the geometrical methods, our approach allows a reduction in
the number of input experimental etch rates that is necessary
for simulating etching. The number of rates is reduced from
hundreds or even thousands to just a few, typically nine.

Although the step-flow aspects of anisotropic etching have
been taken into account in earlier simulation approaches, par-
ticularly through the use of MC methods [7], [8], [10], we are
not aware of any report of a CA method explicitly built upon
step propagation. Schroder et al. [28] and Horn et al. [29] have
proposed a step-flow model for explaining the various shapes of
convex corner underetching. However, their approach does not
fall into the CA category of methods, and it does not provide
an analytical solution either. Originally, they used structuring
elements, an idea borrowed from image processing. Later on,
they used the actual equations of motion for the propagation of
the cells on the etch front, explicitly incorporating some aspects
from step flow.

Similarly, we are not aware of any successful attempt pre-
vious to the present study to solve analytically the expression
of the etch rate as a function of the removal rates of the
active atoms in a CA simulation of anisotropic etching. The
closest study is by Zhou et al. [19], although they assumed
that the etch rate for each surface orientation is essentially
determined by one single atom species. More recently, they
have explored a labor-intensive fitting procedure leading to
numerical expressions for the etch rates [20]. By determining in
this paper the actual expressions which link the etch rates of the
surfaces to the atomistic removal rates of the surface atoms, a
completely unforeseen level of complication in the dependence
has been uncovered. This is very surprising, particularly when
one considers the simplicity of the step-flow process realized
on each orientation.

The success of this paper relies significantly on Zhou’s index-
ing scheme [19], [20] and on our step-flow-based classification
of the surface sites. During a simulation, the indexing scheme
allows one to identify the type of a surface atom according to
Table III and, as a result, to associate a removal rate to it.

The geometrical analysis presented in Section II is very
similar in spirit to that by Zubel [37], [38]. However, we focus
on the characterization of the surface sites according to the
step-flow nature of etching instead of on a purely geometri-
cal classification of the surface bond types. The geometrical
features of the two approaches can probably be mapped, if
not quantitatively, at least qualitatively. For instance, we may
regard the classification of the surface bonds as an alternative
to the classification of the surface sites according to the four
indices by Zhou et al. [19], [20]. However, we go beyond these
geometrical aspects and incorporate the important role of step
flow, solving eventually the dependence of the etch rate for the
different surface families. Although Zubel’s approach is po-
tentially capable of simulating etching in arbitrary geometries
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Fig. 17.

(a), (b) Two time shots of a simulation of anisotropic etching. The mask used is shown in (c). A top view of the final result, which resembles the German

Iron Cross, is shown in (d). This image is rotated 45° with respect to (b). The simulation corresponds to 40% w/v KOH at 70 °C [27].

for engineering purposes, just in the same manner as Zhou’s
indexing scheme allows this type of simulations, the method has
not been used in that context. Zubel’s classification of the bonds
seems to consider a subset of the surface sites included in our
analysis (Figs. 6 and 7), which describes a larger neighborhood
of the target atoms.

Wind et al. [27] have used a simple step-flow model to
describe the anisotropy of the etch rate in the vicinity of
{111}. The model is a purely theoretical description based
on an orientation-independent step velocity (vstep) and an
orientation-dependent step density (sin 6). In particular, it is not
intended for simulating etching. As for the case of our CA, the
model describes the overall mean-field propagation of the steps,
disregarding some details of the process, such as the sequential
nature of etching, involving fast etching of step sites, fast etch-
ing of kink sites, or a combination of both. Although none of the
two models incorporates explicitly the fine details of diffusion
transport, they may be considered to contain implicitly diffu-
sion effects in the form of step bunching [10], [11]. In our CA,
the sequential events and details of the propagation of a step are
substituted by the removal of all the atoms appearing at the step
(in parallel, not sequentially) according to a suitable average
removal rate. Although Wind et al. do not consider it, one can
associate this rate to the propagation of the step bunches instead
of the atomistic steps, thus regarding vsiep as the velocity of
the bunches. Since the propagation is typically modeled as the
removal of generic P and Q atom rows (Section III-A), the
average step velocity vsep is “split” into the step velocities
(or removal rates) of the two atom species, representing the
motion of the step bunches. Due to the continuous values of
the occupation used for the CCA implementation, the removal
rates of various terrace sites appear in the final expressions for
the etch rates of the surfaces together with geometrical factors
in a manner that is similar to—but much more complicated
than—the sin 6 factor. Although Wind et al. are very critical
in their analysis, concluding that a step-density-independent
step velocity is inconsistent with the formation of step bunches
on these surfaces, we find no conceptual problem since their
Ustep and the removal rates in our model represent already
averaged quantities. Although the formation of step bunches
actually requires step-density-dependent single-step velocities,
as shown in [8] and [10], the resulting velocity of the step

bunches can be effectively independent of the step density for a
certain range of orientations.

Considering the previous paragraph, it is not surprising that
our step-flow model provides an accurate description of the etch
anisotropy in the vicinity of {111} [see, e.g., Fig. 13(a)]. How-
ever, we also describe etching as a step-flow process around
{100} and {110}. This appears to be suitable for {100}, but
it seems to be inaccurate for {110} [see Fig. 13(a) and (b)].
From the zigzag surface morphology of {110} [10], [11], it is
known that this surface and its vicinal orientations are etched
essentially as a step-flow process occurring parallel to the facets
of the zigzag structures and not parallel to the {110} plane,
as modeled in our analytical solutions. This particular zigzag
morphology is probably the result of transport diffusion delay
[10]. According to Wind et al. [27], the isotropy of the etch rate
around {110} can be explained due to the particular features
of this morphology. This means that a better description of the
etching process for these surfaces can be obtained by consid-
ering an alternative etching mode producing zigzags instead
of smooth stepped surfaces during the analytical analysis. This
will be the subject of further research in the near future.

A more sophisticated approach for the description of the
etch rate anisotropy around any surface orientation has been
presented by van Veenendaal er al. [26], [39] and Nguyen and
Elwenspoek [40]. The method, which is not meant for simula-
tions either, is used for the analysis of the etch rate anisotropy,
providing a deeper understanding of the relative importance of
different processes in shaping the anisotropy. The processes that
are considered include step flow and pit nucleation (roughen-
ing) as well as effects from step bunching and other mesoscopic
instabilities. As for Wind’s case and our approach, their analysis
corresponds to a mean-field picture of etching. As in our case,
the accurate description of the fine details of the etch rate
around {110} is also a challenge in their approach.

The integral form in (3) has been presented as the funda-
mental principle of the CCA method. It is a statement of the
relation between the occupation of the sites (or cells) and the
atomistic (or process) rates. We are not aware of any previous
study establishing such a relation. Our derivations can be seen
as an example of the use of the CCA in order to simulate
the evolution of an interface and, simultaneously, to solve it
analytically. In principle, the same expression can be applied
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also to other interface propagation problems for other systems.
As in our case, (3) can probably be used for the derivation of
implicit and/or explicit equations relating the time increments
of the evolution and the process rates of specific types of cells.
The fact that step flow has been incorporated in the analysis due
to the particular nature of the etching process has facilitated the
derivation of analytical expressions. For more general interface
propagation problems, the analytical description may become
very sophisticated.

The useful property of the CCA is that it can describe the
average propagation of the surface with the correct overall etch
rate by actually using a propagation mode that differs from the
experiment. As an example, for {111}, the CCA removes the
terrace atoms T' very slowly and then the lollies L(T) very fast.
Except for a geometrical factor, the overall etch rate for the
plane is Ry1; = TTTL(T)/(TT + TL(T)). By choosing rt and
TL(T)> any etch rate for Ry1;1 can be described. Although this
represents the global etch rate correctly, etching is effectively
simulated as a gradual motion of the interface due to the slow
removal of the T atoms and a sudden jump in the propagation
due to the removal of the L(T) atoms. This occurs when r,(1) =
1, which is a valid choice. Although a more gradual motion
can be achieved using a smaller rr,(T), the simulations will still
proceed differently from the experiment, where a few pits are
nucleated by the removal of a few T atoms, giving way to the
formation of steps at the pit boundaries and, thus, step flow. As
the pit boundaries grow, a layer is eventually removed. Thus,
the CCA method provides a mean-field propagation mode that
reproduces the overall propagation rate even though each layer
is removed in a manner that differs from the experiment.

Note that, in the event that a pit is formed on {111}, step
flow of the pit boundaries will occur in the CCA simulation.
In this case, the velocity of step flow is fixed by the overall
propagation of surface orientations containing solely these steps
(and terraces between them). In the same way, steps can be
induced due to the masking pattern, e.g., at the convex corners.
In addition to matching the overall etch rates of the planes,
these atomistic features make the simulations very realistic. For
{110}, whose etch rate can be described correctly by simply
removing layers of M atoms, the etching mode strongly differs
from the experiment, where typically the zigzag structures are
formed. As mentioned previously, the CCA etch rates for vic-
inal orientations of {110} differ from the experiment because
the etching mode using zigzags structures is not considered. As
for the case of pits, should kinks be introduced in the steps,
the CCA simulation will proceed by propagating the kinks. In
this manner, the basic atomistic features are reproduced, but the
particular rates correspond to the overall mean-field behavior
and not necessarily to the corresponding atomistic process.

At the global scale, the obtained removal rates provide a
rather accurate fit for the etch rates of the different orientations.
At the microscopic scale, the parameters describe step flow,
including the propagation of pit boundaries. We cannot claim,
however, that the atomistic rates for the step sites are suit-
able for atomistc simulations, such as kinetic MC simulations.
Indeed, they are not suitable. The reason for this is that the
removal rates for the step sites are obtained by considering the
gradual removal of the complete step simultaneously, not as a

result of kink propagation. Thus, these rates fulfill the average
propagation of the step in the same way as rr and (1) fulfill
the overall etch rate of {111}, but not necessarily with the
correct atomistic values.

VI. CONCLUSION

This paper shows how to solve analytically the time evolution
of the CCA method for the simulation of anisotropic etching for
use in the fabrication of MEMS/NEMS. By presenting a wide
collection of generic examples, we show that the etch rate of
any surface orientation can be obtained from the geometrical
and kinetic analyses of the mean-field picture of the step-flow
process underlying etching. This requires a purely geometrical
determination of the changes in the average height of the system
and a purely kinetic description of the site-type histories of
the removed atoms. Depending on the specific values of the
removal rates of the step atoms, different realizations of step
flow are obtained, and correspondingly, different expressions
for the etch rates of the different surfaces are derived. An
important physical input for the derivation is the step-flow
nature of the process, a feature that lies at the root of the
nomenclature introduced for classifying the surface sites.

As a result of the existence of analytical expressions for the
etch rates of the crystallographic planes as a function of the
removal rates of the active atoms, we show that it is possible
to fit the removal rates using the etch rates of a small set of
surface orientations such as, e.g., (100), (110), (111), (210),
(310), (331), (211), (311), and (911). As compared to the geo-
metrical methods, our approach allows a significant reduction
in the number of input experimental etch rates, decreasing the
number to only a few instead of hundreds or thousands of
orientations. We provide the guidelines of the fitting process,
which can be automated, and the results of the simulations
are compared satisfactorily with the experiments. As a re-
sult of the study, a freely available simulator of anisotropic
and dry etching known as VisualTAPAS has been developed
(http://www.fyslab.hut.fi/~mag/Visual TAPAS/Home.html).
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