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Chapter 1
Introduction

Progress during the last several years in precision and quality of cosmological data acqui-

sition, as well as development of paralleled, dedicated numerical cosmological codes, and

a significant increase in the accessible computing power opened up an era, where a consis-

tency between theoretical predictions of a given cosmological model and the observations

can be sought and statistically tested to a high accuracy. Today the wealth of the cosmo-

logical information, with a great model predictive power, consists of the observations of

so called standard candles and standard rulers that help measure distances over cosmolog-

ical scales. The cornerstone of these observations includes: the supernova explosion light

curves measurements (Perlmutter et al., 1998; Riess et al.,2004; Astier et al., 2006; Astier

et al., 2006; Wood-Vasey et al., 2007), the baryon acoustic oscillations features found in

the correlation functions of the large scale galaxy distribution (Eisenstein et al., 2005; Gaz-

tanaga et al., 2008), and the measurements of the primordialacoustic oscillation fluctuations

imprinted in the cosmic microwave background radiation (CMBR) (Hinshaw et al., 2008;

Komatsu et al., 2008; Dunkley et al., 2008; Sievers et al., 2003; Reichardt & ACBAR collab-

oration, 2007). These observables strongly depend on cosmological parameters, and probe

completely different ranges of redshifts and scales, providing thereby a strong leverage for

cosmological model selection. There are also constrains coming from the particle physics:

most notably from the theory of the big bang nucleosynthesis(BBN) that provides tight

limits on the primordial light elements abundances as a function of the baryon to photon

number densities ratio (Cyburt et al., 2003; Kawasaki et al., 2005), which in turn is very pre-

cisely fixed by the current CMB observations (Coc, 2008). Additionally the measurements

of the cluster abundance via cluster mass functions (Bahcall et al., 2003), measurements of

theLyα absorption line widths in the spectra of the distant quasars, which are dubbed the

Lyman-α forest(Jannuzi et al., 1998; Weymann et al., 1998; Bechtold et al.,1994; Cristiani

et al., 1997; Lu et al., 1996) as well as the observations of the weak gravitational lensing of

the CMBR on the large scale structures (LSS) (Bacon et al., 2003; Bartelmann & Schneider,

2001; Lewis & Challinor, 2006; Cooray & Hu, 2001), and the cosmic shear observations

(Hoekstra et al., 2006; Bacon et al., 2003; Kaiser et al., 2000; Bacon et al., 2000) provide

data sets that yield cosmological constraints which are broadly mutually consistent, and



2 CHAPTER 1. INTRODUCTION

provide altogether a proof for an isotropic and homogeneousand spatially flat cosmological

model with considerable amount of so-called cold dark matter (CDM) and small amounts

of baryonic matter, with nearly scale invariant spectrum ofGaussian, adiabatic, primor-

dial perturbations (Gnedin & Hamilton, 2002; Tegmark et al., 2006; Lewis & Bridle, 2002;

Sievers et al., 2003; Reichardt et al., 2008; Seljak et al., 2006; Dunkley et al., 2008). The

observations are found to be vastly consistent with theΛCDM cosmological model, with pa-

rameters tightly constrained in a number of studies relyingon various compilations of these

observations (Lewis & Bridle, 2002; Seljak et al., 2006; Tegmark et al., 2006; Nesseris &

Perivolaropoulos, 2004). The constrained model is currently the simplest, most favoured

cosmological scenario which, in spite of few cosmological and BBN conundrums (eg.Coc

(2008); Cyburt et al. (2008); Kusakabe et al. (2008); Jittohet al. (2007); Cumberbatch et al.

(2007); Jedamzik et al. (2006); Primack (2004)), is capableto reconcile between the major-

ity available cosmological data sets.

Independently of the technological and observational progress, the theory of inflation

has been invented (Guth, 1981) and continues to be developedin a huge variety of models

(Kim & Liddle, 2006; Kecskemeti et al., 2006; Bernardeau et al., 2006; Bartolo et al., 2004;

Garriga & Mukhanov, 1999; Silverstein & Tong, 2004; Huang etal., 2008; Arkani-Hamed

et al., 2004; Dvali et al., 2004; Bartolo & Liddle, 2002; Sasaki, 2008; Golovnev et al., 2008)

while its original idea of a phase of accelerated expansion and generic predictions remain

intact. These include the adiabatic, nearly Gaussian, curvature perturbations, imprinted

over a spatially flat and isotropic background, with almost scale invariant power spectrum.

These predictions remain in great consistency with a wealthof cosmological observations,

and therefore the inflationary theories currently provide the basis for understanding of the

history of early Universe, and the structure formation (Alabidi & Lidsey, 2008; Gordon &

Lewis, 2003; Kinney et al., 2004; Spergel et al., 2007; Komatsu et al., 2008).

There are however number of observations that apparently stand out from predictions

of the standard model (eg.Cyburt et al. (2008); Primack (2004), or exhibit evidence of in-

compatibility with other data-sets (eg. Diego et al. (2004)). In particular, in spite of great

improvements in the resolution and sensitivity since the observations of the COBE satellite

(Boggess, 1992; Bennett et al., 1992), some anomalies continue to exist in the currently

accessible, full sky maps of the CMBR accumulated during years of observations of the

WMAP satellite (Hinshaw et al., 2008), and some new and unexpected peculiarities have

been found both in the temperature angular power spectrum, and in the topological proper-

ties of the CMB maps (eg. Gaztañaga et al. (2003); Cline et al. (2003); de Oliveira-Costa

& Tegmark (2006); Efstathiou (2003b); Diego et al. (2004); Eriksen et al. (2004a, 2007);

Land & Magueijo (2005c); Rakic & Schwarz (2007); Cruz et al. (2007); McEwen et al.

(2006a); Covi et al. (2006) and references therein). Currently, these anomalies only tenta-

tively elude the predictions of the simplestΛCDM model, but they may hint on variety of

processes that may take place beyond the standard framework, as well as help concretize

some of the viable possibilities that still fit within the standard scenario (eg. Niarchou &
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Jaffe (2007, 2006); Weeks & Gundermann (2006); Kunz et al. (2006); Jaffe et al. (2005);

Alabidi & Lyth (2006); Adams & Cresswell (2003); Wang & Kamionkowski (2000); Covi

et al. (2006); Destri et al. (2008); Erickcek et al. (2008); Akofor et al. (2007); Inoue & Silk

(2007)).

The motivation of the work pursued in this thesis are the anomalies observed in the

data, that elude the predictions of the standard cosmological model. Amongst these, the

Gaussianity and the statistical isotropy are two basic predictions, and currently accessible,

and directly testable observables via the CMBR data. Constraints put on these observables

with the advent of the forthcoming, next-generation experiments will also soon become

useful probes of the physics of the early Universe with sufficient power to discriminate

between families of inflationary models.

In this work we address some of the known anomalies of the CMB data, and tests them

in a new, and independent way. Our aim is to conduct a battery of statistical tests of the

CMB data in order to search for sings of any new departures from these two generic predic-

tions. We also aim at quantifying the statistical significance of the well known anomalies,

and to test their robustness and stability under different tests and different data processing

pipelines.

There are many non-cosmological (astrophysical, or instrumental) sources that may vio-

late Gaussianity, or break the statistical isotropy. Amongst these most importantly, the resid-

ual extended foregrounds dominating at large angular scales, and galactic and extragalactic

point sources as well as the secondary effects (like weak lensing, Sunyaev-Zeldovich ef-

fects) dominating at small angular scales. It is therefore important to detect, analyze and

localize these sources, and either eliminate them and/or exclude from the data, which oth-

erwise could lead to a biased results of the analyses aiming at constraining the inflationary

physics. If all other explanations fail, and the data will robustly and significantly violate the

Gaussianity, or statistical isotropy, such detection willbecome an extremely useful observ-

able, calling for explanation within some alternative available but currently indistinguish-

able, competing models.

The organization of the Thesis is as follows:

An introductory review of the most relevant anomalies foundwithin the standard cos-

mological model with various implications for cosmology are given in chapter 2.

The main part of the analysis presented in the thesis devotedto various tests of Gaus-

sianity and statistical isotropy of the Wilkinson Microwave Anisotropy Probe (WMAP)

CMBR data is given in chapter 3. The results presented in there were published in Journal

of Cosmology and Astroparticle Physics (Lew, 2008b).

In chapter 4 we focus on constraining parameters of one of thealternative models, in-

volving a large scale violation of the statistical isotropyby a bipolar modulation field. The

results presented there are now accepted for publication inJournal of Cosmology and As-

troparticle Physics (Lew, 2008a).
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In chapter 5 we test the Gaussianity of the CMB using Minkowski functionals and

describe a significant detection of residual, large scale foreground contamination leading to

systematical deviation from foreground-free simulationsexpectation in one the functionals,

as well as in a systematical offset of the mean and in the negative skewness of the one-point

temperature distribution, along a ridge adjacent to the galactic plane, outside the commonly

used, conservative sky masks. The results presented in thischapter are now in preparation

for submission to the Journal of Cosmology and Astroparticle physics.

In chapter 6 we introduce a new dedicated statistics for testing deviations from the statis-

tical isotropy, which are generated by the apparent, tentative anomalies in the reconstructed

angular power spectrum of the CMB at largest scales. In chapter 7 we present first results

from an ongoing project, dedicated to tests of the violations of the statistical isotropy, ob-

served in the alignments between low-ℓ multipoles. We introduce relevant statistics, test

and compare range of available renditions of the foregrounds cleaned CMB maps, and dis-

cuss some of the resulting problems and propose few generalized statistics that could be

interesting to implement in the further studies.

Finally, in chapter 8, we investigate the hypothesis of the multiply connected Poincaré

dodecahedral space model, which we test against the genericΛCDM simply-connected

model using realistic Monte-Carlo CMB simulations. The results presented in chapter 8

were published in Astronomy and Astrophysics 2008A&A 482...747L (Lew & Roukema,

2008).



Chapter 2
Anomalies in the Cosmic Microwave

Background observations and

cosmological implications

In this chapter we review the most related work pursued by various authors, dedicated to ex-

ploration of consistency of the CMB data with the predictions of Gaussianity and statistical

isotropy through a large number of statistical tests. Thesestudies continue to be increasingly

significant since the COBE detection of the primordial metric fluctuations (Bennett et al.,

1994) which brought about the first evidences for the scale invariant power spectrum of ini-

tial perturbations, predicted by the simplest, single-field, slow-roll, inflationary models, and

constituted a strong support for the isotropy, and homogeneity of the Universe, measured at

a level of∼ 10−5, and thereby provided with the calibration of the amplitudeof the initial

perturbations at the currently observable close-horizon scales.

The tests, optimized for either measuring consistency withGaussianity, or statistical

isotropy, or randomness of the underlying density field constitute one, and a very limited

approach of the issue of testing the two predictions. Another, and more involving way of ad-

dressing the problem is to question the degree, type and shape of plausible non-Gaussianity,

and/or non-randomness, since the latter two can be realizedin an infinite number of ways,

while former two can only be realized in one way. Therefore a non-detection of the non-

Gaussianity, or non-randomness in one of the tests does not automatically imply that the

field is Gaussian or random. An example of this is given in figure 2.1. It is therefore impor-

tant to come up with many different statistical tests, whichare maximally independent, and

orthogonalto each other in order to better assess the question of Gaussianity or statistical

isotropy. Consequently, over the period of last several years there has been put an incred-

ibly large effort in devising a whole battery of cosmological, statistical tests, whose only

purpose was to address these two generic predictions, of theinflationary Universe. Insofar

though, the properly foregrounds cleaned and/or masked CMBdata generally comply with
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these assumptions, however there are few or several exceptions. In this chapter we will

focus on these exceptions, and discuss possible implications for cosmology by analysing

viable models that are capable of reproducing them.

Non-Gaussianity vs non-randomness It is important to note that testing statistical isotropy

and Gaussianity cannot entirely be separated from each other. This is because one has to

deal with only a single realization of the surface of last scattering. Given no prior knowledge

on any possible underlying temperature template, which leads to violations of the statistical

isotropy, like in eg. Bianchi type models, it is not possibleto ascribe any plausible detec-

tions of non-Gaussianity only to the brake down of Gaussianity, because it is possible that

the deviation might be caused by an underlying anisotropic template upon which a Gaussian

temperature field is generated. Since the underlying template could only be constrained via

statistical measurements, using many different field realizations, there’s a strong interplay

between the two predictions. In the common day practise, it is widely assumed to consider

the CMB field as random realization, and referring to deviations from GRF as to detec-

tions of non-Gaussanity, or statistical anisotropy depending on scales at which the detection

occurred. As such the detections at small scales are often referred as to non-Gaussianity,

whereas large scale anomalies are rather referred to as violation of statistical isotropy.

In figure 2.1 we plot an example of Gaussian random field (left-hand side plot) and

Gaussian non-random field (right-hand side plot). The latter was obtained from the former

only via reorganization of the pixels in the map (and recalibration of the power spectrum

due to the smoothing effects which were destroyed upon pixelrearrangement). The two

maps have exactly the same variance and power spectrum. Theyalso have almost identical

mean and kurtosis, and hence cannot be distinguished via these estimators. Performing

a Gaussianity test using Minkowski functionals (bottom panels) we discover a significant

differences between the two maps via the circumference of anenclosed contour at a given

temperature threshold, and in the genus statistic. It is interesting to note, that instead of the

signs of non-Gaussianity we actually detected the violation of the statistical isotropy of the

right-hand side map, by performing tests, which one might think are a Gaussianity tests.

Of course, in order to put it quantitatively correct a significance analysis would be in order,

however qualitatively it is easy to see that it is possible toviolate the statistical isotropy of

the map by an arbitrary amount, and thereby reach an arbitrary level of deviation from the

Gaussian random field, and therefore qualitatively the sameresults would hold.

It is interesting to note that in this case, the Minkowski area functional is actually help-

less in detecting the difference between the two maps, as is the kurtosis, or the mean1. This

exactly embodies the aforementioned need for implementation of many different Gaussian-

ity tests in order to pin down the nature of possible violation of the Gaussianity or statistical

isotropy.

1Note that given that the power spectrum is exactly preservedin the right-hand side map, any differences

in the mean of the maps should results only from special arrangements between the phases in the non-random

map.
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GRF simulation: GnRF simulation

〈T 〉 = −1.4413 × 10−06 〈T 〉 = −1.4412 × 10−06

S = −5.3210 × 10−03 S = −1.3212 × 10−02

K = 2.977 K = 2.979

-4 -3 -2 -1 0 1 2 3 4
σ/T

0.0

0.2

0.4

0.6

0.8

1.0

a
re

a

-4 -3 -2 -1 0 1 2 3 4
σ/T

0

2

4

6

8

10

c
ir

c
u
m

fe
re

n
c
e

-4 -3 -2 -1 0 1 2 3 4
σ/T

-300

-200

-100

0

100

200

300

g
e
n
u
s

Figure 2.1: An example of a Gaussian random field (GRF) (top-left panel) and Gaussian

non-random field (GnRF) (top-right panel). The non-random simulation was obtained from

the Gaussian one by reordering the map pixels by treating theHealpix nested ordered map

as Healpix ring ordered map and correcting for the power spectrum change due to beam

effects. Consequently the two maps have exactly the same power spectrum (and hence

the variance). Yet the map on the right hand side appears to beclearly non random due

to horizontal stripes. The two maps have almost exactly the same mean, and kurtosis as

well. In the bottom panel we plot the three Minkowski functionals for the left-hand side

map (black) and the right-hand side map (blue). Since the right-hand side map still remains

a Gaussian map (reorganization of pixels not alter the temperature statistics and so does

not violate the Gaussianity), the difference results only due to break down of the statistical

isotropy.

2.1 Hemispherical power asymmetry

2.1.1 Search and Evidence

The statistical isotropy has been tested by various authorsusing a whole spectrum of differ-

ent methods. Some of the latest works based on the WMAP CMB data include Souradeep

et al. (2006); Hajian & Souradeep (2006); Gordon (2007); Armendariz-Picon & Pekowsky

(2008); Samal et al. (2008); Hansen et al. (2004a,b); Donoghue & Donoghue (2005); Bernui



8 CHAPTER 2. ANOMALIES IN THE COSMIC MICROWAVE BACKGROUND

et al. (2007b,a); Rakic et al. (2006); Gordon et al. (2005); Eriksen et al. (2004a, 2007, 2008);

Hajian & Souradeep (2005, 2003); Bernui & Hipólito-Ricaldi (2008) and references therein.

In particular Hansen et al. (2004a) pursued tests of the statistical isotropy based on local

measurements of the power spectrum in circular patches, equally distributed in the sky.

The analysis was performed using the power spectrum reconstructions, based on pseudo-Cℓ

method, introduced in Hansen et al. (2002), and these localCℓ measurements were analysed

in various multipole ranges and in patches of various angular sizes. Consequently several

interesting anomalies have been found. Most notably, the evident suppression of power in

the northern galactic (and ecliptic) hemispheres as compared to the GRF realizations was

realized, spanning over the multipole range fromℓ = 5 to ℓ = 40. The hemispherical

power spectra measurements proved the asymmetry to be maximized along the axis(l, b) =

(237◦,−10◦) in galactic coordinates with significance varying from lessthan one percent up

to several percent as compared with GRF simulations, depending on the particular multipole

bin.

Also, it was tentatively found, that the apparent outliers in the reconstructed power spec-

trum released by the WMAP team, and available at

http://lambda.gsfc.nasa.gov/data/map/dr3/dcp/wmaptt spectrum5yr v3p1.txt, seen at mul-

tipolesℓ = 21 andℓ = 39, are possibly associated with northern and southern hemispheres

respectively and exclusively. Additionally, it was noted that the sharp local decrease, seen

in the power spectrum around the first acoustic peak (ℓ ≈ 182), referred to as the “dent”,

was associated with few circular discs directly adjacent tothe galactic plane, and hence the

residual foregrounds have been suggested as a possible source for that feature. Interest-

ingly, it was also found that the power asymmetry orientation is somewhat scale dependent,

with larger scales preferring larger galactic latitudes and smaller scales preferring smaller

galactic latitudes.

In the same year Hansen et al. (2004b) carried out another test of the statistical isotropy

using regional, hemispherical measurements, based on the Hessian matrix calculations, of

the local minima, maxima and saddle points, of the WMAP CMB V+W inverse noise co-

added maps, and their simulated distributions, for few tested smoothing scales ranging from

0◦ to 15◦. By varying the orientations of the hemispherical regions they found the maximal

asymmetry orientation in particular, as far as the hemispherical ratios of number of lakes

and hills are concerned, and they found the northern hemisphere to be anomalous at2σ to

3σ confidence level at scales ranging from1◦ to 5◦. Although the authors do not mention

the exact orientation of the hemispheres that maximize the asymmetry, they do mention

that the results are widely consistent with another relatedwork by Eriksen et al. (2004a),

who also measured, and detected the hemispherical power asymmetry by deriving ratios

of power spectra estimated on two opposing hemispheres, andquantified that the anomaly

significance is as large as 99.7% for the multipole rangeℓ ∈ [2, 40] in co-added V and W

channel maps of the WMAP with Kp2 sky mask applied. The authors also noted that their

results are stable with respect to the galactic sky cut and frequency band.

In Park (2004) a genus statistics has been utilized for stereographic projected WMAP

http://lambda.gsfc.nasa.gov/data/map/dr3/dcp/wmap_tt_spectrum_5yr_v3p1.txt
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CMB maps from the first-year release, in order to address the power asymmetry question,

and although the asymmetry has been consistently found, itssignificance was estimated as

of somewhat lower confidence level of about 99%, which was further decreased down to

only 95%, when the galactic sky mask was extended up to|b| < 30◦, which apparently

contradicts the results of Eriksen et al. (2004a), who points out that the significance of the

asymmetry is robust under extended, to the very same extent (|b| < 30◦), sky cuts.

Yet another independent estimator of the statistical anisotropy has been introduced and

applied by Bernui et al. (2007b), based on histograms of angular separations of points lying

within certain temperature threshold. By measuring the threshold averaged residual (dif-

ference between the measured and expected) distributions,referred to asEPASH, within

specifically selected circular regions in the sky, the method is capable of tracing local de-

viations from the statistical isotropy. By calculating thevariance of theEPASHestimators,

and computing its spatial, angular distribution over the sky, utilizing 12288 uniformly dis-

tributed caps and comparing the power spectrum of such produced anisotropy map with

the fiducial simulated analogical power spectra, the authors estimated the significance of

the “north-south” asymmetry at the level of 97% in the dipolecomponent of the anisotropy

map, and even more significant: 99% and 99.9% for the quadrupole and octupole compo-

nents respectively. While the authors arrive at similar conclusions in their follow-up paper

Bernui et al. (2007a), it is not clear whether significance assessment is robust since the

authors do not provide the details on their simulations approach, where as the earlier pa-

per suggests that the power spectrum properties of the studied map (ILC map) were not

simulated consistently with the observations.

Gordon & Trotta (2007) investigated the significance of the asymmetry via the Bayes

factor analysis - applied also for quantifying the significance of the scale invariance of

the primordial power spectrum. While the authors found the odds of the tilt of the power

spectrum to be of order 49:1 (roughly2.3σ), in favour of non-vanishing tilt, the CMB power

asymmetry was found to be realized in odds 9:1 (roughly1.7σ) under the null hypothesis

(corresponding to the lack of any anisotropic, possibly modulation-like signals). This result

is consistent with the results presented in chapter 3 in section 3.5.3 and 3.6.2 and those in

chapter 4. The significance estimated in Gordon & Trotta (2007) clearly contradicts the

results reported by Eriksen et al. (2007).

Eriksen et al. (2007) has performed an analysis of the hemispherical power asymmetry

working within a frame of an anisotropic modulation model byGordon et al. (2005); Gordon

(2007), and constrained the relevant bipolar modulation field parameters: i.e. its orienta-

tion and amplitude, using a maximum likelihood and a maximumposterior methods, and

implementing the Metropolis-Hastings algorithm for multi-dimensional posterior integrals.

While we will describe the modulation model in more detail inthe latter chapters, we note

that Eriksen et al. (2007) estimated the significance of the asymmetry via non-vanishing

multiplicative modulation CMB component of amplitudeA = 0.114 and excluding the

isotropic Universe value ofA = 0 at the confidence level in excess of 99%, with small

dependence on the data-set analysed. The best fit modulationfield orientation was found to
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be(l, b) = (225◦,−27◦), and since the performed analysis operated on very low resolution

maps the effective multipole up to which the analysis was sensitive wasℓ . 40, at which

the signal-to-noise ratio reached unity. We note that the data-set analyzed in that work was

simply downgraded from high resolution maps, scrambling through all scales, rather than

filtering the low-ℓ part of the signal form the initial maps. This approach contrasts the

method used in this thesis (in chapter 4) where we apply a band-pass filters in the spherical

harmonic space in order to select the preferred part of the input signal, and thereby better

control the scales upon which a potential modulation works.

While more references to this work will be done in chapter 4, given that the evidence for

the asymmetry ranges from about2σ to3σ depending on the author and pursued method and

the statistical significance assessment, there has been already significant effort put in finding

possible theoretical explanations for this kind of effect,because the CMB asymmetry could

be a manifestation of, and an interesting window onto, a possibly new physics. In the

following we mention some of the plausible proposed explanations.

2.1.2 Implications for cosmology

A range of possible explanations have been proposed for the observed power asymmetry,

which clearly manifests a break down of the statistical isotropy, at least at large angular

scales. The break down of the statistical isotropy is highlyundesirable, because of the

tremendous success of the consistency of all other CMB features with the predictions of

the inflationary Universe: most notably, the near scale-invariance of the power spectrum

of the primordial perturbations of the gravitational potential Φ, their Gaussianity, and also

flatness of the spatial sections of space, as well as solutions of the long-standing cosmolog-

ical horizon and flatness problems. Therefore dropping the idea of inflationary period in the

early evolution of the Universe would rise a need for alternative explanations, which would

need to deal with all of these problems jointly or independently. Currently, no scenario

is equally successful as the inflationary. Since the standard, single-field inflationary solu-

tions (eg. based on chaotic inflation) do not produce significant hemispherical anisotropy,

solutions were devised that explain the asymmetry within the somewhat modified or more

complicated models.

Recently Erickcek et al. (2008) proposed that the curvaton scenario (Lyth & Wands,

2002; Bartolo & Liddle, 2002) could give rise to such asymmetry under certain implementa-

tion. The generic curvaton models assume that apart from theinflaton field, which primarily

contributes to the energy density of the Universe during inflation, there’s another minimally

coupled scalar field - curvaton - which does not contribute significantly to the total energy

density during inflation, nor does it drive the inflation, andhence need not to yield the slow-

roll conditions, and consequently need not become very homogeneous during inflation, so

as to meet the constraints from the CMB measurements. In its minimal version the potential

can be assumed as:V (φ, σ) = 1
2M2φ2 + 1

2m2σ2 whereσ is the curvaton field andφ the

inflaton field andm andM are their masses respectively. The curvaton is assumed to roll-
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fast (faster than the inflaton) to sufficiently small values of σ so as to prevent the stage of

second inflation after the inflaton decay. This value is assumed to be roughly constant over

the period of inflation: eg.σ = σ⋆ and the curvaton is assumed to stay there until long after

the inflation is finished. Typically the inflaton curvature perturbations are assumed to be

small (as compared to the level inferred from the CMB observations) while the isocurvature

perturbations of the curvaton at horizon exit can be large:δσ ∼ H⋆/2π over a one Hubble

time. Gradually as theH(t) ∼ m the curvaton begins to decay into standard model particles

(eg. photons), reheating the Universe and beginning the onset of the standard hot big-bang

scenario2. Hence the inflaton is being released from responsibility ofgenerating curvature

perturbations. Instead, the iso-curvature perturbationsare converted into curvature ones as

the curvaton decays and thermalizes in some processes proposed by eg. Mollerach (1990);

Lyth & Wands (2002). This model is not only capable of having some isocurvature com-

ponent in the final power spectrum, proportional toPΦ,σ ∼
(

H⋆

2πσ⋆

)2
, but also significant

non-Gaussianity:fNL ≈ 5ξ2/(4R), whereξ is the fraction of the perturbations due to cur-

vaton in the total curvature metric perturbations, generated due to both: the curvaton and

the inflaton together; andR = ρσ/ρtot is the ratio of the energy density due to curvaton

decay to the total energy density. In Erickcek et al. (2008) it was assumed that the curvaton

actually does not contribute significantly to the total energy density: i.e.R ≪ 1 which will

grant the sufficient (controllable amount of) homogeneity of the gravitational potential per-

turbationsΦ, even if the fluctuations inρσ are largeO(1). Then it was hypothesized that the

observed asymmetry in the CMB is a consequence of the spatialvariation of theσ⋆ value

in the observed patch of the Universe, due to some large super-horizon mode. Constraints

were then put on the allowed values ofR andξ from the observations of: the level of pri-

mordial non-GaussianityfNL . 100 (Komatsu et al., 2008; Komatsu et al., 2003; Yadav &

Wandelt, 2008), the CMB quadrupole value and the degree of the power asymmetry in the

CMB (eg. Eriksen et al. (2007)).

However it has been shown that the modulation signals in the CMB are generally ex-

tending only up toℓmax . 40 (eg. Hansen et al. (2004a), see. also chapter 4), while

the asymmetry generated in the above model would be scale independent and hence some

generalizations would be required in the curvaton power spectrum in order to fit to this

observation. In that case it’s possible that some fine tuningwould arise. It was however

suggested that it will be useful to utilize the polarizationsignals, induced from quadrupole

charge configurations at the surface of last scattering, to possibly reinforce the evidence in

favour of the cosmological origins of the power asymmetry.

These issues were analytically and numerically studied by Dvorkin et al. (2008) who

also pointed out that given that the temperature observations have already reached the pre-

cision limited only by the cosmic variance (at the relevant scales) the situation can be im-

proved by precise, large scale polarization measurements -the quest to be challenged by the

2Note that after the inflaton decay, the Universe becomes already radiation-dominated, as the curvaton field

does not contribute significantly to the total energy density; which otherwise could trigger another inflationary

stage.
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PLANCK surveyor mission.

Very recently yet another possibility has been investigated (Bernui & Hipólito-Ricaldi,

2008) that the primordial, cosmological, magnetic fields with magnitude of orderB ∼
10−9G could be responsible for generation of both, the planar andaligned low-order CMB

multipoles (see next section) and the hemispherical power asymmetry. A range of the mag-

netic induction values were considered (0 < B < 30 nG) and it was found that stronger

alignments are obtained for larger field values. However in the earlier work by Kahniashvili

et al. (2008) a scale dependent constraints on the amplitudeof the primordial magnetic

field have been derived, for a range of primordial magnetic field power spectrum spectral

indexes resulting from “plausible magnetic field generation mechanisms”. The constraints

were based on the recent limits on the B-polarization mode ofthe CMB power spectrum

Komatsu et al. (2008) and compared with generated theoretical B-mode power spectra for

the primordial magnetic field induced Faraday rotation, converting the E-polarization modes

generated at last scattering into B-polarization modes. Inparticular, for the scale of 1 Mpc,

B is constrained to be0.4 < B < 30 nG, depending on the spectral index of the primor-

dial magnetic field power spectrum, whereas at the 100 Mpc scale, the constraint yields

0.7 < B nG, for all considered spectral indexes−2.9 < nB < −1, and yet even less for the

Giga-parsecs scales. The estimates of Kahniashvili et al. (2008) seem as an improvement

to the previous independent works by Barrow et al. (1997) whoalso estimate the primordial

magnetic field at the level of few nG:B < 3.4×10−9(Ω0h
2
50)

1/2f1/2 G wheref is a factor

constrained as0.6 < f < 2.2. More recently Chen et al. (2004) obtained a3σ upper limits

on the strength of the magnetic field ofB < 15 nG for vector perturbation power spectrum

spectral indexnB = −5, andB < 1.7 nG for nB = −7. These results therefore could

make it difficult to reconcile the explanation of the low-ℓ multipole alignments and north-

south power asymmetry within the ranges of magnetic field amplitude considered in Bernui

& Hipólito-Ricaldi (2008), since for example it was suggested that in order to accommo-

date for the power asymmetry present in the WMAP data, one would need a primordial

magnetic field of order∼ 15 nG. However we note that since the primordial magnetic field

generates non-Gaussianity in the temperature maps (Naselsky & Kim, 2008) possibly the

required levels ofB could be cross-checked with the future constraints on the primordial

non-Gaussianity.

2.2 Power spectrum anomalies and implications for cosmology

2.2.1 Glitches in the power spectrum

Low quadrupole Independently from the power distribution in the CMB maps, there have

been detected anomalies in the angular power spectrum of theCMB, some of which were

well known since the COBE data release and letter confirmed bythe WMAP experiment.

Most notably the apparently low, with respect to the best fit concordance cosmological

ΛCDM model, quadrupole value, as derived from the different renditions of the foregrounds
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cleaned maps3, or as estimated from the cut-sky analysis using the pseudo-Cℓ based meth-

ods of reconstruction of the underlying power spectra(eg. Jing & Fang (1994); Hansen et al.

(2002); Hivon et al. (2002); Taylor et al. (2007)). The low-ℓ range of the CMB power spec-

trum is depicted in figure 6.1. Is it easy to calculate that thereported by the WMAP team

value of the amplitude of the quadrupole∆T 2
2 = ℓ(ℓ + 1)Cℓ/2π = 236µK2 is compatible

with the best fitΛCDM power spectrum within 95% CL limits4, however this value is a

subject to slight variations depending on the reconstruction method and data set used, and

over years the quoted values ranged from∆T 2
2 = 123µK2 to ∆T 2

2 = 250µK2, which as

compared to the theoretical value of∆T 2
2 = 1252µK2 is still quite low.

The significance of the large scale anomalies has also been addressed via the two-point

correlation functions by Spergel et al. (2003) where based on S statistic:

S =

∫ 0.5

−1
[C(θ)]2d cos θ (2.1)

it was found that only about 0.15% of simulations realize a lower value ofS than mea-

sured in the data, and with respect to the best fit cosmological model, as inferred from

the WMAP+CBI+ACBAR+2dFGRS data combined, the CMB quadrupole has been found

unusual at the level of 0.7%. More recently Copi et al. (2008)have pointed out that the

situation is even exacerbated against the standardΛCDM model (i.e. in sense of vanishing

the correlations over the scales ofθ > 60◦) when considering the regions away from the

galactic plane.

Independently, Efstathiou (2003b) performed a frequentist and Bayesian significance

analyses, and based on a standard cosmological fiducial model, arrived at the significance

of rejecting the quadrupole as inconsistent with that modelno larger than 98.7%. How-

ever it seems that the analysis did not attempt to marginalize over the unknowns, resulting

from the uncertainties in the cosmological parameters estimations, which given the previ-

ously mentioned results seems to be important. Secondly, the analysis was based on the

fiducial model with large optical depth to reionization (τ = 0.17), which given the im-

proved, three and then five-year release of the WMAP data, enriched by the polarization

power spectra, is currently ruled out. In the latter analysis (Efstathiou, 2004) involving

both the pseudo power spectra estimators, and the reconstructed spectra estimators and in-

volving various sky-cuts and data sets the same author has confirmed the previous results

estimating the CMB quadrupole being realized in at least fewper cent of simulations. More

recently, Magueijo & Sorkin (2007) performed an approximated Bayesian analysis of the

significance of the quadrupole anomaly of different renditions of the first and the three-year

WMAP data, and concluded that the evidence in favour of hypothesis violating the scale

invariance of the primordial power spectrum, leading to suppression of low-ℓs in the CMB

power spectrum, is insignificant, and does not justify introduction of additional parameter

into the standard model, according to the various information criteria (such as Akaike and

3See more details on different renditions of the cleaned CMB maps in section 7.3.1.
4An estimate inferred from 1000 realizations of the best fit power spectra as found in Dunkley et al. (2008)

for the mean likelihood values.
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Bayes). However, again, it was not mentioned which particular cosmological model is taken

as an reference null hypothesis model. Also there’s a possibility that relying on evidence

estimates, rather than on explicitly integrated Bayesian evidences, might lead to a so-called

posterior bias, since the information criteria base only onthe maximum likelihood values

and do not account for the full distribution shape.

Although the evidence for the anomalous quadrupole is stillonly tentative, rather than

decisive, a hindering promise of an exciting new window ontothe plausible new physics

responsible for the generation of the observed suppression, inspired a number of possi-

ble theoretical explanations. For example Efstathiou (2003a) proposed a slightly closed

Universe (Ωk ≈ 0.05) with corresponding curvature radiusRc = c/H0|Ωk|−1/2 and an

“admittedly speculative” exponential suppression in the primordial power spectrum at the

curvature scale. In this model the discrete spectrum of perturbation wave numbersk, re-

lated to the discrete spectrum of the eigenvaluesβ of the Laplacian in curved space via

β2 = (1 + k2R2
c), is truncated at the curvature scale, leading to the apparent power sup-

pression at the horizon scales. However as it was pointed out, this model suffers at least

two problems. One related to the fine tuning of the primordialpower spectrum suppression

to be somehow related to the curvature scale of the Universe today, and more importantly,

in models with even slight - at the level of now days measurement precision - positive

curvature, it is difficult to explain the generation of perturbations via standard inflationary

mechanism even for reduced number of e-folds, as the perturbation spectra will become

too red, with perturbations amplitude of orderO(1) at the close horizon scales (Linde,

2003). Consequently, contrary to the standard models of eg.chaotic inflation with potential

V ∼ m2φ2/2, in which typical number of e-folds is of order1012, the model with small

number of e-folds (of order∼ 60) would have become anisotropic, contrary to already veri-

fied CMB observations, and would also suffer a very strong finetuning of the exact number

of e-folds to fit into the requested curvature of the today’s Universe. Therefore the predic-

tion of flatness of the Universe is still a very important observable strongly constraining

theoretical models. Once, and if, the future experiments allow to reach the accuracy al-

lowing to rule out the flatness of space at high significance, it will automatically rule out

whole families of standard inflationary models, and pose a serious challenge to explain the

perturbations generation within the inflationary paradigm, matching the already constrained

properties of the primordial power spectrum,and maintain the non-zero spatial curvature.

Unfortunately the CMB data alone constrain the curvature ofspace only to within about

10% accuracy, and this implies a need for using external priors from other cosmological

data-sets that might be a subject to systematical biases (like de-reddening dust corrections

in the supernova data or biases due to gray extinction on large dust grains). However only a

combination of the CMB with estimates of the Hubble constantwill eventually allow reach

sufficient accuracy to possibly push the curvature scale faroutside the now days casual

horizon scale and rule out these possibilities.

Instead, explanations involving a non-trivial topology ofspace have become popu-
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lar Aurich (1999a); Lehoucq et al. (1999); Inoue (1999); Levin et al. (1998); Cornish

et al. (1996); de Oliveira-Costa et al. (1996); Stevens et al. (1993); Aurich (1999b); Stark-

man (1998); Uzan (1998); Cornish et al. (1997); Luminet & Roukema (1999); Cornish &

Spergel (1999); Roukema et al. (2004); Weeks et al. (2003); Niarchou & Jaffe (2007, 2006);

Kunz et al. (2008); Weeks & Gundermann (2006); Gausmann et al. (2001); Riazuelo et al.

(2004b); Aurich et al. (2004); Luminet et al. (2003); Mota etal. (2004); Weeks (2003);

Gomero et al. (2002a); Gomero & Rebouças (2003); Riazuelo et al. (2004a), in explaining

the apparentℓ = 2 suppression, and number of applied tests have been devised and applied

to the CMB, first with the COBE data, then WMAP data, yet with somewhat unsuccess-

ful, null only results (Cornish et al., 1998b; Roukema, 2000; de Oliveira-Costa et al., 2004;

Spergel et al., 2003; Roukema et al., 2004; Phillips & Kogut,2006; Riazuelo et al., 2006;

Key et al., 2007; Caillerie et al., 2007; Lew & Roukema, 2008). Attempts were also made to

unveil the shape of space via cosmic crystallography of compact spaces in different spatial

curvatures by exploring the quasars and galaxy surveys and utilizing observations in fre-

quencies from ratio to X-rays Roukema & Blanlœil (1998a); Uzan et al. (1999b); Roukema

& Blanlœil (1998b); Uzan et al. (1999a); Gomero et al. (2002b, 2000); Weatherley et al.

(2003), although the scales probed by these data-sets (ranging from 10 Mpc to 100 Mpc)

would imply a rather small compact Universe, and naturally could not be related the to

suppression detected in the CMB.

However as pointed out in Uzan et al. (2003) the curvature of space, if once determined

to differ at the level of a few per cent from unity, will have a serious consequences on

the dynamics of the early Universe. In particular, it will pose a serious constraint on the

number of possible e-folds that might have taken place before the current horizon scales

left the horizon during inflation (problem related to horizon problem and the unwanted relic

(moduli) problems) (Lyth & Stewart, 1996). A possible workarounds were suggested via

temporal violations of the slow roll conditions by making the inflaton field potential very

steep at the onset of inflation, in order to help keep the levelof primordial perturbations at

largest scales consistent with observed limits.

Tests of multi-connectedness of space may be a very interesting measure of cosmolog-

ical models by utilizing the so-called identified circles principle with the CMB data under

a proposed multiply-connected model. If a significant correlations were found, a curvature

associated with that model would be preferred, which could have serious implications on

inflationary scenario. However given the infinite number of possible non-flat manifolds, and

that the general search, utilizing the identified circles principle is extremely cpu-intensive,

as well as that the available high resolution full sky CMB data is drowned in the instrumental

noise at small scales, while the topological signature signals additionally obscured by acous-

tic oscillations scale physics, even in case if the Universeactuallywasmultiply-connected,

the detection of this fact would be challenging. In chapter 8we perform a topological test

of the CMB data for one previously proposed topological model.

An interesting conception was also put forth by Contaldi et al. (2003) and Germani

& Liguori (2008) where models with large scale power suppression were studied. In the
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earlier work it was suggested that it is relatively straightforward to obtain the required

features in the CMB spectrum, as was previously mentioned, by manipulation of the scalar

field potential during inflation. Since the amplitude of the primordial metric perturbations

Φ at the horizon crossing (k ≈ a(t)H⋆(t)) within the slow-roll approximation is:

k3Φ(k) ∼ V (φ)3/2

V ′(φ)
∼ H2

⋆

φ̇
(2.2)

inversely proportional to the speed of the scalar field roll,whereH⋆ denotes the Hubble con-

stant during inflation. It is easy to see that the increase of the potential derivative (V ′(φ))

will lead to a desirable suppression of the correspondingk modes, because with such tem-

porarily increased speed of inflation, the relevant perturbations are faster being removed

outside the horizon before the fluctuations manage to grow. This is possible to obtain using

even a generic polynomial potentials as was discussed in detail in Hodges et al. (1990). It

was explicitly shown that this model actually suppresses the large scales, and the fit to the

WMAP data has been found. In this model however, the rapid cut-off in the power spec-

trum is directly followed by a series of oscillations about the standard power-law power

spectrum, which are quickly decaying for largerk/h mode values: i.e. for smaller co-

moving scales. Interestingly such feature has actually been already found by Shafieloo &

Souradeep (2007), who directly reconstructed the primordial power spectrumP(k), using

a deconvolution method, directly out of the CMB power spectrum convolved via:

Cℓ = 4π

∫
dk

k
P(k)∆2

ℓ (k) (2.3)

where the∆2
ℓ(k) is the radiation transfer function. A sharp horizon-scale cut-off was found,

followed by an increase of power - possibly related to the aforementioned oscillations. This

feature has then been studied by Sinha & Souradeep (2006) vianumber of previously pro-

posed theoretical models. Of course the model with a cut-offrequires tuning of the potential

to the scales at which the suppression is observed. These happen to be of order of the current

horizon scale and the corresponding cut-off scale in the primordial spectrum, and using the

WMAP data has been constrained to bekc = 4.91.3
−1.6×10−4Mpc−1 at 68% CL. However, it

was also mentioned that the need for the cut-off (and the penalty of the related additional pa-

rameter in the standard model) is not highly preferred (of order2σ). This was also realized

by Magueijo & Sorkin (2007) using Bayesian analysis.

However, interestingly it was also pointed out, that the observation of the suppression

at the scales comparable to the horizon scale today (∼ H−1) as well as the onset of the

domination of the cosmological constant energy density is an intriguing coincidence apart

from an independent coincidence with the matter energy density, which is also known as

the cosmological “coincidence problem”. This motivated yet another possible explanation

of the low quadrupole problem: i.e. by the effective interplay and, partial cancellation be-

tween the standard Sachs-Wolfe contribution (Sachs & Wolfe, 1967) due to the gravitational

potential perturbationsΦ: ∆T/T (n̂) ∼ Φ(n̂)/3 with the scale invariant power spectrum of

k3|Φ(k)|2 = A2, and the integrated Sachs-Wolfe contribution∆T/T = −2
∫ η0

ηSLS
Φ(η)′dη
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(Contaldi et al., 2003) accumulated long the line of sight from the last scattering (ηSLS)

until now, whereη0 is the conformal time today (this is also referred to as thelate integrated

Sach-Wolfe effect).

Outliers and “dents” in the angular power spectrum Since the first release of the

WMAP data, there have been known few tentative anomalies in the CMB power spectra,

which correspond either to outliers, having largeχ2 per degree of freedom value (Hinshaw

et al., 2007), or extended local “dents”, found eg. around multipole ℓ = 180 or ℓ = 113.

The latter case of “dent” were analysed by the WMAP team without conclusive results and

it was mentioned that similar features also appear in Monte-Carlo simulations (Peiris et al.,

2003), while Hansen et al. (2004a) found some tentative dependence of the feature on the

analyzed hemisphere as discussed earlier in section 2.1. The earlier case of outliers, being

localized at multipolesℓ = 21 andℓ = 39, was also analyzed in the aforementioned work

of Hansen et al. (2004a) as well as in eg. in Covi et al. (2006) and also in Peiris et al. (2003).

In the latter works such feature was explained and fitted, within models involving disconti-

nuities in the inflaton potential. These discontinuities are associated with, a well physically

motivated models of spontaneous symmetry breaking during the inflationary phase, during

which, given the step-like nature of the feature, the inflation is not interrupted, but instead

an oscillatory feature is imprinted on the spectrum of primordial perturbations at the cor-

responding scale (Adams et al., 2001; Adams & Cresswell, 2003). Within this model the

potentialV (φ) of the inflaton fieldφ, with the step was parametrized by three parameters:

φstep,c and d, corresponding to step location, amplitude, and gradient respectively, as

V (φ) =
1

2
m2φ2

[
1 + c tanh

(φ − φstep

d

)]
(2.4)

wherem is the mass of the inflaton. It was shown that (Adams et al., 2001) the WMAP

data, as well as the large galaxy surveys, place already strong constraints on such step-like

features in the inflaton potential via the size of the oscillations arising in the primordial

spectrum that can contradict these observations. It was pointed out that such features are

neither unexpected, due to frequent symmetry breaking phase transitions in fields coupled

to the inflaton and related to a sudden mass change, nor they require any fine tuning, since

many symmetry breaking (every 10-15 e-folds in this model) are expected, based on some

arguments from supergravity theories. In particular in theaforementioned work Covi et al.

(2006) fitted the data with theχ2 improvement by about∆χ2 ∼ 5 over the “vanilla” sim-

plest flatΛCDM model. Similar conclusions were obtained in Peiris et al. (2003). Although

the CMB spectra is better fitted within the toy model with the step, it was noted that the

WMAP data do not really require such model in terms of Bayesian analysis, however it is

an intriguing possibility for measuring the processes of the very early Universe, once when

the error bars of the measured data will allow to strongly discriminate between the models.



18 CHAPTER 2. ANOMALIES IN THE COSMIC MICROWAVE BACKGROUND

2.2.2 Power spectrum anomalies and induced symmetries in the CMB sky

As a last note in the list of known anomalies in the CMB power spectrum, but still some-

what incomplete list, we mention a tentative oddity in the low-ℓ range of the angular power

spectrum, which was previously studied by Land & Magueijo (2005c). It appears that the

reconstructed spectrum in that range exhibits an unusual suppression of even multipoles

with respect to the odd multipoles (figure 6.1). As will be discussed in chapter 6 such sup-

pression, if true, would be very difficult to explain on grounds of some residual foregrounds

contamination, as it introduces a point-symmetries in the CMB sky (see. Appendix A-4),

wile the residual foregrounds would rather induce a mirror like symmetries about the galac-

tic plane which in turn would affect both the even and odd multipoles. Nevertheless the

mentioned work quantifies the significance of the effect at about < 97% CL, maximized

at cumulative multipole number ofℓmax = 19. We will pursue an alternative statistic in

chapter 6 to independently quantify the oddity of these features.

Certain plane symmetries in the sky have also been sought in de Oliveira-Costa et al.

(2004) using a difference statistic of:

S(n̂k) =
〈[∆T

T
(n̂i) −

∆T

T
(n̂j)

]2
〉

Npix

(2.5)

where then̂j direction is defined aŝnj = n̂i − 2(n̂in̂k)n̂i and then̂k is the direction

perpendicular to the plane with respect to which the symmetry is being measured. The

average is taken over all directions (pixels). It is interesting to note a great similarities

between such derivedS(n̂k) maps in that work for quadrupole and octupole, and results

presented in our analysis (figure 7.5) but derived from completely different statistic: i.e. the

statistic probing the percentage of power accumulated by a givenaℓm mode towards a given

direction. The similarity shows that in fact for the orientation where there is a significantS

symmetry, the amount of power that could be accounted toa21 coefficient of the spherical

harmonics analysis, is small, which can be perfectly understood since that the shape of

Y21 harmonic exhibits an exact plane antisymmetry, and hence these harmonics for large

symmetry value directions must be cancelled out.

2.3 Large scale multipole alignment anomalies

One of the most outstanding apparent anomalies in the CMB skyare the strong alignments

between the quadrupole and octupole components of the full sky cleaned maps. This has

been first realized by de Oliveira-Costa et al. (2004) and quantified as an effect occurring

roughly once in every 60 GRF realizations. It was also independently measured that the low

quadrupole value is in odds as 1 in 20 as is the, yet another, low-ℓ multipole anomaly: the

planar octupole (figure 2.2).

Indeed, interestingly the octupole of the WMAP data seems extremely planar: i.e. hav-

ing apparently most of the power aligned within a plane in allrenditions of the WMAP data

as showed in figure 2.2. Apart from the low quadrupole value, the planarity of the octupole
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ILC3 ILC5 TOH1 TOH5

Figure 2.2: Quadrupoles (top row) and octupoles (bottom row) reconstructed from three and

five year version of the ILC map (first two from the left) and from first year and five year ver-

sion of the TOH cleaned map by Max Tegmark (first two from the right) (see section 7.3.1).

Note slight differences in quadrupole orientation in the TOH data due to different renditions

of different year data sets, which is not that much apparent in case of the ILC data. Note also

the apparent alignment between the quadrupole and octupoleand the planarity of octupole.

fed the speculations about the non-trivial topology of space, with finite dimension oriented

at the direction of the apparent suppression of power in the octupole, coinciding with the

preferred maximum-momentum axis, derived via statistic defined in equation 7.1 applied to

the quadrupole and octupole independently, which orientations, as already noted, also mutu-

ally well coincide. Consequently the direction, roughly estimated at(l, b) = (260◦, 60◦) in

Galactic coordinates, which also roughly coincides with the kinetic CMB dipole direction,

and is roughly perpendicular to the direction of the north ecliptic pole, was dubbed the “axis

of evil”. While the suppression via planarity is well confirmed, no significant evidence was

found in favour of the compact (toroidal as originally proposed) topology.

These, and other anomalies, in particular in phase space, have been also investigated by

many authors such as: Copi et al. (2006a); Bielewicz et al. (2004); Abramo et al. (2006);

Bielewicz et al. (2004, 2005); Land & Magueijo (2005d); Copiet al. (2006a,b); Jaffe et al.

(2005), and various and sometimes contradictory statements, regarding the relation of the

apparent alignments with the residual galactic foregrounds, have been favoured. Neverthe-

less, regardless of their origin, the matter of fact consistently remains, that these features

are robust and continue to exist since the first releases of the COBE data.

Insofar the origin of theℓ = 2, 3 alignments with the ecliptic plane as revealed in the

multipole vector analysis by Copi et al. (2006a,b) remains atantalizing puzzle.

It remains interesting though to try to explain these features in terms of some physi-

cal model that would decrease the level of the anomaly from the alarming significance of

∼ 99% to a more acceptable levels. In this spirit Inoue & Silk (2006, 2007) proposed a

local voids as a possible explanation of their origin. They argued that two, dust-filled voids,

at redshiftz . 1 and with radius of∼ 300h−1Mpc, separated by roughly50◦ apart from

the direction(l, b) = (−30◦,−30◦) along the meridian in a reference frame that maximizes

the angular momentum of the low-ℓ multipoles, and of the density contrastδ ∼ −0.3, can

explain the strong quadrupole-octupole alignments as theywould contribute to the temper-
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ature anisotropy at the level of∆T/T ∼ −10−5. Such an locally inhomogeneous Universe

would lead to a local spatial variation of the Hubble parameter of order of few to several per

cent. Future, precise measurements of the Hubble constant as well as large scale structure

will put constrains on these possibilities. It was also noted that the chance of finding such

a large void is rather unlikely (not mentioning two of them) however is was suggested that

the problem could possibly be circumvented via the percolation of many smaller (of order

10h−1Mpc) voids into a larger void. This scenario was also proposed to help explain the

non-Gaussian cold spot (see the next section) and also the north-south power asymmetry

discussed earlier.

Other possibilities of explaining these anomalies included less fashionable models like

for example the proposed Bianchi type VIIh model tested by Land & Magueijo (2006),

Within the models that yieldΩtot = 1, it was argued that the template could provide with an

explanation for both: the low quadrupole and the alignmentsproblem, but the model would

however suffer from some need of tuning so as to produce certain anti-correlation between

the template, which tends generally to add power to the modelrather than subtract it, and

the GRF CMB. The template itself was not found to be significantly detected, however

apparently it helped in solving the strong anomalies. In a related work (Bridges et al.,

2007) a whole family of Bianchi type VIIh models were studiedin and MCMC parameter

estimation search using the WMAP data, and it was found that the only viable solution

included the low density cosmology withΩtot ≈ 0.43 and the Hubble parameter ofh =

0.32, which is currently a disfavoured scenario, most prominently due to the supernovae

observations and possibly due to strong detections of the ISW effect in cross-correlations

studies with LSS (Giannantonio et al., 2008; Ho et al., 2008;Rassat et al., 2006). This model

has also been studied by Jaffe et al. (2006) and subsequentlyruled out at high significance

level.

Yet another explanation proposal was given by Vale (2005) who suggested that the align-

ment can arise from weak lensing of the CMB dipole arising in the local neighborhood, in

our super cluster, an explanation which was originally motivated by the fact that the pre-

ferred axis of evil is also closely aligned with the kinetic dipole of the CMB. The main line

of argumentation is that the kinetic dipole, which is two to three-orders of magnitude larger

than the primordial perturbations, is weak-lensed and thereby distorted by the inhomoge-

neous super structures of the local Universe, such as the Great Attractor, of the Shapley

super-cluster, and as such, the resulting mixing of the low-ℓ multipoles leads to spill-over

of the kinetic signal onto the higher multipoles: most notably the quadrupole and octupole

making them aligned and spatially correlated with the dipole orientation. In this context

the measures of accounting of for the non-cosmological dipole during the cleaning process

are not sufficient to completely remove the kinetic terms from the resulting map. However

is was also showed that while this model sufficiently and naturally mitigates the alignment

problem, it exacerbates the problem of the low power of quadrupole, as the kinetic, non-

cosmological lensing power is added to the low-ℓ multipoles, rather than subtracted, and
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hence the level of the primordial fluctuations inℓ = 2 should be considered as yet even

lower than currently measured. In this context, the low quadrupole science sector becomes

even more exciting, however the quantitative assessment ofthe magnitude of the additional

lensed power ontoℓ = 2 has not been investigated.

There also have been many other speculations on the origins of the alignment prob-

lem, ranging from instrumental effects like (gain models ofthe WMAP, beams of scanning

systematical effects), to astrophysical unknown foregrounds related to the ecliptic plane,

and finally to the primordial magnetic fields (Bernui & Hipólito-Ricaldi, 2008), capable of

generating both: the phase correlations and the hemispherical power asymmetry.

2.4 The non-Gaussian cold spot and other non-Gaussianities

A non-Gaussian feature, extending over an angular size of about 10◦ towards(l, b) =

(209◦,−57◦) has been detected by many authors via different wavelet decompositions fol-

lowed by Gaussianity tests of the convolution coefficients (eg. Vielva et al. (2004); Mukher-

jee & Wang (2004); Cruz et al. (2005, 2007); Pietrobon et al. (2008)). Subsequently, a closer

inspection revealed that the cold spot is unusual due to non-Gaussianity at the level of. 3σ,

that it is a circular-like feature and that has no spectral dependency. Inoue & Silk (2006)

then proposed that given a dust-filled void of proper size andunder-density would yield

an observed temperature deficit, which would also help mitigate the hemispherical power

asymmetry, while Cruz et al. (2008) came up with an exotic scenario claiming that the cold

spot is actually preferably associated with texture-like topological defect; being an artifact

from the super-symmetry phase transitions in the early Universe.

Interestingly, the cold spot was sought in the NVSS radio source 1.4 GHz continuum

survey by Rudnick et al. (2007) and a dip in the brightness intensity has been found in the

cold spot direction, and a hence a corresponding detection was claimed. This however was

recently refuted by Smith & Huterer (2008) as an incorrectlytreated striping systematical

effect of the NVSS survey.

We will pursue such a general search for non-Gaussianity from the point of view of the

real-space oriented statistic in chapter 3.

2.5 Primordial non-Gaussianity

It is currently commonly recognised that the primordial non-Gaussianity will soon become

an interesting tool for testing inflationary models (Bartolo et al., 2004). This is because,

generically, the single field inflation models predict very small, non-detectable amounts of

non-Gaussianity due to negligible self-coupling of the scalar field. This is the case for exam-

ple with a standard chaotic inflation model (Linde, 1982). However many other models like

hybrid inflation models with many scalar fields Linde (1994),models with features, glitches,

steps in the potential Wang & Kamionkowski (2000); Contaldiet al. (2003), k-inflation
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models with non-standard kinetic terms in the equation of motion Garriga & Mukhanov

(1999) or string theory inspired models of inflation with Dirac-Born-Infeld terms in action

Silverstein & Tong (2004); Huang et al. (2008), or curvaton scenario models Lyth et al.

(2003), as well as some of the ekpyrotic models Koyama et al. (2007); Koyama & Wands

(2007) and many others, typically are capable of generatinglarge values of non-Gaussianity

of either sign and in general of various shape, classified viak-mode configurations in n-point

correlation functions in spherical harmonic space. This ofcourse motivates pursuit of exper-

imental measurement of the primordial non-Gaussianity viaestimates of the second-order

corrections to the gravitational potential fluctuations imprinted in the cosmic microwave

background radiation.

From the observational side, no significant proof for the primordial non-Gaussianity

hasn’t been insofar found, apart a tentative report by Yadav& Wandelt (2008) who claim

a detection of positive non-Gaussianity at a confidence level exceeding 99%. These results

however need further confirmations, and of course higher significance level, in order to

concretize the inflationary model and/or rule out other competing scenarios of structure

formation. A satisfactory confidence level would be for example the level at which today the

fact of reionization is confirmed (> 5σ) Dunkley et al. (2008) and well accepted. Naturally

large doze of hopes is given to PLANCK surveyor in regard of detecting the primordial

non-Gaussianity signals. However given that the non-Gaussianity is related only with the

second, or higher order, effects in the perturbation theory, with the level of anisotropies

detected by COBE∼ 10−5 the higher-order effects will be very challenging to detect, given

all sorts of foreground astrophysical and instrumental effects to deal with.

With currently accessible data the best constraints on the non-Gaussianity gravitational

potential quadratic term coupling coefficientfNL yield −9 < f local
NL < 111 at 95% CL,

and −151 < f equilateral
NL < 254 at 95% CL (Komatsu et al., 2008) using bispectrum

method, where “local” and “equilateral” correspond to configurations of models yielding

k1, k2 >> k3 andk1 ∼ k2 ∼ k3 respectively. It was pointed out that a full-sky, high reso-

lution observations of the soon-to-be-launched PLANCK satellite, given that the secondary

effects (like weak lensing, or S-Z effects) are well under control, it will be possible to signif-

icantly shrink these limits down to values of order offew. This in turn should be sufficient

to already rule out many models only due to the measurement ofsing of the non-linear

coupling parameter.

2.6 Motivation and problem statement

The list of the anomalies, found in the WMAP data and the related research, mentioned

in the previous sections, is by no means complete. Given a huge cosmological implica-

tions, the studies devoted to (non-)Gaussianity and statistical isotropy, have now become an

important, well motivated and advanced science with large predictive power.

There are few very important ways in which the Gaussianity and the statistical isotropy
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analyses are going to be useful in cosmology. As is well known, non-Gaussianity is going

to become a very important discriminant of the viable inflationary models. In this context

the constraints of level and shape of the primordial non-Gaussianity are of main interest.

From this standpoint, tests of consistency of the CMB maps with Gaussianity serve as a

complementary science, helping to reduce the impact of foregrounds inevitably biasing the

estimated level of the primordial non-Gaussianity. As suchit is useful to perform these tests

both: in multipole space, due to scale dependence of variousnon-Gaussianity sources, and

due to signal-to-noise ratio issues; as well as in real space, due to the need for precise local-

ization of the non-cosmological non-Gaussianity contributions. Statistical isotropy tests are,

of course, related since one cannot separate these from the tests of Gaussianity as long as

the underlying temperature or polarization template is unknown, as was already discussed.

Following the standard lore of the modern cosmology, such asthe assumptions of Gaus-

sianity and statistical isotropy, in recognition of the importance of experimental study of

these assumptions we carry out a series of independent statistical tests, aiming at cross-

verification, in variety of ways, of some of the well known, tentative and strong anomalies

described in this chapter. By devising and implementing newmethods and tests we further

explore their properties, and verify their significance.

We also aim on testing different statistical methods themselves prior to any cosmolog-

ical applications. Given an infinite number of statistical tests one could possibly come up

with, and also finite amount of work that has already been pursued, there always remain

space for generalizations, and improvements. In the following chapters we present some of

the results from the projects that has been already finished,and some results from the still

ongoing projects, and we suggest a few, possibly-interesting improvements, that could be

addressed in the future similar statistical tests.
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Chapter 3
Real space tests of the statistical

isotropy and Gaussianity of the

Wikinson Microwave Anisotropy Probe

Cosmic Microwave Background data

The material presented in this chapter was published in Journal of Cosmology and Astropar-

ticle Physics (Lew, 2008b). It has been submitted on 6th of May 2008 and accepted on 9th

of July 2008.

3.1 Abstract

We introduce and analyze a method for testing statistical isotropy and Gaussianity and apply

it to the Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background

(CMB) foreground reduced, temperature maps. We also test cross-channel difference maps

to constrain levels of residual foregrounds contaminationand systematical uncertainties. We

divide the sky into regions of varying size and shape and measure the first four moments

of the one-point distribution within these regions, and using their simulated spatial distri-

butions we test the statistical isotropy and Gaussianity hypotheses. By randomly varying

orientations of these regions, we sample the underlying CMBfield in a new manner, that

offers a richer exploration of the data content, and avoids possible biasing due to a single

choice of sky division. In our analysis we account for all two-point correlations between

different regions and also show the impact on the results when these correlations are ne-

glected. The statistical significance is assessed via comparison with realistic Monte-Carlo

simulations.

We find the three-year WMAP maps to agree well with the isotropic, Gaussian random

field simulations as probed by regions corresponding to the angular scales ranging from6◦

to 30◦ at68% confidence level.
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We report a strong, anomalous (99.8% CL) dipole “excess” in the V band of the three-

year WMAP data and also in the V band of the WMAP five-year data (99.3% CL).

Using our statistic, we notice the large scale hemispherical power asymmetry, and find

that it is not highly statistically significant in the WMAP three-year data (. 97%) at scales

ℓ ≤ 40. The significance is even smaller if multipoles up toℓ = 1024 are considered

(∼ 90% CL). We give constraints on the amplitude of the previously-proposed CMB dipole

modulation field parameter.

We find some hints of foreground contamination in the form of alocally strong, anoma-

lous kurtosis-excess in the Q+V+W co-added map, which however is not significant glob-

ally.

We easily detect the residual foregrounds in cross-band difference maps at rms level

. 7µK (at scales& 6◦) and limit the systematical uncertainties to. 1.7µK (at scales

& 30◦).

3.2 Introduction

Observational cosmology has established the flatΛCDM model with nearly scale invari-

ant initial density perturbations as the standard model of modern cosmology (e.g. Riess

et al. (2004); Astier et al. (2006); Eisenstein et al. (2005); Cole et al. (2005); Hinshaw et al.

(2007); Page et al. (2007); Spergel et al. (2007); Tegmark etal. (2006)). These observations

seem consistent with the simplest predictions from inflation theory. Amongst those predic-

tions, one consequence from the cosmological principle, the statistical isotropy (SI), and

one generic consequence from inflation theories, the Gaussianity (to leading order) of the

cosmic microwave background (CMB) temperature fluctuations, have received a lot of at-

tention with the release of the first year of observations of the WMAP satellite. The relevant

statistical analyses either aimed at detecting small amounts of non-Gaussianity (NG), that

stems from non-linear effect even within inflation theories(Bartolo et al., 2004), or looked

for any anomalous signal that would challenge this standardmodel.

However, separating SI from Gaussianity is a delicate task when making such a test,

since one has to deal with only one realization of the CMB, that is considered in this con-

text to be a random field. SI and NG have been tested in variety of ways and some “anoma-

lies” have been reported. In particular, using tests optimized for SI, in spherical harmonic

(SH) phase space (de Oliveira-Costa et al., 2004, 1996) an unusual alignment (98% CL) at

low multipoles have been found and confirmed (e.g.Copi et al.(2006a); Land & Magueijo

(2005c)). Number of other tests and statistical tools and estimators have been devised and

used to constrain SI and/or NG. Among others, these include:bi-polar power spectrum (Ha-

jian & Souradeep, 2006), phase correlations tests (Naselsky et al., 2005), higher order corre-

lations in SH space (bi/tri-spectrum) e.g.(Ferreira et al., 1998; Magueijo & Medeiros, 2004;

Cabella et al., 2006, 2005),n-point real space statistics: (Durrer et al., 2000; Gaztañaga

et al., 2003; Gaztañaga & Wagg, 2003), morphological estimators (like Minkowski func-

tionals) (Shandarin, 2002; Wu et al., 2001; Park, 2004), multipole vectors (Copi et al.,
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2006a; Land & Magueijo, 2005d; Schwarz et al., 2004; Copi et al., 2004) higher order

correlation functions (Gaztañaga & Wagg, 2003), phase space statistics (Naselsky et al.,

2005; Chiang et al., 2003), wavelet space statistics (McEwen et al., 2006a; Cruz et al.,

2007; Vielva et al., 2004; McEwen et al., 2006b), higher criticism statistic (Cayón et al.,

2005), pair angular separation histograms (Bernui et al., 2007b) and also various real-space

based tests eg: Hansen et al. (2004a); Eriksen et al. (2004a,2007); Hansen et al. (2004b)

In particular a dedicated tests of hemispherical power asymmetry have been reported by

many authors and found anomalous at confidence levels ranging from ∼ 2σ to ∼ 2.6σ

(95%CL ∼ 99% CL)

In this work, we measure regional one-point statistics in the WMAP data and in simula-

tions in order to test the SI and Gaussianity hypotheses. We mean to extend and generalize

the previous similar works in three ways.

Firstly, we show that the result of the analysis strongly depends on the way in which the

sky is partitioned into regions for the subsequent statistics, and we circumvent this problem

by relaxing the constraints on the shape and the orientationof a chosen sky pixelization by

considering many randomly oriented sky regionalizations.This allows us to avoid a possible

bias in such regional analysis that is constrained only to a single choice of pixelization

scheme.

Secondly, we relax the constraint on the size of the regions,thereby statistically probing

features at different angular scales.

Thirdly, we account for all correlations between differentregions, resulting from the

well known two-point correlations (or possible higher-order correlations) using multivariate

full covariance matrix calculus for more robust estimationof the statistical significance of

local departures from Gaussian random field (GRF) simulations.

We will assess the statistical significance of our results inthree different manners so as

to avoid the standard pitfalls of such an analysis and will rely heavily on realistic simulations

to either probe the underlying distributions or to test the sensitivity of our statistic.

The chapter is organized as follows: in Sect. 3.3 we introduce the data sets that are

being tested, and provide details of the simulations. In Sect. 3.4 we describe the details of

our statistical approach for regional statistics. We then test and illustrate the sensitivity of

our statistics via Gaussian and non-Gaussian simulations in Sect. 3.5 before presenting the

results in Sect. 3.6 and discussing them in Sect. 3.7. We conclude in Sect. 3.8.

3.3 Data and simulations

For the main analysis in this chapter we use the WMAP three-year foreground reduced tem-

perature maps from differential assemblies (DA) Q1, Q2, V1,V2, and W1, W2, W3, W4,

pixelized in theHEALPIXsphere pixelization scheme with resolution parameterNs = 512.

We co-add them using inverse noise pixel weighting (Eq. 3.1)and form either individual

frequency combined maps (Q, V, W) or an overall combined map (Q+V+W) to increase the
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signal to noise ratio according to:

Ti =
1

Wi

jen∑

j=jst

wjiTji (3.1)

whereWi =
∑jen

j=jst
wji andwji = Nji/σ

2
0j andσ0 is the noise rms for a given DA and

Nij is the number of observations of theith pixel for jth DA (Hinshaw et al., 2007). The

sum overj iterates the DAs whose maps are co-added (in numbers,{2, 2, 4, 8} respectively

for Q, V, W and all channels). We will refer to those datasets as Q, V, W and INC (inverse

noise co-added map) respectively and define a data set vectord ∈ {Q,V,W, INC} for

further reference.

We also consider a difference maps between different channels to independently test the

residual foregrounds and to cross-check with the results obtained from the single band NG

analysis. We consider a single band difference maps (e.g. Q1-Q2, V1-V2) as well, since

nearly identical frequency difference maps have a negligible amount of CMB or foreground

signal1 and these are used to test the consistency of our white noise realizations against the

pre-whitened1/f pink noise of the WMAP data and constrain the systematical uncertain-

ties. Details of this check is given in appendix A-3. We will refer to these maps as QV,

QW or VW for cross-band difference maps and Q12, V12 etc. for an individual differential

assembly difference maps.

As an extension to the main analysis we also test the five-yearWMAP data set from the

V channel and refer to it as V5. For this purpose the WMAP five-year simulations are used

and preprocessed in the same way as in case of the WMAP three-year data except for the

sky-mask, which here we choose to be KQ75.

The residual monopole, measured outside the three-year release of the Kp0 (hereafter

the Kp03 ) sky mask, is removed from each map by temperature shift in real space. The

Kp03 sky mask (including galactic region and bright point sources) is applied and no down-

grading is performed at this level. We will useNsim = 104, realistic, full resolution simula-

tions to test our statistics and to assess confidence thresholds (see Appendix A-1 for details

and basic tests).

3.4 Directional statistics

If the CMB sky is a realization of a multivariate Gaussian random field (GRF), then statistics

of any linear statistical estimator should not deviate fromGaussianity within any arbitrary

region in the sky. Otherwise - in case of non-linear estimators - in general deviations from

Gaussian statistics are expected, hence MC approach for assessing limits on consistency

with Gaussianity is used.

1 The non-vanishing CMB or foregrounds content, even in the single band differential maps, comes from

slight differences in the effective working frequencies ofthe differential assemblies (DAs) and also from slightly

different beam profiles. While in case of the single band difference maps (e.g. Q1-Q2) the residual rms signal

is weaker than the noise by more than two orders of magnitude,in case of the different frequency bands (e.g.

Q-V) the residual CMB rms signal is about one order of magnitude weaker than the noise.
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In order to test thestationarityand Gaussianity of the temperature fluctuation hypothe-

ses we use two independent sphere pixelization schemes to define sky divisions and conse-

quently a set of adjacent, continuous regions.

3.4.1 Sky pixelizations

The first pixelization scheme (hereafter referred to asHP) is an independent implementation

of theHEALPIXpixelization scheme (Górski et al., 2005) and its resolution is parametrized

by thens parameter (Fig. 3.1 top-left). The total number of pixels for a givenns is r =

12n2
s. We will use three different resolutions (ns) as specified in Table 3.1.

The second one (hereafter calledLB) covers the sphere by dividing it along lines of

parallels (iso-latitude) and meridians (iso-longitude) to obtain arbitrarily elongated pixels,

generally of varying angular sizes (Fig. 3.1 top-right). This results in the total number

of pixels r = NlNb (whereNl and Nb are the numbers of longitudinal and latitudinal

divisions). The three different resolutions used in the analysis defined by these parameters

are specified in Table 3.1. Further flexibility is allowed by rotating the polar axis by three

randomly chosen Euler angles.

Since there is no reasonable, physical motivation for preferring any particular sky pix-

elization over another from the standpoint of testing a GRF hypothesis, we considerNm =

100 random orientations for each of the six types of pixelization schemes, which altogether

yields 600 different sky pixelizations with a total number of 280 000 regions of different

shapes and sizes probing different angular scales (Fig. 3.2). We therefore draw the three

Euler angles used to define the axis position and pixelization scheme orientation about this

axis from a uniform distribution.

All sky pixelizations are subject to the Kp03 (three-year Kp0) galactic/point sources

cut which masks∼ 23% of the sky. In practice there is no lower bound for the size of

a region due to its random orientation with respect to the Kp03 sky cut. However for the

sake of numerical stability, when computing the inverse covariance matrix (see below), we

only consider regions that happen to haveNpix > Npixth = 100, whereNpix refers to the

number of pixels of the originalns = 512 map falling into this particular region.

Hereafter we refer to a particular random realization of a pixelization scheme (a random

set of regions covering the full sky and merged with Kp03 sky mask) as amulti-mask, since

it uniquely tags sky regions and allows to pursue statisticsexclusively within them (see

Fig. 3.1 bottom-left and bottom-right). Of course different multi-masks, even defined from

a similar pixelization scheme, may have a different number of regions due to the random

orientations with respect to the Kp03 sky mask. We defineNreg(r,m) as the number of

regions of amulti-maskas a function of initial resolution parameterr andmulti-maskID

numberm ∈ {1..Nm}. As an illustration, the two lowest resolution, pixelization schemes

and two examples ofmulti-masksare shown in Fig. 3.1. We will also use additional sets of

multi-masksto complete and extend the main part of the analysis in a few selected cases.
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HP 2 LB 32 8

HP 2 LB 64 8

Fig 3.1: In the first row, two lowest-resolution pixelization schemes –HP 2 (top-left) andLB

32 8 (top-right) are shown. In the second row, we present an examples of twomulti-masks

actually used in analysis. Pixelization schemes are rotated to a random orientation, with

Kp03 sky mask applied. These areHP 2 (lower-left) andLB 64 8 (lower-right) respectively.

Values in all regions were randomized for better visualization.

3.4.2 One-point statistics

In each of the defined regions of eachmulti-mask, the first four central moments (i.e. mean

(m), standard deviation (σ), skewness (S), and kurtosis (K)), of the underlying temperature

fluctuations are computed for the data and for allNsim = 104 simulations. Together this

yields2.8 × 109 regions for assessment of uncertainties. As will be shown inthe Sect. 3.5,

allowing for arbitrary orientations ofmulti-maskshas an impact on the results and yield a

more stringent test on stationarity. The fact that we chooseto work in real space allows for

a good localization of deviations in the sky.

Table 3.1: Summary on theLB andHP pixelization schemes and resolutions used in the

main analysis, given explicitly for quick reference. The columns abbreviations are as fol-

lows: (1) pixelization scheme reference name, (2) resolution parameter value, (3) approxi-

mated angular size of regions, (4) number of regions in pixelization scheme.

HP LB

(1) (2) (3) (4) (1) (1) (3) (4)

Ref. Res. Ang.size [deg] regs. Ref. Res. Ang.size [deg] regs.

name ns Ωreg r name Nl Nb ∆l ∆b r

HP 2 2 29.3 48 LB 32 8 32 8 11.3 22.5 256

HP 4 4 14.6 192 LB 64 8 64 8 5.6 22.5 512

HP 8 8 7.3 768 LB 64 16 64 16 5.6 11.3 1024
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Fig 3.2: Number of points,Npix(k), in regions for all 6 types of pixelization schemes used

in their initial position, after masking by Kp03 sky mask, infunction of region number. All

regions withNpix < 100 were not considered in the analysis as detailed in the text and

treated as masked. The central parts (∼ r/2) of a given pixelization are strongly covered

by the Kp03 mask (this is true only for the particular initialorientation of amulti-mask).

At the top abscissa we give the approximate angular scales probed by pixelization schemes

with the corresponding total number of regions indicated inthe bottom abscissa.

The presence of extended, residual foregrounds or unremoved, unresolved point sources,

will affect the local central moments distributions. In particular the mean of the fluctuations

will tend to be up-shifted with respect to simulations if diffuse foregrounds are present or

down-shifted if they are over-subtracted. Also, dependingon the amplitude of the residual

foregrounds the local variance will also be altered. Looking jointly at the distribution of

these moments on large scales might also provide a handle on the large scale distribution of

power via the off-diagonal terms of the inverse covariance matrix. The physical extent and

position of the regions where particular type of deviation occurred can provide a clue to the

possible nature of the foregrounds causing it (see Sect. 3.5).

3.4.3 Assessing statistical significance

Since our measurements are statistical, a crucial stage remains in probing their statistical

significance. Our approach relies on a detailed comparison between the measurements per-

formed on real data with the distribution of the same measurements performed on simula-

tions.

We consider three different ways to address the significanceof these measurements.

Each step involves one extra-level of generality and will shed light on the subtleties of such
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an assessment.

At first, we look at individual regions, ignore their correlations and compare them with

the simulations. We call this approach the “individual region analysis”. It is the simplest

approach one can consider.

Secondly, we compute the overall statistical significance per multi-mask, by taking into

account the two-point correlations between moments of distributions (MODs) measured in

regions of the samemulti-maskvia the full covariance matrix. We call this approach the

“multi-region analysis”. The resulting probabilitiesP
(
χ2

q

)
(Eq. A-7) are the joint probabil-

ities of exceeding a certain confidence threshold as a function of pixelization scheme (r),

multi-mask(m ∈ {1..Nm}), MOD (X ∈ {m, σ,S,K}), and dataset (d ∈ {Q,V,W, INC})

configured by a parameter vectorq = {X, r,m, d}. This analysis extends the information

from the single region analysis by testing the consistency of the data with the simulations

via standard multivariate calculus.

Finally, we combine all the information probed by differentmulti-masksto find the joint

cumulative probability of rejecting the GRF hypothesis as afunction of pixelization scheme

(r), MOD (X), and dataset (eg. frequency) (d). We call this approach the “allmulti-masks

analysis”.

We remind that the statistical significance of any real data measurement, at any stage

of the analysis, is always assessed by a comparison to the setof the same measurements

performed using GRF simulations. The exact details of the analysis at each step are given

in Appendix A-2.

3.4.4 Visualizing the results

To visualize our results from the single-region analysis, or multi-region analysis at certain

confidence level, we proceed the following way. For individual region statistics, for each

region of eachmulti-maskwe definenσ as

nσ =
√

2erf−1(1 − P (X)) = cdfG
−1(P (X)/2) (3.2)

whereP (X) is the quantile probability derived according to Eqs. A-3 and A-4. Thenσ thus

defined is the Gaussian number ofσs by which a region, defined by a givenmulti-mask,

deviates from simulation average. We then produce maps ofnσ estimator, for data processed

through each of the 600 generatedmulti-masksand for each MOD. Then, to present all the

results in a compact way, we scramble these maps within the same MOD. We over-plot

the individual pixels from regions with the strongest deviations from the underlying pixels.

Positivenσ values correspond to excessive value of a given MOD in a region, and negative

value correspond to its suppression. For clarity, we use a threshold|nσ,th| = 3 to produce

maps with only the strongest (3σ) detections.

For the joint multi-region statistics we produce maps (as detailed above) using only

thosemulti-masksthat yield |P (χ2
q)| ≤ Pth (Eqs. A-3, A-4) revealing detections at the

statistical significance1 − Pth for a given MOD,multi-maskresolutionr and datasetd,
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i.e. for a given parameterq. Within this notation, single region statistics corresponds to

Pth = 1.

While the “n-sigma” maps are easy to read when looking at distributions of the anoma-

lies at a given local significance, they are unitless and cannot be directly linked with quanti-

ties that are physically measured. We therefore also consider a difference maps (∆ maps2)

of regional departures in individual MODs between datasetsand averaged simulation ex-

pectation: i.e. forith region of a givenmulti-maskwe plot∆i = Xi − 〈Xi〉N , where〈〉N
stands for average over N simulations.

3.5 Tests of the simulation and measurement pipeline

In order to validate the statistical tools introduced above, test the sensitivity and the correct-

ness of the numerical code, we performed a set of experimentsusing both simulated WMAP

CMB data and data with either simulated violation of the large scale statistical isotropy or

localized NG features.

3.5.1 Consistency check with GRF simulations

We first test self-consistency by generating 10 additional INC CMB data sets and carry

out for each of them the single-region, joint multi-region and all multi-masksstatistics. As

expected, we found that the simulated datasets yield a good consistency with the simulations

(at68% CL).

3.5.2 Sensitivity to local NG

For a statistically isotropic Gaussian process the kurtosis is expected to be exactly equal to

K = 3, which translates into a kurtosis excessKE = K − 3 = 0. Violation of either of the

assumptions can lead to a positive or negative KE.

At first we simulate what could be a residual component, resulting from subtraction

of an non-ideal foreground template, extended over an area of 10◦ angular, centered at

(l, b) = (50◦, 50◦), whose signature would be a non-vanishing KE. Such residuals must be

expected to be small in the foreground-cleaned maps, and they could be either positive –

resulting from foregrounds undersubtraction – or negativeones – resulting from foregrounds

oversubtraction.

Therefore, the introduced NG component is drawn from a normal distribution with vari-

anceσ2 and with a mean increasing uniformly across the patch when going north-south

following Healpix ring ordering inside the spot. From the northern point of the patch down

to the southern part of the patch, the mean will shift by 2nσCMB.

We introduce in this way a gradient in the noise and thus a non-zero local negative KE

(Fig. 3.4) but still preserve a vanishing (within the spot) skewness. Theσ value is chosen

2We will hereafter refer to maps so produced as∆ maps to make a clear distinction from the difference

maps obtained by differentiation of temperature maps from different frequencies (e.g. QV, QW, etc...)
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to be 1% of the underlying CMB rms (σCMB). To test the sensitivity of our estimator we

considern to be either 1 or 2, above which the NG template starts to be visually noticeable

due to edge discontinuities. Note that, with a so defined anomaly, the pixels of the spot that

are close to its horizontal diameter will have the least impact on the underlying CMB field

distortions.

The choice of then parameter values corresponds to the NG signals of the rms amplitude

∼ 50µK and∼ 100µK for n = 1 and2 respectively within the spot. We note that the rms.

value within the spot of the same size, in the foregrounds reduced difference VW map of

the WMAP3 data, yields> 100µK depending on the exact location of the spot in the sky,

hence our choice of NG signals amplitude aim at detection of relatively small anomalies as

compared to the WMAP3 noise specifications.

We find that for a single NG spot of radius10◦, the multi-region analysis does not return

any significant detection forn = 1 in any of the MODs, but the single region analysis finds

the contaminated regions unusual atnσ ≈ 2.5. In case ofn = 2 we detected a3σ local

deviation in kurtosis, while in all-multi-masksanalysis we reject Gaussianity at99.8% CL

(HP 8) due to variance distributions3.

We rerun the test for the same type of NG templates but replicated in 3 disjoint spots at

different directions in the sky for the same values ofn parameter (Fig. 3.3-a).

The choice of the position and the size of the spots is most relevant to the results pre-

sented in Section 3.6. The results of the single region analysis is shown in Fig. 3.3(b)-(d).

Note how differentmulti-maskstrace the locally introduced anomaly. Depending on the ori-

entation of themulti-maskand its regions around the directions of the NG spots, the returned

nσ values differ. In the overall multi-region analysis this naturally leads to a distribution of

probabilities which strongly depend on how the features of the map are split and probed by

different regions.

Note that some of themulti-masksalso return annσ > 3 detections even in a template-

free regions. It is therefore clear that use of many differently orientedmulti-maskshelps to

investigate the statistical significance of local anomalies.

The multi-region analysis in case ofn = 1 return no significant detections in any of the

MODs, but very significant deviations were detected for the casen = 2 in all-multi-masks

analysis (Table 3.2 in section ”KE-”), again only in the variance distributions.

Consequently, we find that for the unfiltered maps the distributions of variances are

actually more sensitive to this kind of simulated anomalies, rather than higher order MODs.

We note, however, that measuring a local sign of KE may be a hint of the nature of the

foregrounds signals as the kind of template used in this example introduces locally only

the negative KE as shown in Fig. 3.4. Similar dependences areobtained for templates of

different shapes and sizes and combinations of these factors. In the limit of a flat template

(n = 0) the field becomes Gaussian, as expected.

It is possible to introduce a non-vanishing skewness by making the template unsym-

3Of course, the estimated rejection confidence thresholds given in Table. 3.2 based only on a single-

simulation measurements may be somewhat biased depending on particular realization of the GRF simulation.
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a) template b) variance

c) skewness d) kurtosis

Fig 3.3:a) A Non-Gaussian temperature gradient template, leading to locally negative kur-

tosis excess. The parameter value ofn = 2 is used (see the main text for details). Note

that one of the spots is practically removed by the galactic sky cut. b-d) The results of the

single-region analysis using the 100multi-masksof the HP 4 pixelization scheme of one

of the simulated INC data and contaminated with the template. The scramblednσ detec-

tion map in variance, skewness and kurtosis, thresholded atnσ,th = 3, is plotted. Note

the strong, template-induced, local anomalies detectionstraced by differentmulti-masks, as

well as some other, but somewhat weaker, detections of|nσ| > 3 regions. In particular, the

template leads to the local kurtosis suppression and stronglocal excess of the variance.

metrical, by considering shifts in the mean which are unsymmetrical about zero. A similar

effect is possible by considering regions ofmulti-masksthat only partially overlap with the

area of the NG spot (Fig. 3.3c). Note that the example from Fig. 3.4 does not include the

effects of the non-uniform noise component which is included in our tests and also that the

confidence level contours were derived assuming the Gaussian error statistics; therefore it

is not straightforward to extrapolate the strong detections expected from Fig. 3.4 forn = 2

onto the full sky, locally templated, signal and noise realizations, subject to subsequent

regional statistics.

Note that the assumed size of local deviations is small relative to the full sky one, and

hence their global impact is reduced accordingly. Larger, in sense of area, deviations will

be of course easier to detect. Also a specific pre-filtering inthe spherical harmonic (SH)

space, of the data prior to the test may help to expose the mostrelevant scales to the test.

In this test we focused on testing unfiltered maps; therefore, necessarily the strength of the

detections must be suppressed.

It is not possible to obtain a locally positive KE with the above-described template. Such
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Fig 3.4: Negative departure of the kurtosis in the NG spot as afunction ofn parameter. The

plot shows the kurtosis of a sum of GRF and the generated NG template averaged over 10

random realizations of the two. The variance of the GRF is 100larger than the variance of

the NG template and the field size is chosen to correspond to the NG spot size as described

in the text. The3σ confidence thresholds were quoted around the expected values for the

GRF only and for the GRF+NG template cases. Vertical lines indicate the chosen values of

then parameter used for the templated maps generation for the test.

deviation could however be the signature of the unresolved point source contribution4, or

an unknown and localized noise contribution.

Again, for qualitative studies only, we simulate the point source component in the full

sky by adding random numbers drawn from a distribution whichis an absolute value of

the Gaussian distribution with zero mean and random variance nσCMB parametrized by

parametern and uniformly distributed within range[0, nσCMB], whereσCMB is the rms

value of the underlying CMB fluctuations.

From our simulations however, it appears that it is difficultto detect a significant contri-

bution due to point source contamination since such signal is significantly smeared by the

instrumental beam even forn as large as 6. Even whenKE & 6 before beam smearing, the

variance response is much stronger than the KE response leading to inconsistencies with

simulations in the total power of the map as measured by e.g. full sky variance distribution

(Fig. A-2). We therefore conclude that it is unlikely to detect any point source contribution

to KE in this test which is not surprising since we work at fairly low resolution which dilutes

the point source signal.

As already mentioned, a locally generated noise-like component in the map, in prin-

4Although this would have a specific frequency dependence, weignore this fact here.
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ciple, could generate an non-negligible positive KE5 as it would not be processed by the

instrumental beams. However since such noise is not well motivated physically due to non-

local properties of the TOD data and scanning strategy of theWMAP, and also since the

noise properties are well constrained, therefore we do not consider such case.

We conclude that small and single (compared to full sky observations) localized NG

features will be difficult to detect via higher order MODs in the joint multi-region and all-

multi-masksanalysis due to their small statistical impact on the overall statistics. However

a single region statistics carried out first might be a rough guide in selecting a possibly

interesting foreground NG signals. If these indicate regions with significant deviations in

variance and possessing a negative KE it would hint on residual, large scale foreground

contamination.

Stability of results in function number of multi-masks

As different multi-masksprobe the underlying data differently, the joint-probabilities per

multi-maskdiffer and lead to a distribution that typically covers a wide range of possible

probability values. As such, the multi-region analysis (see sec. A-2.2 for details) can be

used to find the orientation of the most unusual regions in themulti-masksthat yield the

smallest probability as comparred to GRF simulations.

Since from the point of view of statistical isotropy allmulti-masksare equivalent, in

the all-multi-masksanalysis (see sec. A-2.3 for details) we integrate the infomation from

all multi-maskswithin a pixelization scheme to obtain an average level of consistency of

the data with GRF simulations for that pixelization scheme.This approach also provides

a conservative way of averaging over a possibly-spurious detections that could be a fluke,

due to some accidental arrengement between amulti-masksand a data set. If the anomalous

feature in the map is strong enough to be detected in manymulti-masksthen this will also

result in a detection in the joint all-multi-masksanalysis. Conversly, if only one or fewmulti-

masksresult in a very small probability the overall impact will not be large due to stability

of the median estimator with respect to the distribution outliers. However, the investigation

of the most anomalousmulti-masksmay help in selecting the deviating regions for further

analyses.

In this section we show how the convergence to the results of the all-multi-masksanal-

ysis is reached in function of number ofmulti-masksused to derive the medianχ2 value

and the corresponding medianχ2-distribution leading to the all-multi-masksprobability.

As shown in Fig. 3.5 the convergence of the joint all-multi-masksprobability to the reported

value forNm = 100, is in this case (HP 2 pixelization scheme) quite fast; however in gen-

eral it depends on particular properties of the map as well ason the set and ordering of the

multi-masksused. The speed of the convergence and the robustness of the final value is as

good as the convergence of the unbiased mean estimator - i.e.the median - to the intrinsic

mean value as the number of random trials (corresponding to the number ofmulti-masks)

5 This is most easily seen in the contribution of the anisotropic noise of the WMAP to the kurtosis of the

signal only simulated map, which induces a significant positive overall KE value in the simulation.
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Fig 3.5: Convergence of the joint allmulti-masksprobability to the value reported in Ta-

ble 3.2 (in section (2KE-) forn = 2) for the case ofHP 2 pixelization scheme in function

of the cumulative number ofmulti-masksused to derive it (black solid lines) for mean (top

panel), variance, skewness and kurtosis (bottom panel). Additionally we overplot the joint

multi-region probabilities permulti-maskfor eachmulti-masknumber (blue dashed lines).

probing the underlying distribution increases.

Note how strongly the joint probability permulti-maskdepends on the orientation of

themulti-mask(blue-dashed lines in Fig. 3.5). In particular for the variance case, the prob-

abilities of rejection permulti-maskrange from45.7% for multi-maskm = 51, to 99.8%

for multi-maskm = 2. Yet the, reported in all-multi-masksanalysis, median value is very

stable with respect to these variations.

The shape ofmulti-mask regions.

Naturally, themulti-maskshaving large regions will be insensitive to the small scale map

features, while themulti-maskshaving small regions will be insensitive to the large scale

structures. This motivates the usage different number of regions to probe different scales of

the map.

Theoretically there are infinitely many ways of defining the shape of regions ofmulti-

masks, and of course, our choice of the shape of pixelization schemes and themulti-masksis

somewhat arbitrary; however the motivation for using different shapes of regions is straight-
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forward: to probe the data using different binning techniques since the GRF statistically

should not depend on it. However if the data turns out to be non-random it is possible that

the non-randomness will be explored differently by different region shapes. A loose anal-

ogy to the real-spacemulti-maskregion shape, which is used to derive a local value of an

estimator, over the defined area for a given orientation ofmulti-mask, is in the wavelet space

the shape of the mother wavelet, which is used to obtain the local convolution coefficients

for the input map. In this analogy the size of the region correspons to the wavelet scale.

3.5.3 Sensitivity to the large scale phase anomalies

We test the sensitivity of our method to the well known large scale anomalies found in the

WMAP data: i.e to the aligned and planar low multipolesℓ = 2 and ℓ = 3. In order

to test such anomalies we generate two GRF CMB simulations. In both simulations we

use the same realization of the power spectrum and phases as in the case of the first GRF

simulation (Sect. 3.5.1).

In the first simulation we enforce large scale phase correlation by introducing an “m-

preference” in the power distribution in the quadrupole (ℓ = 2) and octupole (ℓ = 3).

We choose the “sectoral” spherical harmonic coefficientall, to carry all the power of the

multipoles. In the second simulation we extend this modification up toℓ = 5. The GRF

signal simulations are rotated to a preferred frame prior the introduction of the planar multi-

poles. The signal maps are then rotated back to the original orientation so that the maximal

momentum axis was located at(l, b) = (260◦, 60◦) before adding noise.

As shown in Table 3.2 such anomalies have not been significantly detected at tested

scales. Although it is expected and observed that considering unfiltered maps (containing all

multipoles information mixed together) there will be a little overall impact on the statistics

we note a higher sensitivity would be obtained is a prefiltered in SH space data were used.

3.5.4 Sensitivity to the large scale power anomalies

We give a special attention to testing the sensitivity of themethod for detecting and quantify-

ing the previously reported large scale anomaly in the powerdistribution in the sky (Eriksen

et al., 2004a, 2007). We create a simulated CMB maps where theCMB signal is modulated

according to:

T (n̂) = TCMB(n̂)
(
1 + M(n̂)

)

M(n̂) = Aℓmax
n̂ · d̂

(3.3)

wheren̂ is a unit vector andM is a bipolar modulation field, oriented in direction̂d =

(225◦,−27◦) with amplitudeAℓmax
∈ {0.114, 0.2} which modulates the CMB component

up to the maximal multipole ofℓmax = 1024.

The result of the test with such modulated simulation is given in Table 3.2 (in section

“M”). As the amplitude ofA = 0.114 has been previously claimed to be preferred for the

CMB data (Eriksen et al., 2007) we process five additional, full resolution V simulations,

modulated with this amplitude, to reduce a potential biasesfrom a single draw of a random
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simulation, and report (Table 3.2 in section “〈M〉”) the average rejection thresholds as a

function of the pixelization scheme.

We also process five additional modulated simulations, and apply the modulation only

to the range of multipolesℓ ≤ 40, leaving higher multipoles unmodulated, since the afore-

mentioned work operated at much lower resolution.

The test is able to reject the modulation of the CMB of the amplitudeA1024 = 0.114 at

a very high confidence level (99.9%) depending on the pixelization scheme. Note however,

that this model modulates all scales equally.

Although in principle, the modulation will change the underlying power spectrum at

scales where it was applied, we estimate (Appendix A-1.1) that any such effect for the

modulation ofA1024 = 0.114 still remains in greatly consistent with the non-modulated

simulations’ power spectrum, and hence the results given inTable 3.2 do not result from the

underlying power spectrum discrepancies.

We are unable to reject the possibility of modulation with such amplitude applied only

to the large scales (ℓ ≤ 40). Such modulation is therefore consistent with the GRF field

or unnoticed by the test (Table 3.2). However, according to the best-fitΛCDM model (as-

suming even a noiseless observation), the multipolesℓ ≤ 40 carry only about24% of the

map’s power. The possible modulation signals at these scales must also be more difficult to

constrain as these are dominated by the cosmic variance uncertainty.

To investigate this further, we test simulations with only the large scales being modu-

lated according toA40 = 0.114 along direction(l, b) = (225◦,−27◦). We filter out these

scales up toℓmax= 40 (using the Kp03 sky cut) in SH space and downgrade the map to

ns = 64, and process these using a new set ofmulti-masksof type: LB 1 2 - i.e. having only

two regions, each covering a hemisphere. We use 96 suchmulti-maskswith orientations de-

fined by the centres of pixels of the northern hemisphere in the ring ordering of the Healpix

pixelization scheme of resolutionns = 4. We prepare a set of1 000 modulated simulations

treated as data and use1 000 independent GRF simulations to test the consistency with SI.

We split the GRF simulations into two sets of500 simulations each, to derive the covariance

matrix, and probe the underlyingχ2 distribution.6 We carry out the multi-region analysis

using 96multi-masks LB1 2, and record the values of minimal probabilities (per modulated

simulation) and the corresponding orientation of themulti-mask. The spatial distribution of

these orientations defines the accuracy to reconstruct the correct intrinsic modulation field

orientation at these scales, under cut sky and negligible amounts (at these scales) of noise.

The result is plotted in Fig. 3.6 (top-left). It is easily seen that while the direction is

quite correctly found, the dispersion of the directions within even50% CL contour (Fig. 3.6

top-right) is quite large which precludes a very precise determination of the modulation

axis. We find, that statistically∼ 8% (the probability corresponding to the peak value in the

bottom plot in Fig. 3.6) of Gaussian simulations, to which wecompare the modulated sim-

ulations treated as a data, exhibit a more unusual configurations of hemispherical variance

6Note that with theLB 1 2 multi-maskshaving only two regions it is not necessary to process a very large

number of simulations to assess a good convergence.
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Fig 3.6: Histogram of the reconstructed modulation axis orientations as measured via the

minimal joint probabilityP
(
χ2

q

)
(Eq. A-7) in the set of 96LB 1 2 multi-masksfrom 1000

modulated simulations (top-left) visualized using Healpix grid of resolutionns = 4. The

corresponding, reconstructed50% (dark blue),68% (light blue) and95% (light red) con-

fidence level contours obtained after smoothing the histogram with a Gaussian beam of

FWHM= 7◦ (top-right). The reconstructed distribution is normalized on a hemisphere. In

the bottom plot: the distribution of minimal log-probabilities (log P
(
χ2

q

)
) obtained from

1000 simulations modulated with amplitudeA40 = 0.114 along with the value obtained

from the V map of the WMAP3 data.

distribution.

Consequently, we report this median rejection threshold of∼ 92%, as the statistical

sensitivity of the method for detecting the large scale modulation (i.e. in the filtered maps

modulated withA40 = 0.114). We consider this result - i.e. the low rejection confidence

level - to be penalized mostly by the cosmic variance uncertainty and freedom of phases to

assume an arbitrary orientations with respect to the (unsymmetrical) sky cut. Consequently,

we note that due to these uncertainties, it may be difficult toincrease this rejection level for

scales ofℓmax∼ 40 and amplitudeA = 0.114.
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Table 3.2: All-multi-masksanalysis results from tests of the simulated datasets. The

columns content is as follows: (1) pixelization scheme, (2..4) “probability of rejecting”

the consistency with GRF simulations (Sect. A-2.3) for eachMOD. The abbreviations of

the datasets are: 1KE-: INC simulation with one NG spot (three NG spots) leading to

KE< 0 andn = 1 (see text Sect. 3.5 for details), 2KE-: INC simulation with one NG spot

(three NG spots) leading to KE< 0 andn = 2 (see text Sect. 3.5 for details), A2..3: INC

simulation with aligned multipolesℓ = 2 andℓ = 3, A2..5: INC simulation with aligned

multipoles fromℓ = 2 to ℓ = 5, M: INC dipole modulated simulation with dipole ampli-

tude ofAℓmax
. 〈M〉: V simulation with CMB signal fully (partially) modulated according

to parameterAℓmax
. The average confidence thresholds are given. The values arerounded

to integer percentiles in case of probabilities≤ 99% CL. The saturated values are marked

with ⋆.
Reg.sk. Pm

rej[%] P σ
rej[%] PS

rej[%] PK
rej[%]

(1) (2) (3) (4) (4)

n = 1: 1KE- (1KE-):

no significant detections (no significant detections)

n = 2: 2KE- (2KE-):

HP 2 42 (45) 82 (94) 58 (75) 49 (80)

HP 4 43 (69) 97 (> 99.98) 31 (66) 39 (62)

HP 8 8 (70) 99.8 (99.8) 5 (32) 23 (41)

LB 32 8 28 (58) 88 (99.0) 29 (72) 27 (53)

LB 64 8 34 (64) 69 (96) 20 (60) 18 (34)

LB 64 16 18 (69) 98 (99.5) 10 (37) 28 (44)

A2..3 (A2..5):

no significant detections (no significant detections)

M: A1024 = 0.114 (A1024 = 0.2)

HP 2 39 (36) 94 (99.99) 42 (50) 32 (35)

HP 4 43 (47) 99.6 (> 99.99⋆) 22 (25) 31 (32)

HP 8 11 (19) 99.96 (> 99.99⋆) 7 (8) 18 (20)

LB 32 8 30 (35) 97 (> 99.99⋆) 20 (22) 22 (23)

LB 64 8 34 (38) 91 (> 99.99⋆) 15 (17) 14 (14)

LB 64 16 22 (30) 99.4 (> 99.99⋆) 12 (13) 23 (25)

〈M〉: A1024 = 0.114 (A40 = 0.114)

HP 2 58 (59) 99 (56) 52 (44) 54 (44)

HP 4 77 (56) 99.87 (57) 54 (37) 50 (38)

HP 8 79 (62) 99.97 (55) 64 (29) 54 (52)

LB 32 8 78 (57) 99 (55) 54 (38) 51 (47)

LB 64 8 78 (58) 97 (55) 59 (38) 54 (43)

LB 64 16 76 (61) 99.7 (54) 64 (32) 55 (46)
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3.6 Application to WMAP three-year data

We now present the results of the statistics described in Sect. 3.4 applied to the three-year

and five-year WMAP data.

3.6.1 Individual region statistics

The individual region statistics as described in Sect. 3.4 find numerous regions amongst

our many pixelization schemes, which deviate by more than certain |nσ,th| in all MODs.

Table 3.3 gives an incomplete list of some of the strongest detections. In Fig. 3.7 we plot

the detected regions at|nσ,th| = 3 in the individual region statistics of the INC data.

Note that with our approach the so-called “cold spot” is not detected at3σ level from

being cold (i.e. via distribution of means) at all tested resolutions (Table 3.3). It appears

at about∼ 2.7σ around galactic coordinates(l, b) = (211◦,−57◦). Excessively “cold” or

“hot” deviations in all MODs are detected in general with large values ofnσ.

As expected thenσ map of the means in Fig. 3.7 shows that the strongest deviating

regions are directly close to the galactic plane cut off by the Kp03 mask, thus hinting at

foreground residuals.

The variancenσ map shows local strong anomalies with the extended variancesuppres-

sion in the northern hemisphere towards(l, b) = (67◦, 19◦) and with an extended variance

excess towards(l, b) = (199◦,−55◦). We note that these localized anomalies must, at least

in a part, make up for the hemispherical power asymmetry.

Skewness and kurtosis maps consistently indicate strong local deviations from GRF

simulations towards(l, b) = (193◦,−26◦) and(l, b) = (356◦,−36◦). While some regions

appear in all three maps, some appear only in one of the moments therefore the correlation

between those results is not obvious.

Table 3.3: An incomplete list of strongest deviation directions from maps in Fig 3.7 at

|nσ,th| = 3 in the individual region analysis for means, variances, S and K, sorted in galactic

longitude ascending order. Notice that with our simulations we directly probe the±3.7σ

PDF region without need for extrapolations.

mean variance skewness kurtosis

(l,b) nσ (l,b) nσ (l,b) nσ (l,b) nσ

157, -29 -3.07 63, 28 -4.21 173, -73 -4.50 84, -31 -4.38

211, -57 -2.78 67, 19 -4.21 193, -26 5.06 195, -27 5.20

241, 42 -2.36 199, -55 4.13 209, 8 -3.50212,-55 -3.77

265, -21 3.81 319, -27 3.40 217, 35 4.00 309, 59 -3.25

318, -9 -3.69 225, -20 -3.60 312, -21 3.65

167, 79 3.06 241, -52 -3.51 356, -36 4.25

311, -20 3.86

357, -35 4.15
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mean variance

skewness kurtosis

Fig 3.7: Results of the single-region analysis visualized in the compositenσ maps of the

INC data, for each of the MODs. The threshold ofnσ,th = 3 (as defined in Sect. 3.4.4)

is used. Mollweide projection and the galactic coordinatesare used. The origin of the

coordinate system(l, b) = (0, 0) is in center of the plots and the galactic longitude increases

leftwards. Regions around the Galactic plane are partiallyremoved by the Kp03 sky mask.

The same convention is kept throughout the rest of this chapter.

Fig 3.8: Results of the single region analysis. Residual difference (∆ =
√

σ2 − 〈
√

σ2〉)
scrambled map of the variance distribution in the INC map processed with 100multi-masks

of the HP 2 pixelization scheme. The well know, large scale hemispherical power distri-

bution asymmetry is clearly seen as is the distribution of foreground residuals along the

galactic cut.
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In order to investigate the spatial distribution of this high nσ regions, we plot in Fig. 3.8

the ∆ map, of differences between the variance distribution measured in each region of

multi-masksof the HP 2 pixelization scheme, and the simulations average,∆ ≡ di =√
σ2

i −〈
√

σ2
i 〉. The map is obtained by scrambling 100 difference maps from 100 different

multi-masks(as described in Sect. 3.4.4). This map can be seen as a residual map for the

local variance. This residual map exhibits a well known power asymmetry (Eriksen et al.,

2004a, 2007). The dipole (ℓ = 1) component of this residual masked map (ignoring the

effect of the mask) is aligned along axis(l, b) = (237◦,−44◦) with power excess in the

southern hemisphere. In order to probe this direction further, for each individualmulti-

maskwe also produced annσ estimator maps and checked the orientation of the dipole

axis. Fig. 3.9 shows the PDFs obtained for the orientation ofthe dipole asymmetry in

galactic longitude and latitude. Interestingly, we noticethat the orientation of the axis of the

hemispherical power asymmetry has some scale dependence. When using smaller scales

with finer pixelization schemes, the orientation of the power asymmetry dipole shifts from

larger galactic latitudes (roughly from the position of thecold spot, with the mean PDF value

(l, b) = (218◦,−43◦) – see also Table 3.3) for theHP 2 resolution to smaller latitudes

(l, b) = (206◦,−18◦) for the HP 8 pixelization scheme. The dependence of the power

asymmetry orientation in function of the pre-filtered in SH space data have previously been

tested by Hansen et al. (2004a). While we will return to the power asymmetry issue in the

next subsections, we note that the medians of the dipole axisdistributions of other MODs are

not correlated with the dipole axis orientation of the variance map (Fig. 3.9) and generally

point at some other locations.

In the next section we quantify the statistical significanceof these deviations.

3.6.2 Joint multi-region statistics

In Fig. 3.10 we plot a compilation of all joint “probabilities of exceeding”, calculated with

all datasets considered (Q, V, W, and INC) in all 600multi-masks. In order to visualize the

smallest probabilities logarithmic scale is used. Note that we sort these probabilities in each

MOD and dataset so as to ease visualization, so the points with same abscissa in different

MOD and data sets do not necessarily correspond to the samemulti-mask.

Most of the results concentrate along the zero point of the joint log-probabilities, which

indicates a good consistency of the data with the simulations at relatively high CL. (The

white region in the Fig. 3.10 encompasses CLs of up to3σ; 3σ and4σ regions are shaded

in red and yellow respectively).

It is important to note that within one pixelization scheme the dispersion of probabilities

in the Fig. 3.10 results only from the orientation of themulti-mask. As a result, the statis-

tical method involving many pixelization schemes help us obtain the unbiased results that

one could get relying only using a single pixelization scheme. We also recall that for each

plotted point, the statistic was also calculated forNsimPDF(χ2
q) = 1000 simulations in order

to probe the underlying PDFs. For each point the corresponding full covariance matrix was

obtained fromNsim(Cq) = 9000 simulations (as described in Appendix A-2.2).
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Fig 3.9: Orientation of the dipole component (galactic longitude - left panel and galactic

latitude - right panel) of thenσ maps for the INC map processed individually with allHP

pixelization schemes. Each color corresponds to a different resolution of the pixelization

scheme. While the longitudinal orientation of the dipole does not vary with resolution, the

galactic latitude systematically shifts to lower galacticlatitudes as resolution increases.

We now focus on three distinctive sets of results, based on the Fig. 3.10, and quantify the

deviations in more detail. We detail on a tentative excess seen in kurtosis before focusing

on the large scale power anomalies, and on unusually strong dipole contribution in the V

channel of the WMAP. Then, we comment on the results from tests carried out with the

difference map datasets.

Localized Kurtosis excess

In Fig. 3.10 there is one “3σ” detection in kurtosis inHP 4 pixelization scheme in the INC

dataset (bottom second from the left panel in Fig. 3.10) – a result found using one in100 of

multi-masksprobing these scales. Here we discuss this particular pointas a tentative detec-

tion because although themulti-maskbins the data to create the most unlikely realization

of the kurtosis, it lies in the low-end tail of the whole spectrum of equivalent measurements

and hence its statistical impact cannot be large.

Table 3.4: Threeσ NG detections in K multi-region statistics of the INC data using multi-

maskresulting in joint probabilityP
(
χ2

q

)
< 0.0027 for the resolutionns = 512 and

P
(
χ2

q

)
< 0.005 for the resolutionns = 64. The (l,b) field gives the galactic coordinates to

the center of the region

resolution (ns = 512) resolution (ns = 64)

region Npix nσ Npix nσ (l,b)

160 2750 3.48 37 1.38 181 , 2

185 12610 3.21 199 3.26 199 , -23

104 16125 3.52 250 3.27 355 , -44

In Fig. 3.11a we plot, thresholded at “3σ”, the nσ map using only this particularmulti-
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Fig 3.10: Results of the “multi-region” analysis. Dependence of joint probabilities of ex-

ceeding (P
(
χ2

q

)
, Eq. A-7) as a function ofmulti-masknumber for all pixelization schemes

considered. The probabilities calculated with the spectral data maps from channels Q, V,

W, INC are plotted in red, green, blue and black dots respectively. Each dot corresponds

to the joint probability using onemulti-mask. From the left to the right, the panels show

results for increasing resolution of the pixelization scheme (see Table 3.1) with 100 differ-

entmulti-masks(along abscissa) in each. From top to bottom the four rows correspond to

the four MODs - i.e. mean, variance, S and K respectively. Probabilities corresponding to

the WMAP5 V5 data for pixelization schemeHP 4 are plotted with green crosses (+). 3σ

and4σ confidence levels are shaded in red and yellow respectively.The joint probabilities

were sorted in each dataset before plotting for better visualization; therefore the probabil-

ities from different datasets generally do not correspond to the samemulti-masknumbers

and do not directly correspond to the unique reference numbers used in the analysis. Hence

the most unlikely events are localized at the left side in each panel. Additionally we plot

the thin red line, which indicates the distribution of probabilities obtained from 100 GRF

simulations of the Q data, each of which was processed with one (different for each simu-

lation) multi-mask. If the data follow the expectation of GRF then statistical departure of

data from this line would manifest certain degree of correlation between probabilities ob-

tained with differentmulti-masksfor the same dataset (as discussed in Sect. 3.7). For better

visualization in rangem ∈ [10, 90] we plot only every 10’th sorted probability value.
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Fig 3.11: a) Kurtosis (thresholded at3σ) nσ estimator map from the multi-region analysis

of the INC data, inconsistent with GRF hypothesis at joint probability > 99.73% CL. Only

one multimask (multi-mask no. 53of theHP 4 pixelization scheme) is used for this map,

since only the one out ofNrNm = 600 yields |P (χ2
q)| < Pth = 1 − 0.9973. (See text

and Table 3.4 for more details). b) The spectral dependence of the kurtosis in the depicted

regions in the three WMAP frequency bands along with the two and three sigma contours,

from 1000 simulations, and the simulations mean are also plotted.

mask. The details of the three most strongly deviating regions inthis map are given in Ta-

ble 3.4. In case of two othermulti-masks, using which the INC data yield a detection at con-

fidence levels of 99% and 98% in K (LB 64 8) and S (HP 8) respectively, the “3σ”-deviating

regions turn out to be similarly located (like those in Fig. 3.11a). With these regions masked

out from the analysis a good consistency with the GRF simulations is reached. Note that the

region 160 is rather small – mostly removed by the galactic sky cut (see Fig. 3.11a and Ta-

ble. 3.4 for precise coordinates and size) however masking it has a comparable effect on the

joint probability increase as masking out the two other and much larger regions. The con-
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sistency of the INC data with GRF simulations increases from0.18% (without removal) to

1.1% and 0.9% with regions 160 and 104+185 removed respectively. Individual removal of

regions 185 and 104 only increases the level of consistency by . 0.5%. The simultaneous

removal of all three regions increases the consistency up to12%.

Dependence as a function ofmulti-mask To further test the robustness of this detection

we have generated two otherHP 4 pixelization scheme sets ofNm = 100 multi-maskeach:

one by simply choosing the three rotation angles with the prescriptions given earlier, and

the other by focusing only on the region in the rotation angleparameter space within±5◦

around the original orientation of themulti-maskleading to the3σ detection.

With the first set we obtained results yielding a joint probability P (χ2
q) < 0.05 with 3

multi-masks, while in the second we find that 25% ofmulti-maskyield P (χ2
q) < 0.05, and

4% yield P (χ2
q) < 0.01, with the strongest detectionP (χ2

q) = 0.0035, of which thenσ

map points to the same three regions as depicted in Fig. 3.11a. We note that the reported

regions (160 and 185) are located in directions towards which the strongest deviations in

the individual region statistics (Fig. 3.7) were found.

Dependence as a function of frequency and resolution In Fig. 3.11b we present the

spectral dependence of kurtosis in the regions depicted in Fig. 3.11a. While there is a

non-trivial spectral dependence in regions 160 and 185, with opposite tilt – red and blue

respectively – there is almost no spectral dependence in region 104.

We also check the dependence on the S/N ratio in the selected regions. For this pur-

pose we downgrade all datasets and simulations to resolution ns = 64, which effectively

increases the S/N ratio per pixel by a factor of 8. We redo the multi-region analysis lowering

the minimal region pixel number threshold down toNpix > 10 and find that the minimal

probability permulti-mask(P
(
χ2

q

)
) corresponds to a rejection threshold of99.5% CL (Ta-

ble 3.4). As seen in Table 3.4 the individual region responseto the resolution change is

strong only in case of region 160 while in the two other regions it is rather small. The result

is robust under variations of region pixel number thresholdand the number of simulations

used to probe the underlying PDFs (NsimPDF(χ2
q) ∈ {1000, 5000}). Masking-out regions

104 and 185 reduces the anomaly to∼ 96% CL and as expected in this case, removal of

region 160 has basically no impact on this value.

Summary The non-trivial spectral dependence and close galactic-plane alignment in two

of the three selected regions (160 and 185) suggests presence of some residual foreground

anomalies. In case of the regions away from the galactic plane (104 and 185) since the local

oddity is insensitive to the S/N ratio change it is also unlikely that an unknown instrumental

noise fluke generates them. While we will return to the overall statistical significance of

these findings in Sect. 3.6.3, we note that the positive KE seems to be inconsistent with

the extended foregrounds interpretation of these detections, according to the results from

Sect. 3.5. Also the3σ detection of the multi-region analysis appears only in the INC data,
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but is clearly weaker in other single band maps.

Given that this detection results from just one particularmulti-maskand is selected from

the lower-tail end of a whole distribution of equivalent measurements, it is inconclusive

as regards indicating whether this detection is not just a fluke. Given that, we report in

particular region 160, whose removal leads the overall significance to drop below3σ CL, as

a tentative detection noting that more sophisticated localstatistical analyses (see Sect. 3.7)

could be invoked to back these results up or refute them.

Variance large scale distribution

In Sect. 3.6.1 we analyzed the large scale power distribution as measured viamulti-masks

with regions of angular sizes ranging from6◦ to 30◦ (Fig. 3.8 and Fig. 3.9).

In this section we focus on the joint multi-region analysis of the variance distribution.

The corresponding results are illustrated in the second rowof Fig. 3.10. The data remain in

excellent consistency with the simulations.

In Sect. 3.5.4 we found that the modulation amplitude (defined by Eq. 3.3) ofAℓmax=1024 =

0.114 would be rejected at> 99.9% CL, and we argued that the modulation parameter

Aℓmax=40 = 0.114 would statistically be difficult to exclude at CL higher than92%. Us-

ing our main set of themulti-masks(Table 3.1) we fail to detect, in any of the data sets

tested, any statistically significant anomaly, such as the claimed hemispherical power asym-

metry (depicted in Fig. 3.8), as measured from the large scale variance distributions in the

multi-region analysis.

As an extension to that, we repeat the analysis performed in Sect. 3.5.4 for the low

resolution, filtered in SH space up toℓmax= 40, WMAP data, using the same set ofLB 1

2 multi-masks, to test the variance distributions in the corresponding set of 96 differently

oriented hemisphere pairs. We thereby extend the test for the largest possible scales of180◦.

We merge the Kp03 sky mask with theLB multi-masksfor the analysis of the WMAP3 data,

and KQ75 sky mask for analysis of the WMAP5 data. The result ofthe multi-region (here

only two region) analysis is plotted in Fig. 3.13 for the V data (left) and V5 data (right).

The minimal “probabilities of exceeding” found are:min (P (χ2
q)) ≈ 3.3% (also marked in

Fig. 3.6 bottom) towards(l, b) = (247.5◦,−30◦)7 for the V data andmin (P (χ2
q)) ≈ 6.5%

towards(l, b) = (281.5◦,−19◦) for the V5 data.

These two results agree well with the previously estimated (Eriksen et al., 2007) in-

trinsic modulation parameter valueA = 0.114 at scalesℓmax≤ 40, as they lie well within

“one-sigma” region of the distribution of log-likelihoodsobtained from 1000 simulations

modulated with the modulation ofA40 = 0.114. However we note that it will always be

difficult to reject such modulation at high confidence level as it is also realized (to this or a

greater extent) on average in∼ 8% of GRF simulations (Sec. 3.5.4).

Note that the distribution of the probabilities of the jointmulti-region analysis (Fig. 3.13)

has a very flat and extended maximum and, for example, the minimal joint-probability in

7This and the following result is accurate to within the tolerance of about∼ ±7◦ resulting from the low-

resolution search involving only 96 directions over a hemisphere in theHP 4 pixelization scheme.
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Fig 3.12: Results of the “multi-region” analysis with the dipole-corrected V (V5) data. Joint

probabilitiesP
(
χ2

q

)
(Eq. A-7) for 600multi-masks. The probabilities calculated with the

spectral data maps from channels Q, V, W, INC are plotted withred, green, blue and black

dots respectively. WMAP5 V5 data are plotted with green crosses (+) inHP 4 only. The

V dataset original dipole has been replaced by the simulateddipole and removed in case of

V5 data. Each dot (cross) corresponds to the joint probability of onemulti-mask.From left

to the right, the panels show the results with increasing resolution of pixelization schemes

(see Table 3.1) with 100 differentmulti-masks in each panel. Only the “mean” data is

shown since all other results remain almost unchanged. For better visualization in range

m ∈ [10, 90] we plot only every 10’th sorted probability value.

WMAP3 V WMAP5 V

Fig 3.13: Results of the multi-region analysis, using the set of 96LB 1 2multi-masks, of the

filtered in SH space up toℓmax= 40, low-resolution V data (left), and V5 data (right). The

color in each pixel encode the multi-region, joint “probability of exceeding” derived with

theLB 1 2 multi-maskrotated to the direction of the center of that pixel. Note that half of

pixels in each map is redundant.

the V data in the reported direction is only0.2% smaller from the probability correspond-

ing to the direction close to the galactic pole, which is roughly 50◦ away from the minimal

probability direction.

Analogous analysis, involving theLB 1 2 multi-masks, but performed on the full reso-

lution unfiltered WMAP V5 data, results in larger minimal-probabilities: min (P (χ2
q)) ≈

9.6% and the probability is minimized towards(l, b) = (225◦,−78◦).
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Residual dipole of the WMAP V channel.

In Fig. 3.10 we see a deviation in the distributions of the mean in the V dataset (green dots)

and in V5 dataset (green crosses) for most of themulti-masks. The fact that it is visible in

mostmulti-maskssuggests that the anomaly is not particularly sensitive to themulti-mask

orientation, and that it comes from large angular scales. Indeed, as measured by thenσ

values in individual regions of themulti-maskwith the lowest joint probabilities, no region

significantly deviates from simulations.

However, we find that the V data are fully consistent with the GRF simulations if we

remove the dipole from the data, which is roughly∼ 2 times larger than the one in our

simulations8. Actually the dipole values in the datasets as measured by the multipoles

l = 1 on the Kp03 cut sky power spectrum are:47(µK)2, 54(µK)2, 45(µK)2 in Q, V,

W datasets respectively. The corresponding values in the WMAP5 data are:64(µK)2,

54(µK)2 in V5 and W5 maps respectively. The measurements of dipoles on initially dipole-

free maps, using a sky mask, introduce a bias due to power leakage from other coupled

multipoles, leading to non-zero dipole amplitudes. When sky-cut-generated dipoles are

statistically accounted for, the result would yield:20+104
−26 (µK)2, 27+104

−26 (38+104
−26 )(µK)2,

18+104
−26 (27+104

−26 )(µK)2 in the WMAP3 (WMAP5) data at 95% CL, and hence is consistent

with vanishing intrinsic dipole (except for the V band channel). We note that the noise

component generates dipoles with amplitudes of orderC1 ∼ 0.01(µK)2 which is about

three orders of magnitude less than the leakage effect. However the 95% CL effect is not

sufficient to explain the strong anomalies detected in the regional tests.

The anomaly is more visible in the difference of dipole amplitudes between different

channels. The difference of9±3(µK)2 (at 95% CL) between channels V and W is excluded

using simulations at> 99.9% CL assuming that it is generated only by the power leakage

from the cut sky. The difference in the WMAP V5 data is even larger: 11 ± 3(µK)2.

As for the amplitude of the V band dipole again, it becomes anomalous as one considers

not only the magnitude, but also its orientation. The dipoles generated due to power leakage

are strongly aligned within the galactic plane (Fig. 3.14) as a result of the shape of the Kp03

sky mask. While the Q and W dipoles measured on the cut sky are close from each other and

close to the galactic plane pointing at(l, b) = (13◦,−8◦) and(l, b) = (7◦, 5◦) respectively,

the dipole of the V band points at(l, b) = (350◦, 30◦) which is itself anomalous at> 97%

CL. WMAP5 data yield the dipole orientation(l, b) = (203◦, 28◦) (Fig. 3.14).

We note that all dipoles withb > 30◦ have much smaller (roughly by an order of

magnitude) amplitude than the one in the V band of the WMAP, which we believe is the

reason for strong detections in the regional statistics carried out in the previous sections.

When combining the alignment of the V band dipole with its magnitude, the hypothesis

that it’s generated only via the power leakage can be excluded at a very high CL since

out of 1300 simulations, and within the subset of 37 that havegenerated dipole aligned

at |b| > 30◦ the maximal generated power is of only13(µK)2 which makes even the CL

8During the final stage of this work this sort of anomaly was independently reported in Eriksen et al. (2008)
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Fig 3.14: Distribution of dipole orientations generated due to Kp03 cut sky from 1467 full

sky simulations with vanishing initial dipole. The large spot in the center (at the right-hand

side) of the plot, indicates the orientation of the WMAP3 (WMAP5) V band dipole. The

color scale reflects the amplitudes of the leakage generateddipoles.

estimation unfeasible, since this when compared to the54(µK)2 of the V dataset (65(µK)2

for V5), the simpleχ2 test implies a rejection basically without doubt to a very reasonable

limits.

By reducing the dipole amplitude to the level consistent with simulations, or alterna-

tively, by replacing it with our of our simulated dipoles, the data become consistent with

our simulations at< 2σ CL in the joint multi-region analysis (see Fig. 3.12) and at< 1σ

CL in all-multi-masksanalysis at all resolutions (see Table 3.5 in the next section). Note

that the presence of this dipole in the V band is of no cosmological consequences since the

dipole is marginalized over for any cosmological analysis,but may be important for other

low-ℓ analyses.

3.6.3 All-multi-masks analysis

We now discuss the result of the all-multi-masksanalysis described in Sect. A-2.3. The

corresponding results are presented in Table 3.5. We see that the data are consistent with the

simulations at∼ 68% CL. The previously mentioned (in Sect. 3.6.2) tentative NGdetection

in the INC data in kurtosis has indeed the largest probability of rejecting across the scales

(61%) but it turns out to be statistically completely insignificant.

The large scale variance distribution is found to be perfectly consistent with the GRF

simulations.

We find a significant anomaly in the dipole component of the V band channel (see also

Sec. 3.6.2) detected via distribution of means in both WMAP3(99.8% CL) and WMAP5

(99.3% CL) data.
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Table 3.5: Results of the all-multi-masksanalysis for the signal dominated (co-added) and

noise dominated (difference) maps. The columns content is as follows: (1) data set, (2)

pixelization scheme, (3..5) “probability of rejecting” the consistency with GRF simulations

(Sect. A-2.3) for each MOD. In case of V and V5 datasets, the probabilities for the data

with corrected dipole component are given in brackets. We round to integer percentiles for

probabilities< 99%. The saturated values are marked with⋆. We abbreviate the results

consistent at given CL as: “no significant detections (CL)”.

d Reg.sk. Pm
rej [%] P σ

rej[%] PS
rej[%] PK

rej[%]

(1) (2) (3) (4) (4) (5)

INC ALL no significant detections (68%)

Q ALL no significant detections (68%)

V HP 2 59 (20)

HP 4 99.8 (35)

HP 8 88 (16) no significant detections (68%)

LB 32 8 99.5 (30)

LB 64 8 94 (37)

LB 64 16 86 (24)

V5 HP 4 99.3 (15) no significant detections (68%)

W ALL no significant detections (68%)

QV ALL > 99.9⋆

VW ALL > 99.9⋆ no significant detections (95%)

QW ALL > 99.9⋆

All of the difference maps (see Sect. 3.6.5) show a very strong departures from fore-

grounds free, simulated, difference maps, most prominently detected in means distributions.

3.6.4 The “cold spot” context

A NG anomalous kurtosis excess of a wavelet convolution coefficients has been reported

(e.g. Cruz et al. (2007)) in the southern hemisphere, and wasfound to be associated with

the locally cold spot (CS) in the CMB fluctuations around galactic coordinates(l, b) =

(209◦,−57◦). In that work the wavelet convolution scales ranging from∼ 6.6◦ to ∼ 13.2◦

in diameter were used, with anomaly being maximized at scales of∼ 10◦ with a rejection

on grounds of Gaussianity assumption exceeding 99% CL. At the same time the authors

note that the CS was not detected in the real space analyses.

The range of scales mentioned correspond roughly to the scales tested by theHP 4

(∼ 14.6◦) andHP 8 (∼ 7.3◦) pixelization schemes (see. Table 3.1).

In Fig. 3.15 we plot the scrambled n-sigma map of kurtosis from the single-region anal-

ysis, obtained from100 multi-masksof theHP 8 pixelization scheme, which most closely

corresponds to the scales, at which the CS was detected. The deviation of−3.6σ in the “the

cold spot” direction, centered at(l, b) = (209◦,−53◦) in Fig. 3.15 is clearly found along
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Fig 3.15: Kurtosis n-sigma map, thresholded atnσ,th = 3, combined from 100multi-mask

of theHP 8 pixelization scheme. The “cold spot” is marked with “CS”.

with many other, locally significant, deviations. This particular CS however is not found

at the same location in e.g.HP 4 pixelization schemes or in skewness n-sigma maps, but

rather it is shifted towards smaller galactic longitudes.

As an extension to the tested scales, in this section we run a high resolution test using

pixelization schemeHP 16 corresponding roughly to scales of∼ 3.7◦ and the INC data.

We use 10 additionally generatedmulti-masksin this resolution, and we perform the single

region, joint multi-region, and all-multi-masksstatistics. We also performed the same anal-

ysis using the filtered up toℓmax= 40 is SH space, low resolution (ns = 64) maps in which

the spot is clearly visible.

Although we find a locally negative KE and positive excursions from expected distribu-

tions by& 3σ around the CS direction in variance, we also find similar excursions at several

other directions. The CS itself is well localized in the scrambled n-sigma maps of means

with minimal value−2.9.

However, none of these detections (see also Fig. 3.7) hold under the scrutiny of the

multi-region and allmulti-masksanalyses (Table 3.5), that find these local anomalies to be

statistically insignificant.

3.6.5 Differential maps tests

We discuss results of the QV, VW and QW difference maps tests as a simple cross-check

with the CMB signal dominated maps tests, and a rough estimation of the residual fore-

grounds amplitude. We limit the number ofmulti-masksto 10 and useNsim = 104 simula-

tions in single region analysis andNsimPDF(χ2
p) = 103 (Nsim(Cp) = 9 · 103) simulations in

joint multi-region analysis as before.

As shown in Table 3.5 the residual foregrounds are very strongly (> 99.9% CL) detected

in all difference maps, due to anomalies in means distributions. In particular the n-sigma
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and difference (∆ = m − 〈m〉) maps of means distributions in QV, most prominently

exhibit a dipole like structure oriented roughly at(l, b) = ( 260◦, 60◦) which is close to

the kinetic dipole direction (Fig. 3.16a). The VWnσ map has a similar dipole structure,

but with opposite orientation, which however is absent in the QW nσ map. We find this

to be a consequence of the previously detected (Sect. 3.6.2)anomalous dipole component

of the V band channel. Removing the dipole components from the difference maps, we

have redone the three stages of the analysis, and although the dipole structure ceased to

dominate, we still find a very high (> 99.9% CL) rejection probabilities for in means as

quoted in Table 3.5.

In Table 3.6 we present the amplitudes of the residual foregrounds as measured by the

variance of the∆ difference maps of means distribution for different scalesas probed by our

pixelization schemes. These remain in a good consistency with the limits given in Bennett

et al. (2003a) for residual foregrounds contamination.

In Fig. 3.16(c-h) we show thenσ maps with distribution of the regions in the difference

maps outstanding from simulations at significance larger than3σ (i.e. we usenσ,th = 3).

Clearly, the close galactic plane regions are strongly detected. We note that the the KQ75

sky mask partially removes the most affected regions around(l, b) = (233◦,−10◦), (l, b) =

(259◦, 18◦) and the previously-mentioned(l, b) = (199◦,−23◦).

It is interesting to note that the largest scale negative (nσ < 0) anomalies seen inHP 2

(Fig. 3.16c-d) away from the galactic plane, can also be induced by the foregrounds domi-

nating along the galactic plane (withnσ > 0) due to a very strong linearity of foregrounds

induced quadrupoles with strong maximums aligned along thegalactic plane and conse-

quently strong minimums allocated close to the poles (Fig. 3.16b). Such mechanism of

foregrounds-generated linearity of the quadrupoles of thedifference maps will not work in

the foregrounds-free simulations, adding thereby to the observed large scale anomalies as

probed via the largest regions. This effect is considerablysmaller in the higher resolution

pixelization schemes.

In order to test the consistency of our noise simulations with the noise of the WMAP

data, and the approximation the uncorrelated, white noise and to constrain limits of the

systematical uncertainties, we also performed analysis using Q12 and V12 difference maps

in HP 2 pixelization scheme. The details of this analysis is givenin Appendix A-3. Here,

we briefly report the result that the systematical effects measured, as before, by the standard

deviation of the difference∆ maps remains at level< 1.7µK at the scales corresponding

theHP 2 pixelization scheme i.e.& 30◦.
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a)∆m(QV) with uncorrectedℓ = 1 b) VW: ℓ = 2

HP 2

c) nσ(QV ) d) nσ(V W )

HP 4

e) nσ(QV ) f) nσ(V W )

HP 8

g) nσ(QV ) h) nσ(V W )

Fig 3.16: Results of the single-region difference maps analysis. In panel a) the residuals

(∆m(QV) = m − 〈m〉) for the difference QV data, uncorrected for the anomalous Vband

dipole is plotted. In panel b) the quadrupole of the VW difference map and in panels c)

through h) for the threeHP pixelization schemes, we plot the thresholded at3σ, nσ maps of

means distributions of the differential datasets QV (left)and VW (right) with the anomalous

dipole component removed from the data. We make these maps (and maps of higher MODs)

publicly available athttp://cosmo.torun.pl/˜blew/SKregstat/
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Table 3.6: Residual foregrounds amplitudes in the cross-band difference maps. The columns

contain: (1) pixelization scheme, (2) approximate angularsize of the region as inferred from

number of regions, (3) approximate corresponding multipole numberℓ = 180/Ωreg, (4..6)

- standard deviation of the difference maps outside Kp03 skymask.

Reg.sk. Ωreg [deg] ℓ σ(QV) [µK] σ(VW) [µK] σ(QW) [µK]

(1) (2) (3) (4) (5) (6)

HP 2 29.3 6 2.7 1.9 3.8

HP 4 14.6 12 3.0 3.0 4.7

LB 32 8 12.7 14 3.9 3.5 5.1

LB 64 8 9.0 20 4.7 4.6 6.0

HP 8 7.3 25 4.9 4.9 6.2

LB 64 16 6.3 29 5.8 6.0 7.2

3.7 Discussion

3.7.1 Sensitivity, correlations and extensions

Although we have shown that the statistics is rather helpless to robustly detect the NG sig-

nals considered (defined in Sec. 3.5.2) via MODs higher than the variance, the statistics also

proved to be a sensitive and precise tool for statistical isotropy measurements via variance

and means. While we fail to detect the NG templates (inducingsignals of rms∼ 100µK

within spots of∼ 10◦ via skewness and kurtosis) in the multi-region NG analysis,the single

region analysis detects these as locally significant (nσ & 3). Instead such template can be

detected in the all-multi-masksanalysis at> 99.8% CL via variance.

In Eriksen et al. (2004a) a regional statistical analysis was performed using a set of

circular regions uniformly distributed across the sky. Ouranalysis is similar in spirit but uses

different statistics and a richer sets of regions, varying both in size and shape. This approach

has been validated by the fact that we have shown that the resulting statistical signal can be

a sensitive function of the particular choice of regions. This is most prominently seen in

case of the reported dipole anomaly in the V band of the WMAP data (Fig. 3.10), where it

is easily seen that depending on the choice of the pixelization scheme (e.g. such as those

associated with the results at the right-hand side of the topplots in Fig. 3.10) the obviously

strong anomaly can be overlooked.

It is important to mention the correlations between variousmulti-masks. This correlation

occurs since, although themulti-maskssample the data differently, in the end, the same data

are being sampled. The degree of redundancy is directly connected to the number ofmulti-

masksused in the analysis and the magnitude of the correlation is related to the size of the

regions used in a pixelization scheme. To quantify this we carried out a simple statistical

test only whose goal was to establish whether our test is statistically more sensitive to the

change of the tested data itself or to the change of themulti-masksfor various resolutions
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parameterr and MOD.

If the results from differentmulti-maskswere strongly correlated, then for a constant

number of DOF one would expect the variance of the results measured over thesemulti-

masks(e.g.χ2 values) to be much smaller than the variance computed while fixing amulti-

maskbut varying dataset. On the other hand, if the variance of theresults when changing

dataset was much smaller than the variance when changingmulti-mask, then the test would

not be very sensitive to particular features in the data, or even unstable. To test this we

calculated theR statistic defined as follows:

R(r,MOD) =

〈
σsim(χ2(r,MOD)/DOFeff )

〉
m〈

σm(χ2(r,MOD)/DOFeff )
〉
sim

(3.4)

where
〈〉

sim
denotes an average over simulations and

〈〉
m

denotes an average overmulti-

maskfor a given simulation, and whereDOFeff = DOF (r,m) is the effective number of

degrees of freedom. Measuring thisR statistic using our simulations, we find that the test is

approximately equally sensitive at all resolutions and forall MODs, and that eventually it is

little more sensitive to the change of the data under test than to the change of themulti-mask

giving R values around1.2.

The approach with arbitrary shape of the regions (multi-mask) and their orientation is

quite flexible, and different shapes can possibly be used fordifferent applications indepen-

dently of the enforced sky cuts. This allows for a thorough test of the multivariate nature of

this Gaussian field. One could also consider other statistics than the first MODs, as e.g. re-

gional Minkowski functionals. Another possible extensionis to apply a specific pre-filtering

of the data in the SH space in order to expose for the test features dominating at particular

scale. Such slicing of the data into subsets of maps according to some chosen ranges of

multipoles could in principle significantly improve the sensitivity. The multi-region full-

sky analysis though is restricted generally to the resolutions up to which the full covariance

matrix analysis is feasible.

3.8 Conclusions

We introduce and perform a regional, real space test of statistical isotropy and Gaussianity

of the WMAP CMB data, using a one-point statistics. We use a set of regions of varying

size and shape (which we callmulti-mask) allowing for an original sampling of the data.

For each of the regions we analyze independently or simultaneously, the first four moments

of distribution of pixel temperatures (i.e. mean, variance, skewness and kurtosis).

We assess the significance of our measurements in three different steps. First we look

at each region independently. Then we consider a joint multi-region analysis to take into

account the spatial correlations between different regions. Finally we consider an “all-multi-

masks” analysis to assess the overall significance of the results obtained from different sky

pixelizations.
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We show that the results of such multi-region analyses strongly depend on the way in

which the sky is partitioned into regions for the subsequentstatistics and that our approach

offers a richer sampling of the underlying data content. Consequently the all-multi-masks

analysis provides a more robust results, avoiding possiblebiases resulting from an analysis

constrained only to a single choice of pixelization scheme.

We find the three-year WMAP maps well consistent with the realistic, isotropic, Gaus-

sian Monte-Carlo simulations as probed by regions of angular sizes ranging from6◦ to 30◦

at68% confidence level.

We report a strong, anomalous (99.8% CL) dipole “excess” in the V band of the three-

year WMAP data and also in the V band of the WMAP five-year data (99.3% CL) (Sect. 3.6.2).

We test the sensitivity of the method to detect particular CMB modulation signals de-

fined via the scale dependent modulation amplitude parameter (Aℓmax
) for the case of mod-

ulation extending up to maximal multipole number ofℓmax = 40 andℓmax = 1024. We are

able to reject the modulation of amplitude ofA1024 = 0.114 at > 99.9% CL and find that

A40 = 0.114 can be statistically excluded only at∼ 92% CL (Sect. 3.5.4, 3.6.2). Given

the WMAP V band data, we find that the large-scale hemispherical asymmetry is not highly

statistically significant in the three-year data (∼ 97%) nor in the five-year data (∼ 93.5%)

at scalesℓ ≤ 40. Including a higher-ℓ multipoles only decreases the significance of hemi-

spherical variance distribution asymmetry.

We also test the sensitivity to detect a broad range of small (10◦ in radius) locally in-

troduced NG signals, inducing non-vanishing kurtosis (andin general skewness) of rms

amplitude∼ 100µK and find that the method is able to detect these as locally significant,

but the overall impact in the joint multi-region analysis isunnoticed by mean, skewness and

kurtosis, but is strongly detected (∼ 99.8% CL) by variance distributions. We conclude that

the NG foreground-like signals will be easier to detect using local variance measurements

rather than higher moments-of-distribution.

We also analyze our results in context of the significance of the “cold spot” (CS), re-

ported as highly anomalous at scales corresponding to∼ 10◦ in diameter. While we no-

tice the cold spot region as having locally anomalous, negative kurtosis-excess and locally

increased variance (eg. Figs. 3.7, 3.15), we do not find thesedeviations to be globally

statistically significant.

We easily detect the residual foregrounds in cross-band difference maps at average rms

level. 7µK (at scales& 6◦) and limit the systematical uncertainties to. 1.7µK (at scales

& 30◦) as a result of the analysis of same-frequency difference maps. These levels are

consistent with the previously estimated limits.



Chapter 4
Hemispherical power asymmetry:

parameter estimation from the

Wilkinson Micowave Aanisotropy

Probe cosmic microwave background

radiation five-year data

The material presented in this chapter has been accepted forpublication in Journal of Cos-

mology and Astroparticle Physics and is also available as Lew (2008a).

4.1 Abstract

We reexamine the evidence of the hemispherical power asymmetry, detected in the CMB

WMAP data using a new method. We use a different data filtering, and preprocessing ,

and a different statistical approach and an independent parameter estimation from those

previously used. At first, we analyze the hemispherical variance ratios and compare these

with simulated distributions. Secondly, working within a previously-proposed CMB bipolar

modulation model, we constrain model parameters: the amplitude and the orientation of the

modulation field as a function of various multipole bins. Finally, we select three ranges

of multipoles leading to the most anomalous signals, and we process corresponding 100

Gaussian, random field (GRF) simulations, treated as observational data, to further test

the statistical significance and robustness of the hemispherical power asymmetry. For our

analysis we use the Internally-Linearly-Coadded (ILC) full sky map, and KQ75 cut-sky V

channel, foregrounds reduced map of the WMAP five year data (V5). We constrain the

modulation parameters using a generic maximum a posteriorimethod.

In particular, we find differences in hemispherical power distribution, which when de-

scribed in terms of a model with bipolar modulation field, exclude the field amplitude value
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of the isotropic modelA = 0 at confidence level of∼ 99.5% ( ∼ 99.4%) in the multipole

rangeℓ ∈ [7, 19] (ℓ ∈ [7, 79]) in the V5 data, and at the confidence level∼ 99.9% in the

multipole rangeℓ ∈ [7, 39] in the ILC5 data, with the best fit (modal PDF) values in these

particular multipole ranges ofA = 0.21 (A = 0.21) andA = 0.15 respectively.

However, we also point out that similar or larger significances (in terms of rejecting the

isotropic model), and large best-fit modulation amplitudesare obtained in GRF simulations

as well, which reduces the overall significance of the CMB power asymmetry down to only

about94% (95%) in the V5 data, in the rangeℓ ∈ [7, 19] (ℓ ∈ [7, 79]).

4.2 Introduction

The Gaussianity and the statistical isotropy of the fluctuations in the Cosmic Microwave

Backgrounds Radiation (CMBR) are two generic features of current standard cosmological

model and are compatible with the simplest inflationary scenarios. These predictions have

been extensively studied in number of works. An incomplete list includes: Komatsu et al.

(2003); Komatsu et al. (2008); McEwen et al. (2006a); Vielvaet al. (2004); Wiaux et al.

(2006); Mukherjee & Wang (2004); Savage et al. (2004); Naselsky et al. (2007); Cabella

et al. (2004, 2006, 2005); Chen & Szapudi (2006a); Curto et al. (2008a, 2007); de Troia

et al. (2007); Armendariz-Picon & Pekowsky (2008); Souradeep et al. (2006); Hajian &

Souradeep (2006,?); Samal et al. (2008); Hansen et al. (2004a,b); Bernui et al. (2007b,a);

Naselsky et al. (2005); Chiang et al. (2003); Chen & Szapudi (2006b); Gaztañaga et al.

(2003); Copi et al. (2004, 2006a,b); Bielewicz et al. (2005); Abramo et al. (2006); de

Oliveira-Costa & Tegmark (2006); Land & Magueijo (2005b, 2007); Jaffe et al. (2005);

Efstathiou (2003b); Eriksen et al. (2004a, 2007, 2008); Land & Magueijo (2005b); Park

et al. (2006); Shandarin (2002); Wu et al. (2001); Park (2004); Lew & Roukema (2008);

Lew (2008b); Donoghue & Donoghue (2005); Yadav & Wandelt (2008) and references

therein. Within the theory of inflation the primordial fluctuations are expected to form a

Gaussian Random Field (GRF) at the leading order in perturbation theory. These statisti-

cal properties are imprinted in the CMB fluctuations, providing an interesting window onto

the processes of the early Universe. Although the instrumental effects, like non-Gaussian,

and non-isotropic noise, or eccentric beams, and astrophysical foregrounds effects, like

Galactic, and extra-Galactic point sources, and extended sources of emission are either well

controlled or corrected for, or masked out, a set of an unexpected anomalies of various mag-

nitude and at various scales have been detected in the current CMB data (Cruz et al., 2007;

Bernui et al., 2007a; Land & Magueijo, 2005a; Copi et al., 2004, 2006a; Abramo et al.,

2006; Land & Magueijo, 2007; Eriksen et al., 2004a; Land & Magueijo, 2005b,c; Covi

et al., 2006; Destri et al., 2008) (see also Huterer (2006); Martinez-Gonzalez (2008); Ca-

bella & Marinucci (2008) for recent reviews and references therein). These anomalies call

for plausible theoretical explanations since, if robustlydetected, these can be used as valu-

able observables of the physics of the early Universe, or a new window on some of the late

time effects as well (Inoue & Silk, 2007; Erickcek et al., 2008; Bernui & Hipólito-Ricaldi,
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2008; Akofor et al., 2007; Destri et al., 2008; Brown & Crittenden, 2005).

We re-investigate the well-known, hemispherical power asymmetry observed in the

CMB maps. We revisit the properties of the asymmetry, constrain parameters of the previ-

ously proposed bipolar modulation field model (Gordon et al., 2005) responsible for genera-

tion of the asymmetry, and we estimate the statistical significance using a generic maximum

likelihood method, and realistic Monte-Carlo simulations. Given that we introduce and uti-

lize a different method, from those previously used, and rely on different assumptions, while

relax some other, our results can serve as a separate cross consistency and stability check.

We provide a through tests of the method so as to validate the presented results.

For the first time we estimate the parameters of the hemispherical modulation for se-

lected ranges of multipoles. Finally, we assess the significance of the hemispherical power

asymmetry via direct comparison to the GRF CMB simulations.

The main differences and extensions to the previous analyses are: (i) we rely on the

local real-space measurements of the variance as an estimator for the power asymmetry,

(ii) we do not assume any priors on the probability distribution function (PDF) for any of

the modulation parameters, and explore the likelihood function in the full (albeit sparse)

parameter space and apply interpolation, (iii) we fully include the effects of the cut-sky,

cross-multipoles power leakage and (iv) we analyze the power asymmetry in the various

slices through the spherical harmonic space, pre-filteringthe data prior to the analysis, rather

than considering all scales scrambled together.

Since the full exploration of the parameter space is CPU expensive, our analysis is based

on a few assumptions that greatly simplify, and speed-up theparameter estimation process.

Using this different approach, while providing tests and justification for the assumptions

made, we give a new estimates on the significance of the hemispherical power asymmetry

anomaly.

We also discuss limitations of usage of the method with regard to the extent to which

the assumptions of the method remain acceptably valid.

The organization of the chapter is as follows: In Section 4.3we describe our datasets

and CMB simulations. In Section 4.4 we present results of a statistics that measure the

hemispherical power ratios. In Section 4.5 we focus on the properties of the power modu-

lation model, our assumptions and tests of the assumptions,and then detail on our method

for modulation parameter estimation. In Section 4.6 we present the results of various tests

of the method. Results of the application of the method to thereal CMB data are presented

in section 4.7. Discussion and conclusions are given in sections 4.8 and 4.9 respectively.

4.3 Data and simulations

For the main analysis in the chapter we use the WMAP five-year foreground reduced CMB

temperature maps (Hinshaw et al., 2008) from differential assemblies (DA) V1 and V2,

because these spectral channels provide the best trade off between foregrounds of differ-

ent spectral properties (i.e. the blue tilted galactic dustemission, and red-tilted galactic
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synchrotron and free-free emissions). We co-add these observations (and corresponding

simulations) using the inverse noise pixel weighting scheme. We will refer to these maps

as V5. We generate simulations using the fiducial best fitΛCDM model power spectrum

of Dunkley et al. (2008) (constructed using the mean likelihood parameters) which we call

Cfid
ℓ .

Also, for comparison purposes, we will use the five year release of the Internally-

Linearly-Coadded (ILC5) map and also for additional tests the Harmonic-Internal-Linear-

Combination (HILC5) map (Kim et al., 2008).

In Fig. 4.1 we plot the power spectra of the data sets that willbe used in the power

modulation parameters estimation analysis. For the purpose of the analysis (to be explained

latter) we create a fitted power spectrum to the ILC5 data by concatenating theCfid
ℓ power

spectrum in the limit of low multipoles (ℓ < 30), with the cubic spline fit to the piece-

wise averaged, full-sky power spectrum, reconstructed from the ILC5 data for multipoles

ℓ ≥ 30. We will call this fitted spectrumCILCfit
ℓ . We cut off the residual strong foregrounds

in the ILC5 map at the±350µK threshold; a level estimated from GRF foregrounds-free

simulations.

Note that in the analysis of the modulation parameter estimation we will focus only on

the large scale multipoles (ℓ ≤ 80), where the differences in the power spectrum due to the

350µK chop of the residual galactic contamination remaining the ILC5 data are completely

unimportant, and where the signal-to-noise (SNR) ratio yields SNR & 102 (Fig. 4.1).

Throughout the chapter we will use the V5 data along with the KQ75 sky mask unless

otherwise noted. For comparison purposes, the ILC5 and HILC5 datasets are used without

any masks throughout of the chapter1.

1Although we realize that the usage of the unmasked ILC maps can lead to somewhat overestimated con-

straints on any power asymmetry signals due to residual foregrounds contamination, we include the analysis of

these maps in the full considered multipole range (ℓ ≤ 80) mostly for comparison purposes.
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Figure 4.1: Power spectra of the data sets used in the analysis. We generate the GRF

simulations of the V5 data using the best fit minimalΛCDM model (green line) to the

reconstructed WMAP5 data power spectrum (red line). The corresponding cut-sky pseudo

power spectrum from one of the V5 simulations and V5 noise power spectrum are plotted

in black (the top-black curve and the bottom-black curve respectively). Simulations of the

ILC5 data are created using the fitted power spectrumCILCfit
ℓ (light blue). The reconstructed

from the ILC5 data power spectrum is plotted using the dark blue (top) line. The noise

power of the most noisy channel of the WMAP data (W) smoothed with 1 degree (FWHM)

Gaussian beam is also plotted (dark-blue bottom) and used here to place an upper limit

constraint on the amount of noise in the ILC data. The power spectrum of the ILC5 data

chopped at temperature threshold of350µK is also shown (pink line). In the parameter

estimation analysis we will use only the range of multipolesℓ ≤ 80.

4.4 Hemispherical power ratio

We begin the analysis of the hemispherical power asymmetry by computing the following

statistics:

RNS,ℓmax
= max

n̂s

(
σN(n̂s,ℓmax)
σS(n̂s,ℓmax)

)

rNS,ℓmax
= min

n̂s

(
σN(n̂s,ℓmax)
σS(n̂s,ℓmax)

) (4.1)

These are simply the maximal (RNS,ℓmax
) and the minimal (rNS,ℓmax

) ratios of the hemi-

spherical standard deviations, found in the all sky search over directionŝns, that define the
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orientation of two hemispheres. TheσN andσS values are the cut-sky (in case of V5 data)

or full-sky (in case of ILC5/HILC5 data) hemispherical standard deviations of a map.

To define the grid of directions (n̂s), we choose to use the first 96, ring-ordered di-

rections, defined by the pixel centres of the HEALPIX pixelization scheme (Górski et al.,

2005) of resolution parameterns = 4. The measurements are performed using V5, ILC5

and HILC5 datasets within either, chosen ranges of multipoles, or as a function of a cumu-

lative maximal multipole numberℓmax.

The results of this survey are summarized in Fig. 4.2

The hemispherical asymmetry in the filtered bins of multipoles seems to be localized

within the range of multipolesℓassym ∈ [8, 15] in all of the dataset: V5, ILC5 and HILC5.

Note that the first point in every plot: i.e. the quadrupole (ℓ = 2), has the ratios always

equal unity, because only the quadrupole map is used in variance measurements, and since

the single-multipole maps have a point (anty)symmetry, dueto the properties of the spher-

ical harmonics, the variance is identical in the two hemispheres. In the range of multipoles

ℓ ∈ (2, 30) we process the maps containing only two neighboring multipoles: eg. for the

ℓ = 3 we use combined maps of multipolesℓ = 2 andℓ = 3; for ℓ = 4 we use combined

maps of multipolesℓ = 3 andℓ = 4, and so on. For higher multipoles (ℓ > 30) the bins are

larger, and are defined by the two neighboring plotted pointsin Fig. 4.2. In the case of the

cumulative plots (second and fourth row in Fig. 4.2) we use all multipoles fromℓ = 2 up to

ℓmax, and due to the cumulative process, the curves on the right-hand side plots, (showing

the statistics in the large-ℓ limit), do not exhibit much of details, since most of the map

power (variance) comes from the low multipoles. In the limitof large multipoles, the multi-

pole range-filtered maps show much more details as they are not overwhelmed by the power

of the low multipoles. In particular, notice the strong, systematical deviation away from the

simulation mean in case of the ILC5 and HILC5 data, starting with multipolesℓ & 150.

These are most likely caused by the extended foregrounds, and point sources remaining in

the maps, since we do not apply any sky cuts with these data. Weover-plot the results for

the HILC5 data using the confidence level contours derived from the ILC5 simulations, just

to compare them with the results obtained for the ILC5 data.

We also notice that in case of the multipole, range-filtered V5 data, (top row in Fig. 4.2)

some asymmetry is also seen in the rangeℓ ∈ [29, 40]. On the same plot it appears that

the “northern” hemisphere is anomalous due to the decrementin power as compared to the

simulations in multipole rangeℓassym ∈ [8, 15].

For the case of the multipole, range-filtered results (first and third row in Fig. 4.2) we

derive the joint “probability of rejecting”, using a generic multivariate calculus, and for the

V5 data we obtain result consistent with the simulations at< 82% confidence level for both

the maximal hemispherical ratio (RNS,ℓmax
) and the minimal hemispherical ratio (rNS,ℓmax

)

regardless of whether or not the off-diagonal terms of the covariance matrix are included.

This result corresponds to the full range of multipoles up toℓ = 300.

As a final note to this analysis we point out, that the low significance of the power

asymmetry, illustrated in Fig. 4.2, may result from the factthat we analyzed the data in
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Figure 4.2:Hemispherical power asymmetry in filtered in the spherical harmonic space, V5 data (top panel)
and in the ILC5 and HILC5 data (bottom panel). In the first row of each panel we plot the maximal (RNS,ℓmax

)
(blue)/minimal (rNS,ℓmax

) (red) ratios of the standard deviations as a function of thefiltered range of multipoles
defined by the twoℓ values corresponding to any of the two neighboring plotted points (see text for details).
In the second row of each panel we plot the ratios as a functionof the cumulative maximal multipole number
ℓmax defining the considered range of filtered multipoles:ℓ ∈ [2, ℓmax]. The red (dashed) line is the inverted
minimal (1/rNS,ℓmax

= rSN,ℓmax
) ratio of the hemispherical standard deviations, plotted to appreciate the

power asymmetry by direct comparison with the blue lines. The gray bands represent the 68%, 95% and
99% confidence level contours. The simulations’ mean is plotted with yellow solid line. The hemispherical
asymmetry mostly appears to be confined to the multipoles range ℓassym ∈ [8, 15] in V5, ILC5 and HILC5
dataset.
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a thin slices through the spherical harmonic space (every two multipoles) up toℓ = 30.

Although the full covariance matrix analysis should in principle, be stable to that, it’s pos-

sible that other binning of the data may lead to somewhat different result. In order to check

that we similarly estimated the joint “probability of rejecting” within the multipole range

ℓassym ∈ [8, 15] for the V5 data, but we found the data to be consistent with simulations at

confidence level as low as60%.

In the following we will constrain the properties of the hemispherical power asymmetry

in greater detail.

4.5 Modulation parameters estimation

In Eriksen et al. (2007) an approach for estimating the bipolar modulation parameters has

been concisely outlined, and implemented to obtain the constraints on the modulation pa-

rameters. In that work a Gaussian PDF proposal for all model parameters has been assumed,

except for the modulation orientation axis, for which a flat PDF proposal has been used. As

will be shown, the exact shape of the likelihood function mayhave and important effect on

the overall significance of the power asymmetry anomaly, so in contrast to that work we

directly reconstruct the likelihood function using a grid method.

Since the full parameter space operations are time consuming, we introduce few as-

sumptions that greatly simplify the parameter estimation process. In the next section we

discuss them one by one and provide appropriate justifications.

4.5.1 Bipolar modulation model parametrization

We generalize the parametrization of the CMB modulation, form the one defined in our

previous work (Lew, 2008b), to account for a modulation thatis effective only within a

requested range of multipoles(ℓmin, ℓmax). A CMB observationT (n̂) of the GRF CMB

realization (TCMB(n̂)) within a bipolar modulation model can be written as:

T (n̂) = B(n̂, n̂′) ⋆
(
TCMB(n̂′)

(
1 + M(n̂′)

)
+ F (n̂′)

)
w(n̂) + N(n̂)w(n̂) (4.2)

where the modulation fieldM(n̂) is defined as:

M(n̂) = Aℓmax

ℓmin
m̂ · n̂ (4.3)

wheren̂ is a unit vector andM is a bipolar modulation field, oriented along directionm̂ with

amplitudeAℓmax

ℓmin
, which modulates the CMB component only within the specifiedrange of

multipoles betweenℓmin andℓmax. TheF (n̂) andN(n̂) denote the residual foregrounds and

the noise component respectively. TheB(n̂, n̂′) represents the real-space beam convolution

kernel of the instrument, or any other effective convolution that has been applied to the data.

Thew(n̂) is the mask window function which can assume either0 for masked pixels or1

for unmasked pixels. In case of the ILC5 dataw = 1. We will constrain the parameters

Aℓmax

ℓmin
andm̂ in different ranges of multipoles in order to investigate the modulation as a

function of scale.
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4.5.2 Assumptions

To facilitate the reconstruction of the multidimensional likelihood function in the following

analysis we will rely on three assumptions. We assume that (i) the noise in our dataset in

the range of multipoles under consideration can be neglected, (ii) that the dataset maps are

foregrounds free, and (iii) that the residual systematicaleffects of the modulation-induced

change to the underlying power spectrum of the CMB does not significantly influences

the modulation parameter estimates. In the following sections we will discuss each of the

assumptions in greater detail.

Signal to noise ratio

For the purpose of the analysis we assume that the noise in theCMB dataset (or simulations)

has no significant impact on the CMB component modulation parameters estimates. The

accuracy of this assumption is scale dependent. In Fig. 4.3 we plot the signal to noise ratio

(SNR) as deduced from Fig. 4.1.

We choose to work with the filtered data at scales belowℓ ≤ 80, where the signal-to-

noise ratio per single multipole is approximatelySNR ∼ 102 (Fig. 4.3 thick lines). Note

that for the case of a real-space, variance measurements in amap composed of a range of

multipoles, the SNR is larger due to the cumulative effect (Fig. 4.3 thin lines).

Foregrounds

We rely on the foregrounds reduced data of the cleanest WMAP5channel - V and a conser-

vative sky mask KQ75. As for the ILC5 data the residual galactic foregrounds are clearly

seen in the map. We drastically reduce their amplitude by a sharp cut at the level of±350µK

(limit deduced from foregrounds free simulations). Of course this doesn’t remove the fore-

grounds but somewhat reduces their impact on the regional variance measurements. It

should be noted that due to the residual foregrounds, a caution is recommended by the

WMAP team when analysing this map at scalesℓ & 10 (Hinshaw et al., 2007). We present

the results of the full sky ILC5 analysis for comparison purposes with the results obtained

using an extensively masked V5 data. The V5 data should be therefore more reliable in the

limit of large multipoles. However it will be interesting tocompare the results between the

two analyses both in the limits of low multipoles, where the ILC map should be reliable,

and in the limit of large multipoles, where some residual foreground contaminations are

present.

Modulation effects to the power spectrum

The modulation inevitably leads to a change in the underlying power spectrum at all scales,

due to the multiplicative dipole component. Assuming a modulation orientation along the

“z-axis” direction, the modulation fieldM expressed by a spherical harmonic of degree 1
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Figure 4.3: An estimate of the signal-to-noise ratio (SNR) per multipole in the pseudo-

power spectrum (Csignal
ℓ /Cnoise

ℓ ) (thick lines) in the ILC5 (blue) and V5 (green) dataset and

the signal-to-noise ratio of the cumulative variance measurements (thin lines) defined as:

SNR(ℓ) =
∑ℓ

j=2(2j + 1)Csignal
j /

∑ℓ
j′=2(2j

′ + 1)Cnoise
j′ in the ILC5 (blue) and V5 (green)

dataset.

and order 0 is:M(n̂) = Aℓmax

ℓmin
a0

1Y
0
1 (n̂) = Aℓmax

ℓmin
a0

1 cos(θ), 2 wherea0
1 = 2

√
π
3 , and the

spherical harmonic expansion of the modulated map reads:

T (n̂) =
∑

ℓ,m

am
ℓ Y m

ℓ (n̂) + 2

√
π

3
Aℓmax

ℓmin

∑

ℓ,m

am
ℓ cos(θ)Y m

ℓ (n̂) (4.4)

where the first term corresponds to the initial CMB componentand the second term corre-

sponds to the modulated component.

Using the recurrence formula for the associated Legendre polynomials

(ℓ − m + 1)Pm
ℓ+1(x) = (2ℓ + 1)xPm

ℓ (x) − (ℓ + m)Pm
ℓ−1(x) (4.5)

it is straightforward to see that

cos(θ)Y m
ℓ (n̂) =

ℓ − m + 1

2ℓ + 1
Y m

ℓ+1(n̂) +
ℓ + m

2ℓ + 1
Y m

ℓ−1(n̂) (4.6)

wherex ≡ cos(θ).

According to Eq. 4.6 the modulation leads to redistributionof power of a given multi-

pole ℓ of the modulation component map on to the two neighboring multipolesℓ − 1 and

2We use the Abramovitz & Stegun (1972) notation convention, and their phase definition of the spherical

harmonics throughout the chapter.
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ℓ + 1 removing totally power from the multipoleℓ. Of course the power inℓ’th multipole is

restored by redistribution of power of theℓ + 1 andℓ − 1 multipoles. In general, the power

is redistributed not only within the samem mode but also within them ± 1 modes when

the modulation orientation is allowed to assume an arbitrary orientation.

It can also be shown that the modulated map has statisticallymore power than the cor-

responding non-modulated map. This is clearly seen in the modulated map power spectrum

(Fig. 4.4 top panel) as a systematic departure from the initial power spectrum, whose mag-

nitude depends on the modulation amplitudeAℓmax

ℓmin
. In our analysis we will account for this

systematical effect by a calibration of the map in the real space by the standard deviation

(Fig. 4.4 middle panel). This approach does not eliminates the systematical effects, however

it reduces them to a sub-percent levels (Fig. 4.4 bottom panel) for the modulations that are

cosmologically relevant.

We study these systematical effects using a sample of 1 000 full sky ILC5 simulations,

which we modulate to various extent. Then we reconstruct theaverage modulated power

spectra, and compare it to the average non-modulated power spectra (Fig. 4.4). Note that

e.g. for modulationsA . 0.6 the systematical effects of the modulation are smaller than

1% after a proper re-calibration of the map. In practice the larger modulations will be much

stronger penalized due to the violation of the statistical isotropy, than due to the systematical

deviations from the initial, fiducial power spectrum. It is also worth noting that the deviation

from the initial power spectrum in the case of smaller, and much more relevant modulations

is negligible, after variance recalibration (green curvesin the bottom plot of Fig. 4.4).

Since we will be working with selected, filtered ranges of multipoles (in order to in-

vestigate the modulation hypothesis as a function of scale)the multipoles at the upper

and lower ends of that range will have their power significantly suppressed, due to the

modulation-induced power-leakage outside the chosen range. To improve the effectiveness

of the calibration process, for a given multipole range of interest[ℓ1, ℓ2] we will calibrate

the modulation-altered simulations, and the data by standard deviations, calculated on the

non-modulated, filtered maps, without the outer-most multipoles: i.e. calculated within

range[ℓ1 + 1, ℓ2 − 1]. This improves the statistical consistency by several percent to the

case when the calibration is done within the full consideredmultipole range[ℓ1, ℓ2]. This

procedure has been actually used for the results given in Fig. 4.4.

The bottom panel of the Fig. 4.4 suggests that the fiducial power spectrum model used

by Eriksen et al. (2007):Cmodulated
ℓ /Cfid

ℓ = a(l/l0)
b with additional freedom allowed by

the tilt parameter in the reference power spectrum could result in smaller residuals, how-

ever in principle, a possibly large running could also be needed in order to account for the

residual, systematical discrepancies.

We also check that the same kind of relation (as depicted in Fig. 4.4) with very similar

amplitude of the systematical effects is obtained for the case of data de-modulation (see.

section 4.5.3).

We will test the accuracy of the method to reconstruct the modulation parameters in

section 4.6.
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4.5.3 Method

Our method is based on measurements of variances in two opposing hemispheres, in a

sample of 3 000 GRF V5 and ILC5 simulations and in the corresponding data. We use 96

different directions in the northern hemisphere, that define the axial-symmetry axis of the

two hemispherical regions. The directions are defined by thepixel centres of the HEALPIX

pixelization scheme with the resolution parameterns = 4. In case of the analysis with V5

data the hemispherical regions are defined outside the KQ75 sky mask, and therefore the

number of available pixels in these regions (Nk) may vary from one orientation to another.

In each regionk = [1, Nr] (hereNr = 2) we measure:

rk =
σ2

k

σ2
(4.7)

whereσ2
k is the variance of the CMB withinkth region andσ2 is the variance of the whole

map (outside the KQ75 sky mask in case of the V5 data). For the set of Nr regional mea-

surements we define the correspondingχ2 value as:

χ2 =
Nr∑

k=1

(rk − 〈rsim
k 〉)2/V ar(rsim

k ) (4.8)

Note that given that we rely on the local variance measurements it is justified, to the limits

to which CMB represents a GRF realization, and to the extent to which a cosmic covariance

is unimportant, that we neglect the off-diagonal terms in the covariance matrix, and treat

the regional variance measurements as independent variates. Although we realize that the

rk quantities defined in Eq. 4.7 should in principle follow a Fischer F-distribution, it is not

clear which distribution a sum given in Eq. 4.8 should follow, and as such we reconstruct

the likelihood function using a genericχ2 distribution3.

We seek for the best fit between the data and GRF simulations interms of the hemi-

spherical variance distributions(r1, r2) by de-modulating the data under assumptions given

in Sect. 4.5.2. This approach is therefore a non-standard one, due to the fact that generi-

cally it’s the simulations that are being fit to the data, rather than the data to simulations.

However within the approximations given in Sect. 4.5.2, it is possible to reverse the process,

by demodulating data, while retaining a formal correctnessand allowing thereby to avoid

a time-consuming processing of large number of simulationsfor each cell of the parameter

space. Under no-noise and no-foregrounds assumptions we rewrite the the Eq. 4.2 as:

T (n̂) = B(n̂, n̂′) ⋆
(
TCMB(n̂′)

(
1 + M(n̂′)

))
w(n̂) (4.9)

It is clear that apart from the beam smoothing effects, the de-modulation of the observed

mapT (n̂) is simply a division by the factor
(
1 + M(n̂′)

)
. In order to account for the

beams, using few spherical harmonics transformations (SHT), we pre-process the V5 data

and simulations as follows:
3We will discuss and take into account possible consequencesof this approximation in section 4.7.3.
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1. downgrade the simulations/data to resolutionns = 128

2. SHT analysis of the full sky V5 maps to obtainam
ℓ,V5 coefficients, and deconvolve

them with the average V channel beam transfer function

3. SHT synthesis usingam
ℓ,V5,nobeam coefficients to obtain a map including the first 128

multipoles (in order to account for the power leakage from cut sky in point 4)

4. apply KQ75 sky mask to remove the foregrounds in the deconvolved map (there are

no foregrounds in the simulations)

5. SHT analysis of the cut-sky deconvolved map to obtainam
ℓ,V5,nobeam,cutsky coeffi-

cients up toℓmax = 80

We store the final set ofam
ℓ,V5,nobeam,cutsky coefficients to produce the beam free maps for

any requested range of multipoles. Note that the two beams ofthe V1 and V2 WMAP

channels are practically identical, however we still average between them to deconvolve the

ILC maps. In the limit of the highest, considered multipolesthe operation of deconvolution

has an impact of few percent, as compared with the convolved power spectrum, as can be

inferred from the shape of the beam transfer function. Also note, that since we operate

in the signal dominated regime there is no danger to artificially blow up the high-ℓ(≈ 80)

multipoles.

De-smoothing by the V band beam transfer function, leads to apower increase atℓ = 80

by about10%. This can be easily estimated from the transfer function itself, since the

transmittance forℓ = 80 is about95%, which in the deconvolved power spectrum translates

onto an increase by a factor of1/0.952 =∼ 1.1

We remind that the noise in case of V5 is, of course, present inthe simulations. The

approximation of “no noise” only means that we assume that the estimates of the modulation

parameter, that modulates the pure CMB component, is not much altered by the fact that we

are actually deconvolving noisy observations, rather thana pure CMB component, which in

general does not make sense unless the signal strongly dominates the noise.

In case of the ILC5 data we create an effective “beam” transfer function by dividing the

fit to the ILC5 power spectra (see. 4.3 for details) by the fiducial best fitΛCDM model

power spectrum (Dunkley et al. (2008) generated using the mean likelihood parameters):

i.e. beff
ℓ =

√
CILCfit

ℓ /Cfid
ℓ . We divide the ILC5am

ℓ coefficients (ℓ ≤ 80) by this function

to match the ILC5 map power spectrum to the pure CMB componentpower spectrum. We

will analyze this data with the 3000 GRF signal-only, full sky CMB simulations, generated

with the best fit fiducial power spectrumCfid
ℓ

4.

As a result, such preprocessed data sets and simulations (apart from the cut sky effects

which are identical in the two) are consistent with the fiducial, best fit, theoretical power

4Actually for the data preparation process we only generate the GRFam
ℓ coefficients and then generate maps

for any requested range of multipoles
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spectrum, which we verify experimentally. We can rewrite the Eq. 4.9 as

Tnobeam(n̂) = TCMB(n̂)
(
1 + M(n̂)

)
w(n̂) (4.10)

Based on our preprocessed dataset we assured that the inferred modulation parameter will

correspond to the modulation of the pure CMB component (to the extent where the assump-

tions given in section 4.5.2 are valid).

We seek for the best-fit modulation map(1 + M(n̂)) such that if the observations

(Tnobeam(n̂)) are divided by it, the resulting map will yield the best consistency with the

GRF simulations in terms of the statistics given in Eq. 4.8.

4.5.4 Parameter space

As was mentioned in the previous section, we use 96 differentdirections in the northern

sky, that define a set of orientations of theNr regions (Nr = 2 for hemispherical regions).

The set of regions uniformly covers the whole sphere. The 96 directions define our search

space, and the corresponding search parameter that we will call n̂s = {1..96}.

Additionally, we use 192 directions over the full sky, that define the orientation of the

de-modulation axiŝm = {1..192}. The directions are defined by the pixel centres of the

HEALPIX pixelization scheme of resolution parameterns = 4. Those that are localized in

the northern hemisphere overlap with the directions defining the regions orientations. These

directions define our modulation orientation space.

In the most general case we probe the likelihood function forthe modulation amplitudes

in rangeAℓmax

ℓmin
∈ [0.0, 0.2] with step∆ = 0.01, and in rangeAℓmax

ℓmin
∈ [0.2, 0.3] with step

∆ = 0.02, and in rangeAℓmax

ℓmin
∈ [0.3, 0.5] with step∆ = 0.05, and in rangeAℓmax

ℓmin
∈

[0.5, 0.7] with step∆ = 0.1. These values define our modulation amplitude space.

As will be shown in Sect. 4.7 including the large modulations(A & 0.5) mostly ex-

plores completely unimportant regions of the likelihood function, which is why our grid

in this region is much sparser. In general however, the amount of the possible hemispher-

ical variance asymmetry in the GRF simulations depends on both: the underlying power

spectrum shape, and the selected range of multipoles.

Additionally we perform search in different bins of multipoles (ℓmin, ℓmax). The range

of the multipoles tested is summarized in Table 4.5.4.

According to the CMB WMAP5 best fitΛCDM model5 our considered range of the

multipoles: i.e.ℓ ≤ 80 make up for only about 32% of the total power in this model (of

which cumulative variance we calibrate to unity at the maximal computed multipole number

of ℓ = 2000: σ(ℓmin, ℓmax) =
∑ℓmax=80

ℓ=ℓmin=2(2ℓ + 1)Cfid
ℓ /

∑2000
ℓ=2 (2ℓ + 1)Cfid

ℓ ). However it

was shown in Lew (2008b) that the modulation ofA ≈ 0.1 extending all the way up to

ℓmax = 1024 (at which about96% of the total CMB power is used) is excluded at a high

confidence level (> 99% CL).

5http://lambda.gsfc.nasa.gov/data/map/dr3/dcp/params/c l/wmap lcdm sz lenswmap5cl v3.dat

http://lambda.gsfc.nasa.gov/data/map/dr3/dcp/params/c_l/wmap_lcdm_sz_lens_wmap5_cl_v3.dat
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Throughout the analysis we work on maps of the HEALPIX resolution ns, which de-

pends on the considered range of multipoles so as to yield thecondition:ns ≥ ℓmax/2.

4.5.5 Parameter estimation

For each direction from our search space (see section 4.5.4)we reconstruct the likelihood

function for each of the the modulation parameters valuesθ = (A, m̂) and for each consid-

ered multipole range. As a first step we a perform minimization of the likelihood over the

search parameter̂ns, in order to select only the measurements that maximize the possible

variance distribution anomaly. We next derive the corresponding marginal posterior distri-

butions using flat prior probabilitiesΠ(θ|M) = const. at each cell of our parameter space.

Therefore, the maximum likelihood inference will lead to the same results as the maximal

posterior results since according to the Bayes theorem:

P(θ|M, T (n̂)) ∝ L(T (n̂)|M, θ)Π(θ|M) (4.11)

whereP(θ|M, T (n̂)) denotes the posterior distribution, andL(θ|M, T (n̂)) denotes the

likelihood of the parametersθ within the hypothesized modelM defined in Eq. 4.3,.

For the estimates on the modulation amplitude, the marginalized, one-dimensional prob-

ability distribution is interpolated using cubic spline interpolation, before computing the

expectancy value, modal value, and confidence ranges. The marginalization over the mod-

ulation directions is not performed directly on the grid nodes, but rather on an interpolated,

on the surface of the sphere, for each value of the modulationamplitude independently,

posterior.

For the estimates on the modulation orientation, the marginalized, two-dimensional

probability distribution is interpolated using two-dimensional tension splines on sphere

(Renka, 1997). The marginalization over the modulation amplitude is not performed di-

rectly on the grid nodes, but rather on an interpolated, for each modulation orientation

independently, posterior. The interpolation is done usinga cubic splines and a dense equi-

spaced grid. We also tested and compared the “interpolations” using spherical harmonics

analysis, followed byFWHM = 14◦ (the approximate size of the search step) Gaussian

smoothing and synthesis up toℓmax = 30, and found that the results: i.e. the maximum

likelihood value orientations and confidence contours are reasonably similar, with those

where the fitted tension spline surface was used. The usage ofcubic interpolations or spher-

ical harmonic approximations in principle can lead to oscillations in the PDF that exceed

below zero value especially in the tails of the distribution. In case of one dimensional inter-

polations we circumvent this problem by replacing a cubic interpolation with a piece-wise

linear interpolation. Although this step will break the continuity of the first derivative of the

PDF function, we mostly probe the likelihood function denseenough so that these effects

are relatively small and unimportant. In case of two-dimensional interpolations we find that

the potential oscillations, if exist, are small and happen far outside the considered confi-

dence levels. In particular such oscillations would lead toartificial generation of multiple

isolated contours for a given CL which we generally do not observe and consequently do
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not consider this to be a problem. The most affected artifacts of the applied interpolation are

observed for cases where the most preferred modulation amplitude is vanishing or is close

to zero. In such cases, of course, there is no information on the modulation orientation.

While deriving our results we choose to rely on dense two-dimensional interpolations

using tension splines on sphere rather than on, somewhat arbitrary, spherical harmonics

analysis approach. Depending on the tension parameter the interpolating surface approaches

the Delaunay triangulation (linear interpolation) solution for large values of the tension pa-

rameter, and cubic splines solution for zero-tension parameter. The interpolated surface on

an equidistant (in galactic latitude and longitude) grid isdense enough so that is could easily

be projected without holes onto an equal-pixel-area HEALPIX grid to ease the integration

over the sphere in pixel space.
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Figure 4.4: Top panel: Modulation induced systematical changes to the fiducial power

spectrum as inferred from the average power spectrum from a sample of 1 000 simulations.

The overall shift, approximately by a constant factor in allmultipoles is clearly seen.The

middle panel:Calibrated in real space, by the standard deviation, average power spectra of

the modulated maps.Bottom panel:Residual, fractional systematical deviation from the

original (non-modulated) power spectrum.
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ℓmin\ℓmax 7 20 30 40 60 80

2 3 ∼ 6 (6.8) [21.2] 3 ∼ 19 (13.8) [43.1] 3 ∼ 29 (16.9) [52.6] 3 ∼ 39 (19.4) [60.4] 3 ∼ 59 (23.8) [74.2] 3 ∼ 79 (27.9) [87.2]

6 7 ∼ 19 (7.0) [21.9] 7 ∼ 29 (10.1) [31.4] 7 ∼ 39 (12.6) [39.2] 7 ∼ 59 (17.0) [53.0] 7 ∼ 79 (21.1) [66.0]

19 20 ∼ 29 (3.0) [9.5] 20 ∼ 39 (5.6) [17.3] 20 ∼ 59 (10.0) [31.1] 20 ∼ 79 (14.1) [44.1]

29 30 ∼ 39 (2.5) [7.8] 30 ∼ 59 (6.9) [21.6] 30 ∼ 79 (11.1) [34.6]

39 40 ∼ 59 (4.4) [13.8] 40 ∼ 79 (8.6) [26.8]

59 60 ∼ 79 (4.2) [13.0]

Table 4.1: Summary of the tested multipole bins. Note that asexplained in section 4.5.2, in the actual analysis we discard the outermost multipoles of

the considered multipole ranges. For clarity, in each cell,we explicitly write down the filtered multipole ranges used.The numbers in round brackets

indicate the percentage of the variance within a consideredrange out of the total power in the best fitΛCDM model, calculated as explained in the text.

The numbers given in square brackets indicate the percentage of variance within a considered range of multipoles out of the total CMB signal variance

within the first 80 multipoles of the fiducial power spectrumCfid
ℓ .
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4.6 Tests of the method

To test the correctness of the code, and the sensitivity of our approach we use a GRF white

noise simulations. The choice of the white noise helps to generate a GRF simulation in

which the cosmic variance effects, leading to accidental, unequal hemispherical power dis-

tribution, are suppressed, by giving as much power to high-ℓ modes, as to the low-ℓ modes.

The magnitude of the low-ℓ modes dispersion is∝
√

Nℓ/Nℓ′ ; i.e is larger than in the high-ℓ

modes, whereNl∈{ℓ,ℓ′} = 2l + 1 is the number ofam
ℓ coefficients at multipolesℓ, ℓ′ re-

spectively, whereℓ > ℓ′. Therefore equalizing power between different multipoleshelps

to better control the experiment: i.e. correctly interpretthe results of the tests with the

synthetic data given some input requested modulation parameters.

In case of realistic GRF simulations based on the CMB power spectrum, the hemispher-

ical power asymmetry allowed within the cosmic variance uncertainty, is much larger due

to the fact that the lowest multipoles (with the smallest number of modes) make up for the

main part of the map’s total variance, while the higherℓ multipoles, even though more nu-

merous, are strongly suppressed.

Full sky tests In the following tests there are no effects from any instrumental beams,

nor cut skies. We generate a white noise realizations in resolution ns = 64 and modu-

late them with modulation amplitude ofA = 0.1 and with modulation axiŝm oriented at

(l, b) = (225◦,−27◦).

At first we test the correctness of the code by using an analytical proposal for the PDF

of the χ2 values. Since we operate on white noise, zero mean and unit variance GRF

simulations, its statistical properties are well known, and we therefore approximate theχ2

value of the Eq. 4.8 as:

χ2 =
∑

k=1,2(σ
2
k − 〈σ2

k〉)2/V ar(σ2
k) (4.12)

where

〈σ2
k〉 =

(Nk − 1)

Nk
σ2, and V ar(σ2

k) =
N2

k

2(Nk − 1)
σ4 (4.13)

are the expectation value of the mean in the sample, and the expected variance of the vari-

ances in the sample of variates drawn from the GRF filed (Kenney & Keeping, 1951). The

σ2 = 1 is the variance of the Gaussian PDF from which the GRF is drawn, andNk is the

number of pixels inkth region.

We find that the statistics correctly reproduced the initialmodulation amplitude and

orientation well within the “one-sigma” confidence level (Fig. 4.5a) in all tested cases.

Also, the tests show that using the white noise simulations,the method is able to reject the

hypothesis of statistical isotropy at a very high confidencelevel (at≫ 4σ CL in this case).

The precision of the reconstructed, via interpolation, modulation direction orientation is

surprisingly good (∼ 2◦) given a poor resolution of the search:∼ 14◦ (Fig. 4.5b)
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We also test the reconstruction of the modulation parameters using a set of1000 GRF

simulations from which we derive the averages and variancesof the regional variance real-

izations, and proceed according to equations 4.7 and 4.8 forNr = 2. We notice an increase

in the peakedness of the PDF when the Monte-Carlo (“MC”) probed estimates are used, as

compared to the theoretically (“TH”) derived estimates. Wespeculate that the difference

might come from the fact that we assumed the field variance valueσ to be unity. In prac-

tice, we will always rely on a sample of3000 MC simulations for estimates of local variance

distributions.

Note that the simulation 3 in Fig. 4.5a, plotted as a peculiarity, found in one of our tests,

traces the correct value of the injected modulation (A = 0.1) with an accuracy of about 5%.

Cut-sky tests and other subtleties We further test the stability of the method while vary-

ing the number of simulations used to probe the hemispherical (regional) mean and variance

expectations. We check the dependence on the increase of thenumber of simulations from

1000 to 3000. We perform tests with the KQ75 sky cut, and test sensitivity of the method

using different number of regions:Nr = {2, 10}. The regions forNr > 2 are defined as

an axial-symmetric patches, equally dividing galactic latitude into a symmetrical about the

equator (before rotation) regions. In principle the increased number of regions could poten-

tially have impact on the accuracy of the method. We use the effective number of degrees

of freedom equal to the number of unmasked regions, in order to derive the likelihood value.

The results of the tests are presented in Figs. 4.5c-f. We find that the use of the increased

number of simulations does not significantly influence the estimates of the reconstructed

mode values, nor the shape of the marginalized PDF. Also it isclear that the increase of the

number of regions, used in the statistics, broadens the marginalized PDFs, making thereby

the statistic less sensitive.

Furthermore, we see that the accuracy of the method, in case of the cut-sky maps, is

generally found at the level of few, up to several (in the worst case) percent of the level

of the injected modulation (A = 0.1), which is of the same order as the unknown, initial

(resulting from a random realization) modulation6 of our white noise maps.

We note that the selected and presented “simulation 3” is oneof the worst cases found

in our tests, and as such, we give more attention to it in variety of tests summarized in

Fig. 4.5c where the reconstructed distribution exhibits bi-modality. In general however, the

simulations result in unimodal distributions, like those depicted in Fig. 4.5e.

We find that generally, in the presence of the cut sky, the modulation orientation is cor-

rectly reconstructed within 50% to 68% CL contours (Fig. 4.5d), regardless of the number

of regions used in the statistics (2 or 10) however in the worst case simulation (as in case

of the “simulation 3” with the two-region statistics) it is found as far as within the 95% CL

6We refer to the initial unknown, accidentally unequal powerdistribution in a GRF white noise simulation as

a “modulation” since it’s the modulation amplitude that we measure, but of course there’s no reason to believe

that any modulation effect, as defined in this chapter, exists in the GRF simulations.
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contour.

We also checked the difference between different statistical approaches: i.e. between

maximization7 and marginalization over the modulation orientation. We find that both - the

full sky and cut sky tests yield similar, or almost identicalresults. We will show that the

situation will not be the same in case of the real CMB data or CMB simulations due to the

effects we mentioned in the beginning of this section.

Finally we tested the statistical biases of the method underthe cut sky conditions (Fig. 4.5f

(left) red lines) and found that, within the obtained accuracy, no significant statistical bias is

noticed.

Summary We find that with our chosen search resolution, the method traces the correct

solution to within a few percent accuracy for the full sky measurements with respect to the

injected modulation amplitude value, and from few up to several percent accuracy (. 18%)

for the cut sky case, with about68% of the estimates yielding an accuracy better than∼ 7%

(Fig. 4.5f). In terms of the absolute errors of the reconstructed value of the modulation

amplitude parameterA, for the injected amplitude ofA = 0.1 the errors are roughly an

order of magnitude smaller:∼ 0.005 and∼ 0.007 for the full and cut sky cases respectively.

In case of the larger number of regions the sensitivity of themethod is worsened (eg. for the

case ofNr = 10) and therefore in the following analysis we will only rely onthe two-region

statistics.

As for the reconstructed modulation direction, we find that mostly the correct direction

is reconstructed within∼ 50% CL limits for the two regions statistics, and well within50%

CL limit for 10 regions case for the cut sky and full sky cases.

It is important to note that even with the white-noise simulations the initial, unknown

modulation, resulting from random, and unequal distribution of power in the sky is at level

of A . 0.005, which is of the same order of magnitude as the accuracy whichwe obtain in

the full sky tests.

As for the reconstructed modulation orientation, mostly the correct direction is found to

be within the50% to 68% CL limits in case of the cut sky reconstructions, while the typical

angular size of the50% and95% CL contours are∼ 20◦ and∼ 35◦ respectively (Fig. 4.5).

The full-sky reconstructions CL contours are slightly smaller. Note that the modulation

direction is reconstructed via interpolation to within a few degrees accuracy for the full sky

case with the search resolution of about14◦, which is surprisingly good. For the cut sky

case the accuracy is approximately at the level of several degrees.

7In case of maximization over the modulation direction orientation, we have used the modal values, found

in the fitted, two-dimensional maps of the likelihood function, for each modulation amplitude. We found this

method to improve the smoothness of the resulting PDF, sinceour parameter search space is very sparse - only

192 directions over the entire sky.
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Full sky white-noise maps tests with initial modulation:A = 0.1 (l, b) = (225◦,−27◦)

a) marginalized modulation amplitude PDF: b) marginalized50%, 68% and 95% CL modualtion orientation limits
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sim 1: TH, mode={0.1, 0.104}

sim 2: TH, mode={0.1, 0.0993}

sim 2: MC, mode={0.1, 0.0999} 

sim 3: MC, mode={0.095, 0.0954} 

Cut sky (KQ75) white-noise maps tests with initial modulation: A = 0.1 (l, b) = (225◦,−27◦)

c) marginalized modulation amplitude PDF: d) marginalized50%, 68% and 95% CL

modualtion orientation limits
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sim 3: 2 regs., TH, full sky, mode={0.095, 0.0972}

sim 3: 2 reg., MC (1000 sim.)., full sky,  mode={0.095, 0.0954}

sim 3: 2 reg., MC (1000 sim.), cut sky, mode={0.12, 0.1175} 

sim 3: 10 reg., MC (1000 sim.), cut sky, mode={0.11, 0.1094} 

sim 3: 10 reg., MC (3000 sim.), cut sky, mode={0.11, 0.1102} 

Two-region statistic tests with cut sky (KQ75) white-noisemaps

and with initial modulation:A = 0.1 (l, b) = (225◦,−27◦)

e) marginalized modulation amplitude PDF: f) statistics ofthe reconstructed ML modulation

amplitude values from 100 GRF simulations
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Figure 4.5: White noise maps tests of the accuracy of the method to reconstruct the injected modulation
amplitude and its orientation.(a) Constraints on the modulation amplitude, from three, chosen, full sky, white-
noise, modulated maps. The three colors code three selectedsimulations. The dashed lines for each simulation
connect points at which the likelihood function was calculated, and the solid lines represent a cubic polynomial
(spline) interpolation, combined with a linear interpolation in the tails of the distribution so as to avoid the
oscillations into negative values. The abbreviations “TH”(for the black and the blue-spiky curves) and “MC”
(for the green and the broad-blue lines) in the legend indicate respectively: the theoretically derived, and Monte-
Carlo probed values of the expected means and variances of the regional (hemispherical) variances (Eq. 4.13).
In the “MC” case a sample of1 000 simulations is used. The mode values of the probed and interpolated PDFs
are also given.(b) Limits of the modulation orientation, from one of the modulated, white noise, full sky,
GRF realization. The 50% (dark blue) , 68% (light blue) and 95% (red) confidence level ranges are plotted.
The small red dot indicates the location of thêm direction, and in the top of the plot the ML modulation
direction is given. We obtain similar results in all tested cases.(c) As in panel(a) but for the KQ75 cut-sky,
modulated, white-noise maps tests. We focus here only at thepeculiar, “worst-case” – the “simulation 3”,
subject to different statistical approaches as indicated in the legend. For comparison, the “TH” PDF, and the
PDF for the full sky case for this simulation, are also replotted. (d) Limits of the modulation orientation for
the sky cut “simulation 3”, usingNr = 10 region statistic. The details are as in panel(b). (e) Constraints on
the modulation amplitude, from two another (less-extreme than “simulation 3”) simulations, derived using the
two-region statistics (black curves), and the corresponding PDFs for 10 regions statistics (red curves).(f) (left)
Reconstructed modulation PDF mode values versus expectation values from 100 cut-sky simulations, with 68%
CL error bars derived individually from each PDF independently, plotted with the corresponding histograms
((f) right). The CL ranges were integrated from the mode value. The red lines indicate the mean value of the
scatter for each direction, and the shaded area encompassesone standard deviation of the distribution.
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4.7 Results

4.7.1 Modulation amplitude

The marginalized over the modulation direction, probability distributions (posteriors) of the

modulation amplitude parameter as derived from the WMAP V5 and ILC5 data are plotted

in figures 4.6 and 4.7 respectively for different ranges of filtered multipoles (see table 4.5.4).

We remind that only the analysis involving the V5 data was performed using the KQ75 sky

mask.

Table 4.2 summarizes the modal values of the distributions as parameter estimates and

the68% and95% confidence level limits.

In Table 4.3 we concisely summarize the results of the modulation significance analysis:

ie. the analysis in which we derive the minimal confidence levels, at which the modulation

value ofA = 0 cannot be excluded. We specify the expectancy values, mode values of

the distributions, and the corresponding significance. We choose to calculate the confi-

dence intervals - or rather, since we’re working on posterior probability distributions, in the

nomenclature of the Bayesian language, the credibility intervals, by integrating from the

modal value, rather than from the expectancy value.

To visualize these results, we plot the estimated modal values of the posterior distribu-

tions as a function of consideredℓmin andℓmax values (Fig. 4.8). For each multipole bin,

in Fig. 4.8 we also indicate the minimal confidence level (seeTable 4.3) it takes to keep the

modulationA = 0 i.e. the non-modulated, isotropic model, as an viable option.

It is clear that the modulation amplitude depends on the considered multipole range and

hence on scale. Is is generally seen that large values of the best-fit modulations mostly

come from the large scales, while for high multipole bins, the best-fit modulations are much

smaller. As explained in section 4.6, within GRF realizations this is somewhat expected due

to the nature of cosmic variance effects.

Looking at distributions in Figs. 4.6 and 4.7, it is apparentthat the modulation forℓ ∈
[7, 19] (and alsoℓ ∈ [3, 19]), in the V5 data, (blue curves (crosses) in Fig. 4.6) is strongest

and most significant, as it takes the confidence level as high as ∼ 99.5% to include the

A = 0 value (see.Table 4.3 and Fig. 4.8). The appearance of some asymmetry in this range

also seems consistent with the results presented in Section4.4. The range of multipoles

ℓ ∈ [20, 29] of the V5 data does not seem to prefer any modulation value as its modal

value is almost zero, and consequently while increasing values ofℓmax, for ℓmin = 7, the

overall significance falls, as this multipoles bin is included, but then systematically increases

as larger multipoles are added, which is consistent with theshape of the PDF functions

preferring some non-zero modulation for higher multipole bins like ℓ ∈ [30, 39].

The best-fit modulations forℓ ∈ [20, 39] and ℓ ∈ [30, 39] range fromA = 0.07 to

A = 0.10 and exclude the isotropic model, depending on the data, at confidence level of

about96% to 99%, while the best-fit modulation forℓ ∈ [7, 39] in the ILC5 data, with the

modal amplitude ofA = 0.13, exclude the isotropic model, at confidence level as high as
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Figure 4.6: Constraints on modulation-amplitude parameters as a function of considered

multipole bin from the V5 data. From the bottom to the top we plot data with less filtering

of the large scale multipoles. For each PDF the corresponding expectancy value is marked

by vertical dashed lines for binsℓ ∈ [3, 6], ℓ ∈ [3, 19], ℓ ∈ [3, 29], and dash-dotted line

for bins ℓ ∈ [3, 39], ℓ ∈ [3, 59] and ℓ ∈ [3, 79]. Within each group the increasing line

width corresponds to increasing value ofℓmax. Only every 100’th point of the interpolated,

marginalized PDF was plotted, so the data points do not correspond to the actual grid nodes.

We have truncated the plot at A=0.4 to maximally expose the most interesting regions, while

keeping the same scale throughout all panels.
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Figure 4.7: Constraints on modulation-amplitude parameter as a function of filtered multi-

pole bin from the ILC5 data. Details as in Fig. 4.6.

99.9%. We will further test the significance of these results in section 4.7.3.

Note also that, some of the marginalized PDFs exhibit bi-modality (eg. the PDF corre-

sponding to the multipole rangeℓ ∈ [3, 59] – magenta-line (▽) in Fig. 4.6). This bi-modality

results from the marginalization itself, and is not observed in the full non-marginalized dis-

tribution. Since the likelihood function does not depend onthe orientation of the modulation

axis for the modulation amplitudeA = 0, while it does depend on the modulation orienta-
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Figure 4.8: Results of the modulation amplitude parameter estimation from the V5 data (top

panel) and ILC5 data (bottom panel). Modal values of the posterior distributions are plotted

for different bins of multipoles filtered out from the dataset. The error bars represent the

confidence limits that include theA = 0 value. The corresponding confidence levels (given

in percents) are given as annotations by the data points.

tion very strongly for modulationsA ≫ 0, the likelihood surface shall tend to be peaky for

large values ofA, and flat forA ≈ 0. As such, depending on how strong the preference of

some direction happens to be, it is possible to accumulate inthe marginalization process a

second peak (the second mode) out of somewhat less-preferred, but constant at certain level,

likelihood values alongA ≈ 0 direction. As a result the aforementioned rangeℓ ∈ [3, 59] of

V5 data yields a small significance in Table 4.3 (in terms of rejecting an isotropic model).

We have also processed the results by using maximization over the modulation orientations

instead of marginalizations, and as expected, the maximized PDFs are unimodal and more

strongly exclude the non-modulated, isotropic models, however we choose the more con-

servative, and more correct method of marginalizing over the non plotted dimensions.

From Fig. 4.8 it is easy to see that the modulation amplitude estimates are mostly simi-

lar between the two datasets, and that generally the amplitude of the modulation decreases
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with increasing multipole numberℓ in the two datasets. A common feature between the

two datasets is that for high multipole binsℓ ∈ [40, 59], ℓ ∈ [40, 79] andℓ ∈ [60, 79] the

best-fit modulation amplitudes are small or zero, despite that the amount of variance carried

by bin eg. ℓ ∈ [40, 79] is as high as∼ 27% of the total variance carried by the full range

of considered multipoles (i.e. fromℓ = 3 to ℓ = 79, see.table 4.5.4). The multipoles range

ℓ ∈ [29, 40] instead participate to the total variance only by∼ 8%, and consequently, the the

best-fit modulation of this range, estimated to beA = 0.10 (A = 0.07) for the V5 (ILC5)

data, is effectively destroyed, as the higher multipole bins are included, most likely due to

simply dominating power in the added multipole bins.

There are few significant differences between the datasets as well. Firstly, we notice,

that the ILC5 estimates are generally slightly, but systematically larger from the V5 esti-

mates. Also, in particular, the full sky ILC5 posteriors, for multipole binsℓ ∈ [7, 29] and

ℓ ∈ [20, 29] strongly prefer some non-vanishing modulation amplitude,in contrast to the

V5 data (compare cyan-diamonds in Fig. 4.6 and 4.7). This results in an almost constant

significance of excludingA = 0 as higher multipole bins are being included (see first three

rows of the Table 4.3 in section for ILC5 data).

It is interesting to note a small difference in rangeℓ ∈ [3, 6] (see table 4.3) in which

the ILC5 slightly prefer a vanishing best-fit modulation. Note that among our considered

multipole bins, the ILC5 should be reliable basically only within this lowest range. In con-

trast, some non-zero preferred modulation is obtained withthe V5 data, however the value

is still largely consistent with the vanishing modulation at confidence level as low as∼ 58%.

Some differences between the datasets are of course expected due to the cut-sky effects,

which preclude filtering of exactly the same range of multipoles due to the power leakage

effects in case of V5 data. Also caution is needed in the interpretation of the ILC5 data

for higher multipole bins, as residual foregrounds in the regions around the Galactic center,

may have some impact on the results. In particular, these residual foregrounds might be

responsible for the significant alteration of the shape of the PDF function in the multipole

bin ℓ ∈ [20, 29] (cyan-diamonds in figures 4.6 and 4.7) towards an increased significance

in favor of non-isotropic models.

4.7.2 Modulation orientation

We now focus on the modulation orientation as a function of our chosen multipole bins, as

specified in table 4.5.4. The maximum likelihood modulationorientations are summarized

in table 4.4

The best-fit orientations found in the analysis depend in general on the considered range

of the multipoles. In particular, we see that the hemispherical power asymmetry, as mea-

sured here by the modulation orientations, generally tend to shift from larger galactic lat-

itudes to the smaller galactic latitudes, as data of higher multipole bins are processed or

cumulatively added up asℓmax value increases. This was previously also noticed in Lew
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(2008b) but using a different method. This effect seems to beseen in the first and second

rows (as moving from the left to the right) for each of the datain table 4.4, or by compar-

ing vertically in columns the first three rows as the low multipoles are removed from the

analysis. This is also directly seen in the distributions plotted in Fig. 4.9, where it can be

easily deduced in which bins the effects of small or vanishing modulations can be ignored.

However we note that the effect is not present in every bin, and at most of order of few tens

of degrees, and therefore we refrain from making any far-reaching speculations based on it.

While analyzing the distributions in Fig. 4.9 note that, those of them that correspond

to very small or vanishing modal values of modulation amplitudes, have a very extended

confidence level contours that cover large fraction of the sphere. These naturally result from

a very flat likelihood function, and therefore any inferencebased on these cases is largely

speculative and irrelevant. This is however expected, because for a vanishing modulation

amplitude, there is no information on its orientation either.

We note that it is possible there is some degree of correlation between the plots for a

given row, resulting from an cumulative effect of adding higher multipole bins. The possible

changes to the resulting distribution will jointly depend on the modulation amplitude and

orientation in the added bin, but also on the amount of variance carried by the that bin as

specified in table 4.5.4.

In table 4.4 we plot the directions, in galactic coordinates, of the maximum posterior

values found in the modulation orientation analysis. Out ofcuriosity we also provide the

angular separation of these directions from the ecliptic south pole to check for any possible

extra alignments.

4.7.3 Modulation significance

In the previous section we have shown that, for some multipole ranges, the reconstructed,

marginalized probability distribution function of the modulation amplitude, excludes the

vanishing modulation value (A = 0) at a very high confidence level. It is important to ask

whether this result is really robust, and whether or not we should reject the standard isotropic

model of the Universe, at least, at some of the scales: i.e. those corresponding to the

distributions with the strongest modulation detections, and the highest non-zero modulation

significances. In particular, at least three ranges are of most concern:ℓ ∈ [7, 19], and

ℓ ∈ [7, 79] for which theA = 0 can be excluded at99.5% and99.4% CL respectively, using

the KQ75 sky-cut V5 data, and where the modulation parameters are constrained to be

within ranges(0.07)0.14 < 0.21 < 0.26(0.31) at68% (95%) CL and(0.02)0.05 < 0.08 <

0.11(0.13) at 68% (95%) CL respectively. Also the aforementioned rangeℓ ∈ [7, 39], for

which theA = 0 can be excluded at99.9% CL using the full-sky ILC5 data, and where the

modulation parameter is constrained to be within range(0.06)0.10 < 0.13 < 0.17(0.20) at

68% (95%) CL.

What we have done in the previous sections, is that we have estimated the best-fit modu-

lation parameters (amplitude and orientation) with respect to the average from large amount

of GRF simulations. Using average from large number of simulations ensures that we com-
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pare the data to really isotropic distributions, as any deviations from the statistical isotropy,

even those resulting from the cosmic variance, will be averaged out. Although the measure-

ments also quantified the allowed magnitude of deviation from the ideal isotropy, allowed

within the cosmic variance, via the standard deviation in the χ2 tests, there were number

of explicit, or implicit assumptions or simplifications made on the way, like for example

the usage of theχ2 distributions, or neglecting the cosmic covariance effects, or residual

foregrounds to name few.

In Lew (2008b) we have performed the full covariance matrix analysis in two hemi-

spherical regions with the same search parameter space as detailed in Section 4.5.4. We

used 1000 GRF simulations (500 for covariance matrix estimation and 500 for probing the

PDF of the underlyingχ2 distribution) and another 1000 simulations, modulated with am-

plitude ofA = 0.114. The simulations were filtered up toℓmax = 40. We found that on

average about8% of the GRF simulations exhibited a more unusual power distributions,

than those found in the modulated simulations. Here, although we use the same density in

the search space, we have improved somewhat the method by using smooth interpolations.

In order to further test the robustness, and the significanceof the power asymmetry

anomalies, and circumvent all possible imperfections of the method, in the following we

will pursue a similar test. We process 100 GRF simulations ofthe V5 data through our

parameter estimation pipeline, and compare the results with the real data. Such approach

should always be an ultimate test of the robustness, as it must give correct results indepen-

dently from the assumptions taken in the method.

We will focus on the aforementioned multipole bins:ℓ ∈ [7, 19] andℓ ∈ [7, 79] of the

V5 data, andℓ ∈ [7, 39] of the ILC5 data. Within these ranges the power asymmetry seems

to be very strong and very significant (see. table 4.3 and figures 4.6 and 4.7).

In Fig. 4.10 we plot the results of the modulation parameter estimation for all tested

simulations along with the WMAP data. While it is clear that most of the simulations do

not prefer any significant, if any, modulation amplitude values, at least few simulations,

in our sample, yield modulations that are stronger in the considered range of multipoles,

than those found in the data. Also, from the shape of the PDF itis easy to infer that the

significance of rejectingA = 0 in these few cases will be even larger than in the case of the

selected, most anomalous results from the WMAP data.

We find that 7 out of 100 V5 simulations yield stronger best-fit(modal) modulation

amplitudes, and 6 of them also yield a more significant rejection of theA = 0 parameter

value, than the V5 data in the rangeℓ ∈ [7, 19]. Similarly, for the rangeℓ ∈ [7, 79] 5

simulations yield stronger and more significant best-fit modulation values.

Consequently, we conclude, that the significance, as inferred simply from integrating

the PDF (as given in table 4.3) is not quite robust. In light ofthese results we estimate the

overall significance of possible modulation signals in the analyzed WMAP CMB maps at

the level of about∼ 94% to ∼ 95% depending on the particular range of multipoles. This

remains greatly consistent with our previous results reported in Lew (2008b) for the same

data.
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As for the ILC5 data we find that three simulations out of 100 yield a more significant

rejection ofA = 0 hypothesis, and curiously, only one in those three also yields a stronger

modulation within the multipole rangeℓ ∈ [7, 39]. Therefore, the corresponding overall

significance of the power asymmetry, in this particular multipole range, is still as high as

about∼ 99%. We note however, that since we did not use any sky masks in this case, this

result can probably be safely considered as somewhat overestimated, as any residual galactic

foregrounds are likely only to increase the level of the hemispherical power asymmetry,

rather decrease it.
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Table 4.2: Constraints on the modulation amplitude parameter for the V5 and ILC5 data. The table contain the modal parameter values and the correspond-

ing 68% and 95% (in brackets) confidence level limits.
V5 data

ℓmin\ℓmax 7 20 30 40 60 80

2 (0.00) 0.00< 0.11< 0.29 (0.55) (0.01) 0.12< 0.23< 0.29 (0.34) (0.00) 0.07< 0.19< 0.24 (0.28) (0.00) 0.05< 0.16< 0.21 (0.25) (0.00) 0.00< 0.00< 0.15 (0.20) (0.00) 0.00< 0.12< 0.15 (0.18)

6 (0.07) 0.14< 0.21< 0.26 (0.31) (0.00) 0.00< 0.14< 0.18 (0.20) (0.00) 0.06< 0.13< 0.16 (0.18) (0.01) 0.05< 0.10< 0.12 (0.14) (0.02) 0.05< 0.08< 0.11 (0.13)

19 (0.00) 0.00< 0.01< 0.06 (0.12) (0.01) 0.05< 0.09< 0.12 (0.15) (0.01) 0.04< 0.07< 0.09 (0.11) (0.02) 0.04< 0.05< 0.07 (0.09)
29 (0.01) 0.06< 0.10< 0.14 (0.19) (0.00) 0.00< 0.05< 0.07 (0.09) (0.00) 0.00< 0.00< 0.04 (0.06)

39 (0.00) 0.00< 0.02< 0.03 (0.07) (0.00) 0.00< 0.00< 0.03 (0.06)

59 (0.00) 0.01< 0.03< 0.05 (0.07)

ILC5 data
ℓmin\ℓmax 7 20 30 40 60 80

2 (0.00) 0.00< 0.00< 0.26 (0.52) (0.07) 0.16< 0.28< 0.33 (0.41) (0.06) 0.14< 0.23< 0.28 (0.33) (0.06) 0.13< 0.22< 0.26 (0.30) (0.03) 0.09< 0.17< 0.20 (0.24) (0.03) 0.08< 0.15< 0.18 (0.20)

6 (0.01) 0.12< 0.22< 0.28 (0.31) (0.04) 0.09< 0.15< 0.20 (0.24) (0.06) 0.10< 0.13< 0.17 (0.20) (0.04) 0.07< 0.09< 0.12 (0.15) (0.03) 0.05< 0.08< 0.10 (0.12)

19 (0.02) 0.06< 0.10< 0.13 (0.17) (0.02) 0.05< 0.07< 0.09 (0.12) (0.00) 0.02< 0.04< 0.06 (0.07) (0.01) 0.02< 0.03< 0.04 (0.06)
29 (0.00) 0.04< 0.07< 0.10 (0.12) (0.00) 0.00< 0.00< 0.03 (0.05) (0.00) 0.00< 0.00< 0.02 (0.04)

39 (0.00) 0.01< 0.02< 0.03 (0.05) (0.00) 0.00< 0.00< 0.02 (0.03)

59 (0.00) 0.00< 0.00< 0.03 (0.06)



92
C

H
A

P
T

E
R

4.
H

E
M

IS
P

H
E

R
IC

A
L

P
O

W
E

R
A

S
Y

M
M

E
T

R
Y

Table 4.3: Results of the modulation amplitude parameter estimation for the V5 and ILC5 dataset. The table contain the minimal confidence levels (in

percents) at which the parameter value ofA = 0 cannot be excluded (bold face numbers) and the expectancy (in round brackets) and the modal (in square

brackets) values of the corresponding distributions. See also Fig. 4.8.

V5 data

ℓmin\ℓmax 7 20 30 40 60 80

2 57.5(0.23) [0.11] 96.1(0.20) [0.23] 90.9(0.15) [0.19] 88.7(0.13) [0.16] 4.6 (0.10) [0.00] 86.4(0.09) [0.12]

6 99.5(0.19) [0.21] 90.2(0.11) [0.14] 94.5(0.11) [0.13] 97.0(0.08) [0.10] 99.4(0.08) [0.08]

19 25.8(0.05) [0.01] 96.8(0.08) [0.09] 97.2(0.06) [0.07] 99.7(0.05) [0.05]

29 97.1(0.10) [0.10] 86.0(0.05) [0.05] 0.2 (0.03) [0.00]

39 61.1(0.03) [0.02] 0.3 (0.02) [0.00]

59 88.8(0.04) [0.03]

ILC5 data

ℓmin\ℓmax 7 20 30 40 60 80

2 0.4 (0.20) [0.00] 99.1(0.24) [0.28] 99.1(0.20) [0.23] 99.3(0.19) [0.22] 98.7(0.14) [0.17] 98.8(0.12) [0.15]

6 96.6(0.19) [0.22] 99.2(0.14) [0.15] 99.9(0.13) [0.13] 99.7(0.09) [0.09] 99.6(0.08) [0.08]

19 97.9(0.09) [0.10] 99.2(0.07) [0.07] 95.6(0.04) [0.04] 98.7(0.03) [0.03]

29 95.7(0.07) [0.07] 0.4 (0.02) [0.00] 0.4 (0.02) [0.00]

39 78.1(0.02) [0.02] 0.5 (0.01) [0.00]

59 0.2 (0.03) [0.00]
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V5 data

ℓmin = 2

ℓmax = 7 ℓmax = 20 ℓmax = 30 ℓmax = 40 ℓmax = 60 ℓmax = 80

ℓmin = 6

ℓmin = 19

ℓmin = 29

ℓmin = 39

ℓmin = 59

ILC5 data

ℓmin = 2

ℓmax = 7 ℓmax = 20 ℓmax = 30 ℓmax = 40 ℓmax = 60 ℓmax = 80

ℓmin = 6

ℓmin = 19

ℓmin = 29

ℓmin = 39

ℓmin = 59

Figure 4.9: Constraints on the modulation orientation fromthe V5 and ILC5 data. For each

considered multipole bin we plot the confidence regions corresponding to the50% (green),

68% (yellow), and95% (red) confidence levels, based on the interpolated maps of the pos-

terior distributions. In each map the maximum likelihood orientation and the corresponding

dipole plane are indicated using a light blue dot and line respectively. Additionally, for

comparison, the ecliptic south pole and ecliptic plane are plotted in dark blue. In the top

of each panel we give the galactic coordinates of the maximumlikelihood solution. The

arrangement of the panels is consistent with the cells in tables 4.5.4, 4.2, and 4.3.
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V5 data:ℓ ∈ [7, 19]
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V5 data:ℓ ∈ [7, 79]
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ILC5 data:ℓ ∈ [7, 39]
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Figure 4.10: On the left-hand side panels we plot a comparison of the reconstructed,

marginalized distributions of the modulation amplitudes from 100 simulations of the

WMAP V5 data (top and middle panels) and WMAP ILC5 data (bottom panel). The

WMAP data are plotted using red, thick lines (triangles). Only every 100th point of the

interpolated, marginalized PDF is plotted. On the right-hand side panels we plot the corre-

sponding histograms of the expectancy values and modal values derived from these distri-

butions. The WMAP data values are marked with vertical lines. The plotted ranges yield

the strongest, and most significant, plausible hemispherical anomalies in the data as inferred

from the analysis in section 4.7.1.
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Table 4.4: Results of the modulation orientation parameterestimation for the V5 and ILC5 data. The table contains the galactic coordinates of the maximum

posterior modulation orientation and (in square brackets)the relative angular distance to the south ecliptic pole at(l, b) = (276.4◦,−29.8◦).

V5 data

ℓmin\ℓmax 7 20 30 40 60 80

2 (281◦,−20◦), [11◦] (233◦,−54◦), [39◦] (234◦,−46◦), [37◦] (225◦,−47◦), [43◦] (220◦,−42◦), [46◦] (223◦,−34◦), [45◦]

6 (278◦,−68◦), [38◦] (242◦,−55◦), [35◦] (213◦,−42◦), [52◦] (225◦,−35◦), [43◦] (224◦,−31◦), [45◦]

19 (187◦, 2◦), [90◦] (205◦,−8◦), [70◦] (213◦, 0◦), [67◦] (217◦, 1◦), [64◦]

29 (168◦,−19◦), [96◦] (193◦, 1◦), [85◦] (212◦,−2◦), [67◦]

39 (202◦, 8◦), [81◦] (236◦, 1◦), [49◦]

59 (265◦, 12◦), [43◦]

ILC5 data

ℓmin\ℓmax 7 20 30 40 60 80

2 (205◦,−67◦), [56◦] (226◦,−53◦), [43◦] (224◦,−56◦), [45◦] (225◦,−55◦), [44◦] (226◦,−56◦), [44◦] (226◦,−53◦), [43◦]

6 (281◦,−57◦), [27◦] (264◦,−48◦), [21◦] (256◦,−43◦), [21◦] (257◦,−42◦), [20◦] (258◦,−42◦), [19◦]

19 (236◦, 19◦), [62◦] (231◦,−6◦), [49◦] (241◦, 2◦), [46◦] (241◦,−5◦), [42◦]

29 (191◦,−18◦), [77◦] (225◦, 1◦), [58◦] (225◦,−15◦), [49◦]

39 (311◦,−34◦), [30◦] (263◦,−18◦), [17◦]

59 (220◦,−47◦), [46◦]
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4.8 Discussion

The results outlined in sections 4.7 indicate that different multipole ranges yield a different

best fit modulation value, and that the modulation orientation also slightly varies from one

multipole range to another.

In particular, the best-fit modulation orientation dependence when higher multipole bins

are included cumulatively is not as strong, as when the addedmultipole bins are considered

individually. Generally, we notice that within the best-fitorientations, that also yield a

large modulation values (A & 0.1) the high-ℓ multipole bins prefer a close galactic plane

orientation, while the low-ℓ multipole bins rather prefer orientations with larger galactic

latitudes.

The analysis of the modulation amplitude within few multipole bins yielded a large,

best-fit modulation amplitudes, that seem to significantly reject the isotropic Universe model

(with A = 0). However as much as few in one hundred GRF simulations, processed as data,

also yielded a similar or larger modulation values, and alsoexcluded theA = 0 hypothesis

at yet even higher confidence levels, than in the case of the V5data. This effectively reduces

the overall significance at which the isotropic model of the Universe can be rejected, down

to only about94% or ∼ 95% using the V5 data in the rangeℓ ∈ [7, 19], andℓ ∈ [7, 79]

respectively.

We therefore pursued the analysis of the modulation signalsin a two partially com-

plementary ways. While the first approach addresses the question of “how large and how

significant is the best-fit modulation of the data?”, the second approach quantifies “how

consistent is the best fit-modulation as compared with the GRF simulation expectations?”.

The second approach should be more robust since it is free of any, possibly inaccurate, as-

sumptions that could result in underestimation of the size of the errors in the statistic, and in

the result lead to spurious detections. These problems are effectively eliminated in a direct

comparison with the GRF simulations.

Curiously the ILC5 data in the multipole rangeℓ ∈ [7, 39] still seem to be anomalous at

a high CL of about99%; level almost as high as quoted in (Eriksen et al., 2007). However

contrary to that work, we have not applied any sky masks to this data, and therefore these

results, given here only for comparison purposes with the V5data, should still be treated

with caution.

It would be interesting to perform similar analysis using the ILC5 data but with included

sky cut, and to check the dependence of the analysis while varying the sky cuts from less to

more aggressive. Also, it could be interesting to check the robustness and the significance in

other multipole ranges than those two, tested in section 4.7.3. In principle, it would also be

interesting to include other available renditions of the ILC maps, to see the stability of the

modulation to different foregrounds cleaning pipelines. We defer these issues for possible

future work.
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4.9 Conclusions

We performed tests of the hemispherical power asymmetry found in the CMB WMAP data

for different bins of multipoles in two ways.

At first, we introduced a statistics that searches for the orientation of two opposing,

hemispherical regions that maximize or minimize the hemispherical variance ratio, and

compared these with the expectations from the GRF simulations. We found that the max-

imal asymmetry revealed this way is found within a multipolerangeℓ ∈ [8, 15], with the

southern hemisphere having larger variance than the northern hemisphere. When these

results are compared to the GRF simulations, the northern hemisphere appears to be sup-

pressed below the average expectation.

Secondly, we have introduced and tested a new method for measuring the power asym-

metry in the CMB data, as quantified within a bipolar modulation model (Gordon et al.,

2005). For the first time we constrained the modulation parameters as a function of various

multipole bins. For each multipole range, we obtained the constraints on the the modulation

amplitude and orientation. Based on the analyzed, up to the maximal multipoleℓmax = 80,

datasets i.e. the WMAP five-year inverse noise co-added, KQ75 sky cut map from the V

channel (V5), and the five-year, full-sky, foregrounds cut ILC map (ILC5) we found that:

(i) generally the modulation amplitude decays as higher multipole bins are cumulatively

added or independently analyzed,

(ii) the best fit modulation amplitude is smallA < 0.03 and insignificant for multipoles

beyondℓ ≈ 40

(iii) the most anomalous signals in terms of the modulation amplitude and its significance

come from multipole rangeℓ ∈ [7, 19], andℓ ∈ [7, 39] in the V5 and ILC5 data respectively.

For these ranges the significances of rejecting the isotropic cosmological model are99.5%

and99.9% respectively and the constraints on the best fit, (PDF modal)modulation values

are:(0.07)0.14 < 0.21 < 0.26(0.031) and(0.06)0.10 < 0.13 < 0.17(0.20) at68% (95%)

CL respectively.

Focusing on the two selected multipole ranges we performed an additional tests of the

significance using GRF simulations processed as data, and found that similar or stronger and

more significant (in terms of rejecting the isotropic model)modulation values are obtained

in 6 (1) cases in 100 simulations, which decreases the overall significance of the power

asymmetry in the CMB down to 94% (99%) in V5 (ILC5) data respectively. To complement

the results in the limit of high multipoles as well, we additionally tested the rangeℓ ∈ [7, 79]

of the V5 data that also yields a strong and significant (99.4%) best-fit modulation value -

(0.02)0.05 < 0.08 < 0.11(0.13) at 68% (95%) CL - but when this result was compared

with the GRF simulations the effective significance is againdecreased down to about 95%.

Although the significance in case of the ILC5 data is still rather high, we warn that

the results in this case were obtained without any sky cut, and therefore the asymmetry

significance can be overestimated due to residual foregrounds.

Finally we note that a further analysis of the significance interms of comparison with
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GRF simulations of other multipole ranges would be interesting, as well as analysis of the

power asymmetry in the ILC data as a function of different skycuts.



Chapter 5
Gaussianity tests using Minkowski

functionals: a high significance, large

scale non-Gaussianity detection in the

WMAP CMB data.

In this chapter we focus on Gaussianity tests, optimized forsearching the residual fore-

ground contamination in the CMBR WMAP data. The presented results are part of the

publication currently being in preparation.

5.1 Abstract

We perform a cut-sky Gaussianity analysis of the WMAP five-year, foreground reduced

CMBR data using Minkowski functionals. By applying a band-pass filters in the spherical

harmonic space, we analyze the maps exclusively in selectedbins of multipoles. This effec-

tively helps to test particular scales, which otherwise, given an unequal power distribution

across the multipole scale, are dominated by strong signalsfrom outside the bin. This way

we complement the previous works, which utilized averagingof different scales by either:

degrading the map resolution, or by applying “low-ℓ”-pass Gaussian filters.

We find the data inconsistent with Gaussian random field simulations (GRF) at con-

fidence level at least99.5%, due anomalous, negatively skewed temperature distribution

covering large areas of the sky, in the multipole rangeℓ ∈ (32, 128]. We further test the

robustness of these results in a few additional consistencychecks. In particular, we find the

anomaly to be associated with a small, but realized by a largenumber of pixels, excess of

positive temperature pixels over the negative ones, and we find that this effect is decreasing

for larger galactic latitudes, and is vanishing when more aggressive galactic plane masks are

applied, which hints on small, but extended over a large area, residual foregrounds. Finally,

we note that the anomaly would have been missed if the analysis involved only smoothed
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or downgraded in resolution maps.

5.2 Introduction

Measuring levels of the primordial non-Gaussianity (NG) isone of the primary goals of

the future cosmological surveys such as the PLANCK surveyor1 designed for measure-

ments of the cosmic microwave background radiation (CMBR) anisotropies, or LOFAR2

designed for measurements of the of the primordial hydrogendistribution. These missions

will provide a high sensitivity and resolution cosmological observations of high cosmologi-

cal significance. The amplitude and shape of the primordial non-Gaussianity will become a

very useful observable allowing to distinguish between different viable inflationary models

(eg.Gangui et al. (2002); Rigopoulos et al. (2007); Barnaby& Cline (2008); Chen et al.

(2007b); Holman & Tolley (2008); Enqvist & Takahashi (2008); Chen et al. (2007a); Sasaki

(2008); Acquaviva et al. (2003); Bernardeau et al. (2006); Bartolo et al. (2004)). The CMBR

will serve as one of the best windows on these processes, spanning through orders of scales,

from close-horizon scales∼ 104 Mpc, all the way down to∼ 10Mpc scales, where non-

linear gravitational collapse effects strongly dominate the primordial density fluctuations.

Any primordial NG in the gravitational potential field is be imprinted on the CMB long be-

fore it decouples from interactions with baryon fluid at the time close to the recombination,

and thereby it becomes accessible for direct measurements.

While the consistency of the (CMBR) data with a Gaussian random field (GRF) hypoth-

esis has been extensively tested in the previous several years, using a whole battery of vari-

ous statistical tests, (Park et al. (2006); Copi et al. (2008); Lew (2008a,b); Efstathiou (2004);

Gordon (2007); Gordon & Trotta (2007); de Oliveira-Costa & Tegmark (2006); Copi et al.

(2006b, 2004); Gaztañaga & Wagg (2003); Hansen et al. (2004b); Souradeep et al. (2006);

Cabella et al. (2004)) the measurements of levels of the primordial NG only in the recent

years started to be directly testable, (de Troia et al. (2007); Curto et al. (2008b,a); Chen

& Szapudi (2006a); Cabella et al. (2005); Cayón et al. (2003); Yadav & Wandelt (2008);

Hikage et al. (2006)), still, however with a precision that will have to be improved over the

next years, as more precise observations of the CMB anisotropies will become available; in

order to yield robust tests of the physics of the early Universe.

In the meantime it is important to study both the NG, and a degree of the consistency

of the data with the GRF hypothesis via eg. realistic Monte-Carlo (MC) simulations. In the

latter case, if a robust localization of a deviation is possible, such analyses would help to

identify and eliminate the NG signals, that most likely willbe of non-cosmological origin,

but would also possibly confuse the estimates of the primordial NG.

In this paper we study the CMB WMAP maps using Minkowski functionals (MF), and

also extend the and analysis in a variety of ways to cross-check the results. Several authors

have already pursued a similar statistics (Colley & Gott (2003); Wu et al. (2001); Park

1http://www.rssd.esa.int/PLANCK
2http://www.lofar.org/

http://www.rssd.esa.int/PLANCK
http://www.lofar.org/
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(2004); Eriksen et al. (2004b); Komatsu et al. (2008)) but most of such analyses operated on

either: scrambled through many orders of resolutions maps,or smoothed maps in spherical

harmonics space, in order to test the Gaussianity hypotheses at different scales.

However since the power (the variance per multipole) in the map is unequally distributed

across the multipole scale (due to certain shape of the underlying power spectrum), it might

be useful, when testing different angular scales, to eliminate the impact of the largest, and

most uncertain (due to the cosmic variance effects) scales,in order to focus on the smaller

scales exclusively, and perform an analysis, that will not be dominated, or obscured by the

effects large scale multipoles. In this paper we intend to explore this idea, and we perform a

statistics in different ranges of multipoles, using multipole band-pass filters in the spherical

harmonics space prior to the tests.

5.3 Data and Analysis

5.3.1 Maps pre-processing

We utilize the WMAP five-year foreground reduced CMB temperature maps (Hinshaw

et al., 2008) from differential assemblies (DA) V1 and V2, because these spectral channels

provide the best trade off between foregrounds of differentspectral properties (i.e. the blue

tilted galactic dust emission and red-tilted galactic synchrotron and free-free emissions).

We co-add these observations (and corresponding simulations) using the inverse noise pixel

weighting scheme. We will refer to these maps as V5. We generate 3000 Monte-Carlo

(MC) simulations, using the fiducial, best-fitΛCDM model power spectrum of Dunkley

et al. (2008) (constructed using the mean likelihood parameters) which we callCfid
ℓ . We

will also analogically utilize the Q and W channel data to trace spectral properties, and we

will call them Q5 and W5 respectively. We will use the KQ75 skymask throughout the

analysis. All maps are calibrated by their variance prior the analysis.

5.3.2 Band pass filters

We choose to test the data in all possible ranges of multipoles ℓ ∈ (ℓmin, ℓmax], defined

by: ℓmin ∈ {5, 32, 64, 128} andℓmax ∈ {32, 64, 128, 256}. We apply the top-hat filters

in spherical harmonic space. Note that due to sky cut, these ranges should be treated only

as approximations. We chose to remove the large scales (ℓ ≤ 5) from the analysis, be-

cause these are well known to have a strong non-Gaussian features, widely discussed in the

literature (see. section 5.2).

5.3.3 Statistics

We perform a single region, cut-sky statistics using Minkowski functionals in the data and

in the simulations atNν = 15 thresholds, uniformly spanning within the±{3, 3.5, 4, 4}σ
temperature range depending on the resolution parameter ofthe analyzed mapsns, defined

as in the Healpix sphere pixelization scheme (Górski et al., 2005); whereσ denotes the
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standard deviation of a map or a simulation. Sine we will derive the Minkowski functionals

(MFs) in the pixel space, in order to increase the reliability of the derivation of the covariant

derivatives, the map resolution parameterns is always chosen to be equal to the maximal

number of the multipole that is to be synthesized in the map. In case of our bins this will

correspond tons = {32, 64, 128, 256} respectively. The MFs are derived following the

prescriptions outlined in Schmalzing & Gorski (1998); Hikage et al. (2006). These are also

briefly summarized in the appendix A-5.

Since the values of the MFs are correlated between differenttemperature thresholds we

derive the joint probability of the realization of MF in the data via direct comparison with

the simulations, accounting for the covariance terms via the standard multivariate calculus

as:

χ2
k =

(
vk,νi

− 〈vk,νi
〉
)
Ĉ−1

k,νiνj

(
vk,νj

− 〈vk,νj
〉
)

(5.1)

wherek denotes the MF type. The covariance matrix is calculated from Ncov = 1500 sim-

ulations, while the corresponding distribution of the derivedχ2 values is estimated from the

remainingNχ2PDF = 1500 simulations. Therefore, for theNν = 15 different temperature

thresholds, the number of simulations used for the covariance matrix estimation is 100 times

larger than its size, which should grant a sufficient convergence.

We derive the p-values for the data for each multipole bin, and for each MF type, us-

ing the linear interpolations in between the points of the probedχ2 PDF as described in

appendix of Lew (2008b).

5.4 Results

The results of the tests performed on the maps in the analyzedmultipole bins are given in

Fig. 5.1 and the results of the joint statistics for the V5 data are summarized in table 5.1.

In order to test the stability of the presented results in thesame table we also attach the

results under different combinations of the above mentioned numbers: i.e.Ncov, Nχ2PDF

andNν . It is apparent that the results are not particularly sensitive to the change ofNcov,

which suggests that the covariance matrix is sufficiently converged. However, a significant

anomaly is seen in the case of circumference statistics in the multipole rangeℓ ∈ (5, 64] for

the joint statistic where as the corresponding plot in figure5.1 does not seem to be anoma-

lous. We find that the reason for the alarmingly low p-value inthis multipole bin comes

from the lowest-threshold data-point, which significantlystands out from the simulations,

and builds up the main part of theχ2 value. For the joint statistics, we will therefore in-

consider the outer 2 (4) thresholds: i.e. we considered onlythe inner 13 (11) threshold

data-points. As it is seen in the table 5.1 the low p-value forthe rangeℓ ∈ (5, 64] is caused

by these tail outliers. However, number of pixels inside thethreshold centered at∼ 3.2σ

away from the mean of the distribution for the number of pixels in the map of resolution of

ns = 64 andℓmax = 64 is very small, and therefore we do not put much attention to this,

strong as it is, but possibly insignificant, due to some numerical uncertainties in the covari-

ance matrix, detection. The inverse covariance matrix in this case is dominated just by few
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outermost thresholds, and in the following we will not further investigate this deviation, and

as far as the joint statistics is concerned, we will exclude the outermost thresholds from the

analysis when calculating the joint probabilities.

At first, in the figure 5.1 it is easy to see a strong deviation inthe fist Minkowski func-

tional: i.e. describing the total excursion set above a given temperature threshold, in par-

ticular for the cases when the lowest order multipoles are filtered out. Most notably, the

multipole rangesℓ ∈ (32, 128], ℓ ∈ (32, 256] andℓ ∈ (64, 256] andℓ ∈ (128, 256] are

particularly anomalous. This is main result of this paper, which to our knowledge is a new

detection unnoticed in the previous analyses.

Generally, it is also easy to see that while adding more and more small scale data,

the deviation from the simulation average tends to increase, which is somewhat expected,

however it is also clear that the large scales, which here arealready removed beforehand up

to ℓ5, efficiently obscure, an otherwise very strong NG behaviour.

Secondly, it is important to note that the strongest deviations from the simulations ap-

pear in the thresholds close to the average temperature, where lie the bulk of the map pixels.

This means that the anomaly is not some statistical fluke, buta very strong discrepancy.

Furthermore, we notice that such strong deviation appears only in the first Minkowski func-

tional, which measures simply the normalized number of pixels above a given threshold.

Note that the p-values that are smaller than1/Nχ2PDF, such as the p-value for the

rangeℓ ∈ (32, 128] for the case ofNχ2PDF = 500 and Nν = 11, are obtained using

Gaussian extrapolation (as described in Lew (2008b)) and assaturated, should be treated

with caution. Generally though the significance of the anomaly which is maximized in this

particular range is larger than 99.5% CL.

5.4.1 Anomaly tests

The anomaly revealed in the previous section, in general maybe caused in two ways, since

the Minkowski functionals are not only sensitive measures of Gaussianity, but they are also

a very sensitive to the shape of the underlying power spectrum. In order to exclude the

possible biases due to the latter case, in figure 5.2 we plot the pseudo power spectrum of the

WMAP V5 data with the cosmic variance 68%,95% and 99% limits from simulations and

the simulation mean (top panel) and also theχ2 value per degree of freedom (bottom panel).

The joint probability as measured by the p-value for this consistency check is∼ 35%, which

yields a good consistency, however we notice a few strong outliers related to the glitch-like

features in the pseudo-power spectrum. This was previouslyseen in eg. Hinshaw et al.

(2006).

Since the anomaly is detected via the area functional it is interesting to plot the temper-

ature distribution within the affected multipole rangeℓ ∈ (32, 128]. In figure 5.3 we plot the

temperature histogram for the map in the detected multipolerange outside the KQ75 sky

mask. While the negative skewness of the distributionS = −0.0243 is not very significant

with 98.5% CL to be rejected based on comparison with the 3000simulations, the mean

temperature value of the WMAP V5, in this multipole range, isinconsistent at very high



104 CHAPTER 5. GAUSSIANITY TESTS USING MINKOWSKI FUNCTIONALS

ℓmin = 5

ℓmax = 32 ℓmax = 64 ℓmax = 128 ℓmax = 256

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

re
s
id

u
a
l

0

2

4

6

8

10

C
ir

c
u
m

fe
re

n
c
e

-1.0

-0.5

0.0

0.5

1.0
re

s
id

u
a
l

-3 -2 -1 0 1 2 3

threshold

-20

-15

-10

-5

0

5

10

15

20

G
e
n
u
s

-3 -2 -1 0 1 2 3

threshold

-4

-2

0

2

4

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

re
s
id

u
a
l

0

2

4

6

8

10

12

14

16

18

C
ir

c
u
m

fe
re

n
c
e

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-60

-40

-20

0

20

40

60

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-15

-10

-5

0

5

10

15

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

re
s
id

u
a
l

0

5

10

15

20

25

30

35

40

C
ir

c
u
m

fe
re

n
c
e

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-400

-300

-200

-100

0

100

200

300

400

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-40

-30

-20

-10

0

10

20

30

40

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

re
s
id

u
a
l

0

10

20

30

40

50

60

70

80

C
ir

c
u
m

fe
re

n
c
e

-3

-2

-1

0

1

2

3

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-2000

-1500

-1000

-500

0

500

1000

1500

2000

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-150

-100

-50

0

50

100

150

re
s
id

u
a
l

ℓmin = 32

ℓmax = 64 ℓmax = 128 ℓmax = 256

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.010

-0.005

0.000

0.005

0.010

re
s
id

u
a
l

0

5

10

15

20

25

C
ir

c
u
m

fe
re

n
c
e

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-150

-100

-50

0

50

100

150

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-15

-10

-5

0

5

10

15

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-0.010

-0.005

0.000

0.005

0.010

0.015
re

s
id

u
a
l

0

10

20

30

40

50

C
ir

c
u
m

fe
re

n
c
e

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-600

-400

-200

0

200

400

600

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-30

-20

-10

0

10

20

30

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-6

-4

-2

0

2

4

6

8

re
s
id

u
a
l

x1e-3

0

10

20

30

40

50

60

70

80

90

C
ir

c
u
m

fe
re

n
c
e

-1.5

-1.0

-0.5

0.0

0.5

1.0

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-3000

-2000

-1000

0

1000

2000

3000

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-80

-60

-40

-20

0

20

40

60

80

re
s
id

u
a
l

ℓmin = 64 ℓmin = 128

ℓmax = 128 ℓmax = 256 ℓmax = 256

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-6

-4

-2

0

2

4

6

re
s
id

u
a
l

x1e-3

0

10

20

30

40

50

60

C
ir

c
u
m

fe
re

n
c
e

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-800

-600

-400

-200

0

200

400

600

800

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-30

-20

-10

0

10

20

30

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-4

-2

0

2

4

6

re
s
id

u
a
l

x1e-3

0

20

40

60

80

100

C
ir

c
u
m

fe
re

n
c
e

-1.0

-0.5

0.0

0.5

1.0

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-3000

-2000

-1000

0

1000

2000

3000

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-80

-60

-40

-20

0

20

40

60

re
s
id

u
a
l

0.0

0.2

0.4

0.6

0.8

1.0

A
re

a

-4

-3

-2

-1

0

1

2

3

4

re
s
id

u
a
l

x1e-3

0

20

40

60

80

100

120

C
ir

c
u
m

fe
re

n
c
e

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

re
s
id

u
a
l

-4 -3 -2 -1 0 1 2 3 4

threshold

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

G
e
n
u
s

-4 -3 -2 -1 0 1 2 3 4

threshold

-80

-60

-40

-20

0

20

40

60

80

re
s
id

u
a
l

Figure 5.1: Results of the Minkowski functional analysis ofthe WMAP V5 data. The area,

circumference and genus statistics are plotted for different tested multipole bins. For each

bin, the left-hand side plots show the functionals themselves, along with the 68%, 95% and

99% significance limits derived from the simulations, and the right hand side plots show the

residuals between the data and the simulations average and the same confidence limits.
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Figure 5.2: Consistency check: the pseudo power spectrum ofthe WMAP V5 data with the

cosmic variance 68%,95% and 99% limits from simulations andthe simulation mean (top

panel), and theχ2 value per degree of freedom (bottom panel).

confidence level of∼ 99.99%. While this value is based on the extrapolation it might be

important to complement the oddity of the mean of this map by noting that none out of the

3000 simulations, doesn’t have as large mean value outside the KQ75 sky mask, and that

within the simulated set of the maps the extremal temperatures are{−8.45, 7.44} × 10−07

with the standard deviation of the distribution:2.15 × 10−07, whereas the data value is

8.07 × 10−07, and where the variance of the map is consistent with the simulations at64%

CL (as measured by the double-tail distribution). Even if weinverted the distribution by

multiplying each mean value by -1, to check whether or not theshot noise is responsible

for such high significance anomaly, the result would yield only 3 simulations in 3000 with

means larger than the data value, and as such would still leadto an anomaly at> 3σ CL.

5.4.2 Anomaly localization

We test whether the extended sky cuts would restore consistency between the data and

simulations within the selected range of multipolesℓ ∈ (32, 128]. We gradually extend the

KQ75 sky mask by masking out regions along the galactic disk of latitudes

|b| ≤ {10, 20, 30, 45} [deg]

and measure the response of the mean temperature outside of the extended mask. Under

these extended masks the tail probability of finding the meanoutside of the±〈Tdata〉 is
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Figure 5.3: Temperature histogram for the filtered map in theℓ ∈ (32, 128] multipole range,

along with the simulations mean, and one standard deviationdispersion from simulations.

It is easy to see a slight negative skewness of the distribution, and an overall excess of the

positive temperatures close to the zero average temperature.

respectively

p ∈ {0.016, 2.3, 54, 65} [%] .

Clearly the enhanced masks resolve the problem of excessivenumber of positive tempera-

ture pixels, which helps in their localization.

In order to further localize the anomaly we performed a regional, one-point statistics as

explained in Lew (2008b) for the filtered map in the considered multipole range, outside of

the KQ75 sky mask. The analysis relies on regional measurements of the first four moments

of temperature distribution in a number patches covering the sphere in many different ways

so as to enable different sampling of the underlying fluctuations. For each region a frequen-

tist statistic is performed, using a distribution of measurements obtained from simulations

in the corresponding regions. We performed a “single regionanalysis” for the region sizes

and shapes defined by the Healpix pixelization scheme of resolution ns = 4 as explained

in Lew (2008b). In figure 5.4 we plot the scrambled through allrealizations of sphere pix-

elizationsnσ map for the distribution means also as defined as in Lew (2008b). The map

shows only the strongestnσ > 3, detected outliers found in the data.

While the strongest, outstanding regions revealed by this map could suggest that the

temperature distribution anomaly is due to these regions, we compared the normalized tem-

perature distributions of the tested map with the map with these two most outstanding re-

gions masked out, and found basically no significant difference. This in fact should be

expected, because the negatively skewed deviation in the distribution plotted in figure 5.3

comes from a large number of pixels which only slightly deviate from the zero level, while
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Figure 5.4: Thresholded at3σ, nσ map of deviations in distribution of means, as probed by

the single region analysis, defined in Lew (2008b). The two strongest deviations are marked

by their location.

the regional statistics plotted in figure 5.4 searches for the most outstanding regions. Con-

sequently we do not find that the anomaly of the means, or as detected in the MFs analysis

(figure 5.1) is caused directly by these regions. Of course, these as the hottest spots, and

directly adjacent to the galactic plane could make some small part of this deviation but their

impact isdefinitely sub-dominant.

In order to further validate these results we use additionalextended mask that consists

of the KQ75 sky mask and a mask covering the polar caps:|b| > 45, and we measure

the distribution of means in data and simulations. As expected no improvement has been

noticed, and the deviation was still at the level of3σ.

5.4.3 Extended sky-mask cross-check

We redo the MF test for the V5 data map for the investigated multipole range:ℓ ∈ (32, 128],

but with the KQ75 sky mask extended to also mask regions that yield |b| < 30◦ or |b| < 45◦.

The result is plotted in figure 5.5 for the two cases. The jointp-values for the two cases,

for each of the MFs are:{1.1, 18, 9} [%] for the|b| < 30◦ case, and{26, 10, 23} [%] for the

|b| < 45◦ case, forNν = 15 andNcov = 1500. For the case ofNν = 13 andNcov = 1500

the joint p-values yield:{0.99, 11, 5} [%] and{20, 6, 19} [%] respectively.

Clearly the anomaly is strongly sensitive to the size of the sky-cut and is weakening

with more aggressive galactic plane region cuts, which could indicate some under/over-

subtracted residual foregrounds.
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Figure 5.5: Residual plots for the results of the Minkowski functional cross-check analysis

for the WMAP V5 data, filtered for the multipole rangeℓ ∈ (32, 128] that previously yielded

the strongest joint NG detection. The extended KQ75 sky-mask is used to additionally mask

regions that yield|b| < 30◦ (left panel) and|b| < 45◦ (right panel).
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Table 5.1: Joint statistic results of the MFs analysis of theWMAP V5 data, and tests of their stability to different numerical processing approaches. For

each of the multipole bins, each triplet of numbers correspond to one of the MF type (area,circumference and genus respectively) and represent the p-values

of the data in per cents. The p-values greater than 1% were approximated to integer percentile.
ℓmin = 5 ℓmin = 32 ℓmin = 64 ℓmin = 128

MF type ℓmax = 32 ℓmax = 64 ℓmax = 128 ℓmax = 256 ℓmax = 64 ℓmax = 128 ℓmax = 256 ℓmax = 128 ℓmax = 256 ℓmax = 256

Ncov = 1500, Nχ2PDF = 1500, Nν = 15

area 10 15 15 14 9 0.50 10 3 1 2

circ. 7 0.03 6 7 14 40 4 56 14 79

genus 91 29 13 6 5 13 20 69 53 60

Ncov = 2500, Nχ2PDF = 500, Nν = 15

area 11 12 15 14 10 0.38 10 0.75 0.80 2

circ. 7 0.08 6 6 16 38 3 56 14 74

genus 91 28 14 5 7 16 25 71 52 62

Ncov = 1500, Nχ2PDF = 1500, Nν = 13

area 14 46 10 14 8 0.24 7 0.87 3 1

circ. 5 43 22 3 14 32 3 54 10 75

genus 85 35 61 7 12 11 15 54 37 62

Ncov = 2500, Nχ2PDF = 500, Nν = 13

area 14 45 10 13 7 0.20 6 0.54 2 0.95

circ. 5 45 24 3 14 27 3 52 10 71

genus 86 36 62 6 13 13 18 56 36 62

Ncov = 1500, Nχ2PDF = 1500, Nν = 11

area 10 32 17 15 12 0.13 4 0.47 2 0.55

circ. 2 66 14 5 12 31 1 37 8 63

genus 76 60 54 4 7 10 14 41 69 47

Ncov = 2500, Nχ2PDF = 500, Nν = 11

area 12 31 18 14 12 0.01 3 0.36 0.76 0.43

circ. 3 68 15 5 11 28 2 37 8 62

genus 77 61 58 4 8 12 17 44 69 49
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5.5 Discussion

It is important to consider whether or not the statistics performed in the previous section

might be somewhat mislead or “biased”. It is clear from figure5.1 that in all cases the de-

tection comes from the overall shift towards positive temperatures of the data with respect

to the simulations, because only in this case, the difference between the data and the simu-

lation average is positive everywhere for the first MF: i.e. the area functional. Such a shift

then results in excessively large residuals in the Minkowski area functional, and suppression

followed by excess in the Minkowski circumference functional. This is indeed observed in

the plots. However, the data, as well as the simulations weredivided by their standard de-

viations prior the analysis. Therefore, even if there was some e.g. point source, that would

significantly stand-out in the data from the rest of the pixels, it would not significantly al-

ter the overall variance, given the large number of pixels inthe map, and consequently the

thresholds at which the MFs would be calculated, would not besignificantly shifted with

respect to those used in the simulations. Even if this was thecase though, then it would

be difficult to explain the test involving the means. The histogram in the figure 5.3 shows

that indeed large number of pixels in the filtered map, withinthe selected multipole range

that yields the strongest detection, are shifted towards positive temperatures. This would

indicate that the anomaly is not caused by the mismatch of thethresholds between the data

and simulations. The filtered maps have no monopole value, and so the only effect that

could generate such statistical up-shift of the temperatures must be related to some specific

phase arrangements that build up regions of extra positive temperature excess. We recall

that this effect is very small, but it affects a significant number of pixels in the map, and

therefore is not related to some few outliers, as indicated by the performed regional analy-

sis (figure 5.4). Additional argument in favour of this interpretation is the negative, mildly

anomalous, skewness of the temperature distribution.

It could also be argued that it’s not the data that is shifted towards positive values, but

rather simulations are oddly shifted towards negative ones, as one could infer from the

reported, in the previous section, the extremal temperature values obtained in the set of

the simulated maps for the multipole rangeℓ ∈ (32, 128]. As it was stated, the negative

extremal value was larger (in absolute value) than the positive extremal value. In fact the

average mean temperature, although negative:−4.26 × 10−09, is about 50 times smaller

than the standard deviation of the mean temperatures. Therefore even if one were to correct

for that small negative offset, the mean value of the data would still remain odd at the3σ

confidence level.

If there was a discrepancy in the total variance between the data and simulations, as

measured outside of the applied mask, then it could be possible that the thresholds, at which

the MFs were calculated in the data, would not correspond to those used in the simulation,

which could naturally explain the anomaly. In order to checkthat we calculated the vari-

ances for the maps filtered in the rangeℓ ∈ (32, 128]. We found that the corresponding

tail probabilities for the data (i.e. probabilities-of-exceeding the data value) are: 36% for
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the KQ75 sky mask and 30% for the KQ75 combined with the mask covering regions with

|b| < 45◦.

We derived the Minkowski functionals directly in the real space. We based on the closest

pixel match, when deriving the covariant derivatives, but we note that the approach could be

easily improved by implementing appropriate interpolations and efficient, dedicated deriva-

tive algorithms, or alternatively by obtaining derivatives in an more conventional way: via

the recurrence formulas for the Legendre polynomials in thespherical harmonics space.

However the particular implementation of these issues cannot be responsible for the anoma-

lies, because the strongest detections appear to be in the first Minkowski functional that

simply measures the total normalized excursion set above given temperature threshold, and

furthermore the maps we used are generated by a well-behavedfunctions, which should be

easy differentiable, given sufficient number of points.

Finally we would like to note an interesting coincidence of negatively skewed temper-

ature distribution, revealed in figure 5.3 and the recent report by Yadav & Wandelt (2008)

about the high significance primordial NG detection with strong support for the positive

value of the non-Gaussianity quadratic term coupling coefficient fNL. Positive value of

fNL (in the “WMAP” terminology egKomatsu et al. (2003)) corresponds to the negative

skewness of the temperature distribution. However, Yadav &Wandelt (2008) tested the NG

detection under different sky cuts and found that these are more or less stable under the

extended galactic cuts. Moreover it is possible that the bi-spectrum based NG estimator

of (Yadav et al., 2008, 2007) is immune to the kind of anomalies revealed in this work,

therefore the connection is not clear.

It will be interesting to further test this signal by analyses involving different spectral

channels of the WMAP, and the various ILC maps, which are generated using a different

foregrounds cleaning methods than those used in the foregrounds reduced maps used in this

paper.

5.6 Conclusions

We performed a Gaussianity analysis of the WMAP five-year, foreground reduced, cut-sky,

CMBR data, using Minkowski functionals.

Since the power of the map per multipole, is unequally distributed across the multipole

scale due to certain shape of the underlying power spectrum,it might be useful, when testing

different angular scales, to eliminate the impact of the largest, and most uncertain (due

to the cosmic variance effects) scales, in order to focus on the smaller scales exclusively,

and perform an analysis, that will not be dominated, or obscured by the effects large scale

multipoles. In this paper we intend to explore this idea, andwe perform a statistics in

different ranges of multipoles, using multipole band-passfilters in the spherical harmonics

space prior to the tests. This way we complement the previoussimilar works which utilized

averaging of different scales by either: degrading the map resolution, or by applying “low-
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ℓ”-pass Gaussian filters.

We find the data inconsistent with a realistic Gaussian random field simulations at con-

fidence level at least99.5%, due anomalous, negatively skewed temperature distribution,

covering large areas of the sky, in the multipole rangeℓ ∈ (32, 128]. We test the robust-

ness of these results using few additional consistency checks. We find the anomaly appears

to be associated with a small, but realized by a large number of pixels, excess of positive

temperature pixels over the negative ones, and we check thatthis effect is mitigated in the

larger galactic latitudes, and it is vanishing when more aggressive galactic plane masks are

applied, which we interpret as hints of the residual, rathersmall, but extended over a large

area, foregrounds. Finally, we note that the anomaly would not be detected, if the analyses

involved only smoothed or downgraded in resolution maps.



Chapter 6
Tests of the statistical isotropy via point

symmetries.

6.1 Introduction

As detailed in section 2, the most outstanding, and well-known anomalies of the CMB

data with respect to theΛCDM model, and the assumption of the Gaussian, random field

(GRF) initial, primordial perturbations include: the apparent low quadrupole component

of the CMB angular power spectrum, the phase alignments between the quadrupole and the

octupole, and between the octupole and the multipoleℓ = 5, the suppression of power in the

octupole along an axis dubbed an Axis of Evil (AOE), a selective preference of particular

spherical harmonic modes over other modes, glitch-like features of the reconstructed CMB

power spectrum, or other power spectrum features, inducinga specific symmetries in the

CMB sky, and the hemispherical anomalies in the power distribution across the sky which

are discussed in more details in chapter 4, and localized NG features that we have sought

for in chapter 3.

These features have been extensively studied via differentstatistical estimators, and

various theoretical models have been devised to help explain these peculiarities (eg. Inoue &

Silk (2007); Erickcek et al. (2008); Bernui & Hipólito-Ricaldi (2008); Akofor et al. (2007);

Destri et al. (2008); Brown & Crittenden (2005); Gordon et al. (2005)). Most of these

features, if really exist in the data, would violate the statistical isotropy or Gaussianity (or

both), which in turn would call for an explanations that elude the predictions of theΛCDM

model.

In the following we analyze the shape of the reconstructed power spectrum in the lowest

multipole regime (ℓ < 20). One of the most apparent features is the jagged shape of theCℓ

persistently preferring an oddℓ modes over the even modes, which seem to by systemati-

cally suppressed (Fig. 6.1). In fact, most of the first 20, reconstructed even multipoles, have

relatively less power than the neighbouring odd multipoles. This fact is independent from

the analysed cleaned CMB map renditions and the power spectrum reconstruction method,
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as will be discussed in Sec. 6.3. Such feature, if proved to be“statistically significant”

could have a far reaching theoretical consequences as such features necessarily introduce

a point-symmetries in the CMB fluctuations due to symmetry properties of the spherical

harmonics.

In this chapter we reanalyze this problem statistically andwe will investigate other

aforementioned problems in the next chapter. Our analysis,although similar to previous

works Land & Magueijo (2005c), implements a different statistics in order to independently

cross-check significance, stability and the robustness of the previous results.

6.2 Data and simulations

We rely on the three year WMAP ILC map data Hinshaw et al. (2007) and its simulations.

We assume it to be reliable for the full sky multipole amplitude and phase analyses in mul-

tipole range ofℓ ∈ {2, .., 20}. From the minimal best fitΛCDM model we have generated

the full sky realistic GRF WMAP simulations including effects of beams and anisotropic

noise in resolutionsns = 512 in all WMAP channels. These maps were pre-smoothed with

one degree FWHM Gaussian beam and used to generate the ILC simulated maps with the

same weights, and region definitions applied as those originally used for the WMAP data

by Bennett et al. (2003a). Whereas the white, anisotropic noise contribution to the lowest

multipole moments is negligible we still have added it priorthe smoothing, to simulate the

ILC data as closely as possible. We have downgraded the full resolution maps the resolu-

tion parameterns = 128, although we realize that this resolution is still too generous for the

range of the scales in the question. We have generated 2222 GRF ILC simulations which

we use for the significance analysis.

6.3 Point symmetries

If some astrophysical, cosmological or instrumental process would induce a point-symmetries

or asymmetries on the CMB maps1

T (n̂) = ±T (−n̂) (6.1)

(where+ corresponds to symmetry and− correspond to antisymmetry), then it is quite

straightforward to show that the angular power spectrumCℓ would have even or odd, for

symmetry and antisymmetry respectively, multipoles suppressed or completely removed,

depending on the degree of the symmetry.

Conversely, our motivation for pursuing the symmetry test of the data, is directly related

to the observational fact that the reconstructed full-sky angular power spectrum seem to

exhibit a suppression of even multipoles with respect to oddmultipoles in the considered

multipole range (Fig. 6.1). The feature particularly does seem to depend on the details of

1Given the specifications of the WMAP spacecraft this is in fact difficult to realize, however the feature

under consideration is apparent enough to question its significance.



6.3. POINT SYMMETRIES 115

the power spectrum reconstruction method, nor does it depend on the CMB data considered

(the first or the three year WMAP CMB data).

To see this we reconstruct the CMB power spectrum for the range ℓ ∈ {2, .., 20} using

the MASTER method (Hivon et al., 2002). Below we briefly recall the basic reconstruction

steps.

6.3.1 MASTER power spectrum reconstruction

The method of reconstructing the statistically unbiased, in general, cross-power spectrum

estimatorĈAB
ℓ of the underlying, true CMB power spectrumCℓ, from the cut sky, noisy

CMB observations from two different frequency channel (A,B) mapsT̃A(n̂) andT̃B(n̂), is

based on the fact that the ensemble averages of the so-calledpseudo cross-power spectrum

C̃AB
ℓ and the true power spectraCℓ can be related as:

〈C̃AB
ℓ 〉 = Mℓℓ′b

A
ℓ′b

B
ℓ′ p

2
ℓ′〈Cℓ′〉 + 〈ÑAB

ℓ 〉 (6.2)

where theMℓℓ′ denotes the multipole-to-multipole coupling matrix, arising from partial

sky observations and the resulting breaking of orthogonality of the spherical harmonics; the

b
A/B
ℓ′ andpℓ′ denote the instrumental beam transfer function for a given frequency chan-

nel, and the pixel transfer function respectively; the〈ÑAB
ℓ 〉 denotes the ensemble average

noise power spectrum estimated from Monte-Carlo simulations. The pseudo-power spec-

trum C̃AB
ℓ is a power spectrum derived directly on the cut sky, using noisy observations

as:

C̃AB
ℓ =

1

2ℓ + 1

∑

m

ãA
ℓm(ãB

ℓm)⋆ (6.3)

where

ãx
ℓm =

∫

Ωn̂

dn̂T̃ x(n̂)w(n̂)Y ⋆
ℓm(n̂) (6.4)

are the pseudo spherical harmonics analysis coefficients ofthe T x(n̂) observation (x ∈
{A,B}) and thew(n̂) is the sky mask window function with the corresponding spherical

harmonics analysis coefficients

w̃ℓm =

∫

Ωn̂

dn̂w̃(n̂)Y ⋆
ℓm(n̂) (6.5)

and the angular power spectrum

w̃ℓ =
1

2ℓ + 1

∑

m

|w̃ℓm|2. (6.6)

Then the unbiased estimator of the angular CMB power spectrum ĈAB
ℓ is given by:

ĈAB
ℓ =

(
KAB

)−1

ℓℓ′

(
C̃AB

ℓ − 〈ÑAB
ℓ 〉

)
(6.7)

where theKAB
ℓℓ′ = Mℓℓ′b

A
ℓ′b

B
ℓ′ p

2
ℓ′ , and where the coupling kernelMℓℓ′ is solely defined by

the sky cutw(n̂) by:

Mℓℓ′ =
2ℓ′ + 1

4π

∑

ℓ′′

(2ℓ′′ + 1)wℓ′′

(
ℓ ℓ′ ℓ′′

0 0 0

)2

(6.8)
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where the last term denotes the 3J Wigner coefficients. The corresponding covariance ma-

trix of the estimated angular power spectrum is then given by:

ĈAB
ℓℓ′ =

〈(
ĈAB

ℓ −
〈
ĈAB

ℓ

〉
MC

)(
ĈAB

ℓ′ −
〈
ĈAB

ℓ′
〉
MC

)〉

MC

(6.9)

where
〈〉

MC
denotes an average over the MC simulations.

In Fig. 6.1 we plot the reconstructed power spectrum of the CMB fluctuations from

different cross-channel data sets as well as the spectrum reconstructed directly from the

full sky foregrounds cleaned ILC map, with over-plotted best fit fiducial ΛCDM model

power spectrum. Indeed, except for the multipoleℓ = 14 every other even multipole is

suppressed with respect to the neighbouring odd multipole.For clarity we have only plotted

the cross-power spectra between channel Q1 and all other channels, however the remaining

cross-power spectra are widely consistent with those plotted in Fig. 6.1

6.3.2 Statistic
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Fig 6.1: Reconstructed low-multipoles power spectrum of the CMB fluctuations as a func-

tion of used data set. Cross-power spectra and auto-power spectra were calculated with

MASTER method. The green line represents the power spectrumobtained from the di-

rect full sky SHT of the ILC map, whereas the big red crosses indicate the WMAP-team

reconstructed power spectrum using a maximum-likelihood method in pixel space.

We propose to test the statistical significance of this asymmetrical signal via the follow-



6.3. POINT SYMMETRIES 117

ing correlation statistics:

Cℓmin
(ℓmax) = − 〈T (n̂)T (−n̂)〉

〈T 2(n̂)〉 + 〈T 2(−n̂)〉 (6.10)

where

T (n̂) =

ℓmax∑

ℓ=ℓmin

Tℓ(n̂). (6.11)

The ideally correlated sky - as in case of single multipole CMB maps - would yield

C = ±1 with “−” for the symmetrical case (i.e. for even multipoles) and with “+” for

the anti-symmetrical case (i.e. for odd multipoles). We note that other symmetries like:

T (−θ, φ) = ±T (θ, φ) or T (θ,−φ) = ±T (θ, φ) will not lead to a systematical suppression

of either even or odd multipoles. Rather, such symmetries suppress power in both: even and

odd multipoles proportionally. In case of the earlier (plane) symmetries the power is zeroed

for those coefficients that yield oddℓ+m value (see Appendix A-4 for an exact derivation),

while the latter symmetries imply reducing the phase information in all aℓm coefficients

down to eitherφ = 0 or φ = π, and so theaℓm coeffiecients become real, and the reality

condition simplifis to:aℓ−m = aℓm.

If the CMB fluctuations are a realization of a GRF, then no point-like correlations of

this type are expected, beyond those that are enforced by an artificial cutoff of range of

multipoles of interest, as well as those resulting from the ISW tail in the low-ℓ-end of the

power spectrum ( 6.1). We test the correlations in the CMB multipole, range filtered maps

ℓ ∈ [ℓmin, ℓmax] for varying ℓmax values (Eq. 6.11). We increase theℓmax value by two

multipoles at one step, in order to reduce the effects of otherwise induced point symmetries

only from the fact of considering unequal number of even and odd multipoles.

Since theℓ = 2 of the best fitΛCDM model has more power thanℓ = 3, and also due

to the fact that the nature of the low quadrupole value might be unrelated to the features

in question, we therefore consider two cases. In the first case we synthesize maps starting

from the quadrupole:ℓmin = 2 and vary theℓmax asℓmax ∈ {3, 5, 7, ...19, 21} , and in

second case we synthesize maps starting with the octupole:ℓmin = 3 and vary theℓmax as

ℓmax ∈ {4, 6, 8, ...20}.

Also, due to the Integrated Sachs-Wolfe tail of theΛCDM CMB power spectrum yield-

ing theC2 > C3 the distinction of the two cases help to assess the asymmetrysignificance

problem in two opposite limits: when the synthesized maps will be dominated by the posi-

tive and negative correlations.

It is important to account for correlation effects between different multipole ranges,

and as such, our statistics is useful, because it operates onthe synthesized real-space maps

that combine selected multipoles together, and thereby thejoint statistics is automatically

assessed.
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6.4 Results

The result of the tests involving 2222 MC simulations, used for evaluation of the confidence

intervals, is plotted in Fig. 6.2. We estimate the magnitudeof the uncertainties of derivation

of Cℓmin
(ℓmax) values, jointly due to noise and residual foregrounds of theILC map, to be

≈ 0.1% for ℓmax = 21 and less for smaller values ofℓmax. As expected, it is apparent
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Fig 6.2: Point symmetry correlations in the three year WMAP ILC map data as a function

of the maximal multipole numberℓmax of the multipole filtered map. Apparently the data

are consistent with simulations at∼ 1σ CL in case of the maps neglecting the quadrupole

contribution, and are consistent at∼ 2σ CL if the quadrupole is included. The maximal

total joint anomaly is reached forℓmax = 19. The error bars for the data points are smaller

than0.1% and hence fit within the size of the dot.

that the mean correlation from the simulations assumes a negative values in case when the

quadrupole is included, providing statistically strongernegative correlations due to symme-

try properties, than could be cancelled out by the octupole component due local shape of the

underlying power spectrum. In case when quadrupole is not included, the anti-symmetrical

contribution from the octupole, which statistically is enhanced via ISW tail in the power

spectrum, is not entirely cancelled out byℓ = 4, ..., thus leaving the simulation average

positive.

The observed suppression of the even multipoles is maximized atℓ = 19 in case when

the quadrupole is included withPreject ≈ 98.4%, and it is clear that its significance is
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almost constant as a function ofℓmax value forℓ ≥ 7. This result is consistent with the

results of Land & Magueijo (2005c), where a different statistical approach have been used.

Independently from the low quadrupole value (case whenℓmin = 3), the suppression of

the even multipoles in the reconstructed power spectrum of the CMB remains anomalous at

confidence level≈ 92%, and is maximized at the maximal considered multipole valueof

ℓmax = 20.

Table 6.1: Results of the point symmetry correlations in theILC WMAP3 year data.
ℓmin = 2 ℓmin = 3

ℓmax Preject[%] ℓmax Preject [%]

3 94.6 4 64.4

5 96.6 6 85.6

7 98.3 8 90.7

9 97.9 10 89.1

11 98.0 12 89.3

13 98.0 14 89.1

15 98.1 16 90.2

17 98.3 18 91.2

19 98.4 20 92.2

21 98.2

6.5 Discussion

6.5.1 Point symmetries in the sky

The results from Sec. 6.4 show that the significance of the suppression of the even multi-

poles in the CMB power spectrum is mildly significant:≈ 92% CL in case when quadrupole

is excluded from the analysis and is increased to≈ 98.4% CL if the quadrupole is included.

While it is not easy to develop a viable theoretical model that could produce the considered

point asymmetries in the sky, it is fairly easy to show that axis-symmetrical contaminations

at fixed galactic longitude, or mirror symmetries about the galactic plane, which could be

easily associated with the residual foreground emissions,would not lead to suppression of

either even or odd multipoles of the CMB power spectrum. Thisstatement seems to go

against to what was discussed in Land & Magueijo (2005c).
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Chapter 7
Search for preferred reference frame in

the CMB data.

In this section we present some of the results from the ongoing project dedicated to gener-

alized statistical tests of the significance of the alignments in the observational CMB data

sets. The final results enforced by the significance analysisbased on Monte-Carlo simula-

tions will be submitted to the Journal of Cosmology and Astroparticle Physics.

7.1 Introduction

In this chapter we focus on a set of tests, related to the well known, low multipole anomalies

of the CMB data, and compare our results with those previously reported, as well as with

those obtained from more generalized tests.

While looking thorough results of different statistical tests, (e.g. Komatsu et al. (2003);

Komatsu et al. (2008); McEwen et al. (2006a); Vielva et al. (2004); Wiaux et al. (2006);

Mukherjee & Wang (2004); Savage et al. (2004); Naselsky et al. (2007); Cabella et al. (2004,

2006, 2005); Chen & Szapudi (2006a); Curto et al. (2008a, 2007); de Troia et al. (2007);

Armendariz-Picon & Pekowsky (2008); Souradeep et al. (2006); Hajian & Souradeep (2006,?);

Samal et al. (2008); Hansen et al. (2004a,b); Bernui et al. (2007b,a); Naselsky et al. (2005);

Chiang et al. (2003); Chen & Szapudi (2006b); Gaztañaga et al. (2003); Copi et al. (2004,

2006a,b); Bielewicz et al. (2005); Abramo et al. (2006); de Oliveira-Costa & Tegmark

(2006); Land & Magueijo (2005b, 2007); Jaffe et al. (2005); Efstathiou (2003b); Erik-

sen et al. (2004a, 2007, 2008); Land & Magueijo (2005b); Parket al. (2006); Shandarin

(2002); Wu et al. (2001); Park (2004); Lew & Roukema (2008); Lew (2008b); Donoghue &

Donoghue (2005); Yadav & Wandelt (2008) and references therein), many different num-

bers denoting confidence levels of rejecting tested hypotheses, on grounds of inconsistencies

due to Gaussianity or statistical isotropy, or related - non-randomness, are generally found.

This is because there are many different aspects of the CMB map that one can possibly

test. Given no prior knowledge about whether particular features are correlated or not, re-
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sults of statistical tests may over or underestimate the true “oddity” of the tested features.

Therefore, in case of correlated anomalies (each of which may be a function of some un-

known background physical process) a simple multiplicative combining of probabilities of

assumed-as-independent incidents, could lead to a significantly overstated result. Also, dif-

ferent statistical tests and estimators may exhibit different sensitivities to particular features

in the data. These tests could in principle also be dependenton one another, to some extent.

It is therefore important to test not only the unlikeliness of a selected features of data,

but also test the processes that correlate presumably independent phenomena, or devise tests

that jointly account for as many different aspects of the data as possible (Rakic & Schwarz,

2007). Such tests however could be either computationally intensive of inconclusive - i.e.

giving consistent results within an assumed model work frame, but contradicting the results

of more selectively sensitive tests. In particular one could easily develop some specific test

that would seek for some particular properties arrangementfound in the data, and find it

very difficult to reproduce then in simulated data-sets, andconclude a strong inconsistency

of the data with the simulations, only because of ill defined test. Otherwise in case of a

general test and lack of any anomalies detection, one could always argue that the test is not

sensitive enough to detect a signal found by other, more selective tests.

In our analysis we rely on the Gaussian Random Field (GRF) realizations, and assume

these as a working reference null hypothesis, although, given that the process behind the for-

mation of the plausible anomalies of the low-ℓ multipoles are unknown, we will not assume

that individual multipoles of the data are actually independent. In our calculations there-

fore, we rely on the full covariance matrix estimates, as derived from the GRF simulations,

to constrain limits on the mode-to-mode correlations, which appear to some extent simply

due to the cosmic covariance effects. While such an approachcan at most quantify the de-

gree of consistency of the data with the GRF simulations, andwill not provide any further

information about the nature of the potential anomalies, ortheir source, it is a good start

before a specific studies of a more general models, either non-Gaussian, or non-Isotropic

are pursued.

In the following, we revisit the issue of the previously mentioned “Axis of Evil” (AOE)

which has originally been reported by de Oliveira-Costa et al. (2004); Tegmark et al. (2003);

de Oliveira-Costa & Tegmark (2006). In these works a statistic based on an angular-

momentum estimatorMℓ(n̂) was used to search alignments between multipoles, by com-

paring the directionŝn⋆ in which the estimator

Mℓ(n̂
⋆) = max

n̂

∑ℓ
m=0 m2|aℓm(n̂)|2

∑ℓ
m=0 |aℓm(n̂)|2

(7.1)

is maximized. Theaℓm denote the coefficients of the spherical harmonics analysis. Through-

out the analysis we assume a convention of usingn̂⋆ for the directions that maximize (al-

ternatively minimize) a particular estimator in a search over all directions in the sky. By

construction, this estimator gives more preference to higher m modes, and consequently

prefers the sectoral harmonic modes over the zonal modes. Itwas found that the alignment

between the quadrupole and octupole is significant; corresponding to a chance roughly 1
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in 60, as compared with an isotropic field realizations. The search is obviously motivated

by the visually sectoral (but somewhat rotated) appearanceof the quadrupole and octupole

components. Hence the general idea behind this test was to devise a method of assigning a

vector to each multipole and using Monte-Carlo (MC) simulations to quantify the degree of

inter-multipole correlations. These in the in the GRF should be statistically consistent with

zero. This idea was then extended by Land & Magueijo (2005b) and generalized to assign

vectors to allaℓm coefficients and analyze the inter-ℓ alignments using only those vectors,

that correspond toaℓm modes, which accumulate most of the power of theℓth multipole in

a most preferred direction̂n⋆:

Rℓ(n̂
⋆) = max

m

(
rlm(n̂⋆)

)
(7.2)

rℓm(n̂⋆) = max
n̂

(
c
|aℓm(n̂)|2
(2ℓ + 1)Cℓ

)
, for m ≥ 0 (7.3)

wherec = 1 for m = 0, andc = 2 for m 6= 0.

There are however several subtleties to be considered in both of the tests. Firstly, the

zonal harmonic mode (a20) of the three year WMAP ILC data quadrupole appears to be yet

even stronger than the sectoral mode (a22) as it assumes(93.55 ± 0.03)% of quadrupole

power in a reference frame with polar axis oriented at(l, b) = (333◦, 3◦) in galactic co-

ordinates, whereas thea22 mode absorbs(93.08 ± 0.03)% of the quadrupole power in a

reference frame of(l, b) = (236◦, 68◦) 1. These values depend slightly on the data-set used

for calculation, however the general picture of strong competition between differentaℓm

modes remains the same.

Likewise, the power absorbed by the octupole coefficientsa31 and a33 is (91.29 ±
0.03)% and (91.73 ± 0.03)% in a reference frames(l, b) = (116◦, 14◦) and (l, b) =

(237◦, 63◦) respectively. Note that the angular separation between thepreferred axes of

a20 anda31 is only ∼ 40◦. We also note that at the same time the preferred direction for

a21 is (l, b) = (111◦, 13◦), towards which the mode absorbs∼ 93.11% of the quadrupole

power, and which is very close (within∼ 5◦ ) to the most preferred orientation by the mode

a31.

Given that the difference between the amount of absorbed power between these modes is

only . 0.5% in all cases, while the consequences to the question of alignments are obvious,

it is important to also take into the account the second-bestsolutions, and in general all

other significant solutions as well.

Moreover, there exists a plausible alignment (within an angular separation of14◦) be-

tween the most zonal harmonics in reference frames that maximize the power accumulated

in modesa20 anda30. Although thea30 does not absorb most of the power in a preferred

frame, as opposed toa33, the a20 does. To explore quantitatively these possibilities, we

1The estimate of the given uncertainties is based only on the estimate of the numerical precision with which

therlm values were derived, but it doesn’t take into account all other possible sources of uncertainties which in

general will tend to increase these estimates. We will return to the issue of uncertainties latter in this chapter.
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perform a real-space based statistics, corresponding to the maximal-momentum search. We

reproduce the results of de Oliveira-Costa et al. (2004) andextend it for search for zonal-like

modes that instead of maximizing the momentum estimator, minimize it.

Secondly, the momentum information - i.e. it’s magnitude itself is a valuable one as

well. In our test we utilize the momentum magnitude as a weight for measuring the inter-ℓ

correlations. This way, a strongly correlated multipoles will be better extracted, compared

to multipoles which accidentally happen to have a similar maximum momentum orientation,

but aren’t really either strongly sectoral nor strongly zonal.

Thirdly, given that the observations have a finite signal-to-noise ratio, there is a certain

degree of freedom in interpretation of the preferred orientationsn̂, that result in a maximal

accumulation of multipole power in a singleaℓm(n̂) mode. This is most easily seen in the

low-ℓ range; especially in quadrupole and octupole with a dipole as an extreme case. For

a given orientation of a dipole, there exist exactly one additional preferred, perpendicular

orientation. Each of these orientations will result in an 100% of the dipole power being

assigned to a eithera10 or a11 in a selected coordinate system.

The situation with the quadrupole component is also ambiguous. Assuming that thea20 has

no power at all, there exist exactly two reference frames andtwo corresponding preferred,

and perpendicular to each other axes, in which the modesa21 anda22 will assume exactly

100% of the quadrupole power. This is easy to see via a proper rotation of e.g. real part2 of

theY21
3, which will becomeY22 in a new reference frame. This degeneracy generally does

not extend beyondℓ = 2, however we are not going to give a strict mathematical proofof

that.

In Land & Magueijo (2005b) it was found that the inter-ℓ alignments not only involve

the quadrupole and octupole, but actually extend over a multipole rangeℓ = 2 . . . 5, and

it was pointed out that thea53 absorbs> 90% of the ℓ = 5 power in a reference frame

consistent with the orientation of AOE ((l, b) = (250◦, 60◦)) within only several degrees.

While it is natural that if a two multipole modes of differentmultipole number are aligned

along an axis, they induce, to some extent, the alignments between other modes of their

own multipoles, due to geometrical properties of the spherical harmonics, the answer to

the question of which particular “preferred” orientation is intrinsically preferred may be

ambiguous, given the finite uncertainty in power distribution between the competing modes.

Also, if the joint uncertainties due to astrophysical residual foregrounds, instrumental noise,

map cleaning and processing methods, as well as numerical errors yielded effects larger than

≈ 1%, leading thereby to changes in the most preferredaℓm(n̂⋆) modes per multipole, the

inter-multipole alignments could be destroyed or could point out a different candidate for

the Axis of Evil. In current work we estimate the size of theseeffects in section devoted to

mentioned uncertainties estimation.

2This is without loss of generality since it’s always possible to find a reference frame and such rotation so

that the phase information is cancelled
3We will use theYlm notation instead ofY m

l of the spherical harmonics, although we use the definition of

the spherical harmonics consistent with Abramovitz & Stegun (1972)
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Finally, to marginalize over the mentioned ambiguities we propose a generalization of

the analysis of Land & Magueijo (2005b) to include all theaℓm(n̂) information and all

inter-mode correlations in the multivariate calculus. As suggested earlier, additionally to

the preferred orientation information of eachaℓm coefficient, we also utilize the percentage

of accumulated power information as a statistical weight.

7.2 Search for preferred directions in the CMB sky

7.2.1 Multipole pair angular-momentum axes alignment estimators

In this section introduce statistics optimized for testingthe alignments between different

planar and zonal multipoles. Following the idea by de Oliveira-Costa et al. (2004) we

introduce, a corresponding, yet slightly modified, real-space statistics as:

Mℓ(n̂
⋆) = max

n̂

(∫
dΩn̂′T 2

ℓ (n̂, n̂′) cos2(bn̂)∫
dΩn̂′T 2

ℓ (n̂, n̂′)

)
(7.4)

where thebn̂ is the latitude in a coordinate system withz axis aligned along direction̂n and

measured from the plane perpendicular ton̂, and assuming a value ofπ/2 in the direction

of n̂. Tℓ(n̂, n̂′) is the tested multipole temperature map with north pole oriented at direction

n̂. The integral is calculated over a whole sky with the CMB map north galactic pole rotated

to a directionn̂ along the shortest 2-sphere geodesic. The exact propertiesof that rotation

are not important, because the rotation of the CMB map aroundthe n̂ axis only changes

the phase information of theaℓm(n̂) coefficients, but does not lead to any transfer of power

between differentm modes. We assume a convention to store the directions found by the

M estimator on the northern galactic hemisphere.

We implement a search over directions distributed over a hemisphere defined by the

centres of the pixels defined in the Healpix pixelization scheme (Górski et al., 2005) of res-

olution yielding a total number of pixels of 49152 and thus the resulting effective search

accuracy yields roughly1◦. The search is performed hierarchically, and exploits the hier-

archical nature of the Healpix pixelization scheme, and so we begin the search in a very

small resolution over a small number of directions, equallycovering a hemisphere, and cor-

responding to large pixels. Then we choose the one that yields the largest value ofMℓ(n̂
⋆)

and then we increase the resolution for the chosen pixel in a nested way, so that the area

of the pixel is equally divided into a new set of pixels defining a new set of directions over

which the search with increased resolution is performed. This way we continue to increase

the search resolution until the final targeted accuracy is reached.

The corresponding statistics, to the one defined in Eq. 7.4, but optimized for the search

of the most zonal harmonics, is defined as:

Nℓ(n̂
⋆) = min

n̂

(∫
dΩn̂′T 2

ℓ (n̂, n̂′) cos2(bn̂)∫
dΩn̂′T 2

ℓ (n̂, n̂′)

)
(7.5)
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Next, for multipolesℓ andℓ′ = ℓ + j we introduce a maximum-momentum axis align-

ment estimator as:

Mℓℓ′ ≡ M j
ℓ =

−→Mℓ(n̂
⋆
ℓ ) ·

−→Mℓ′=ℓ+j(n̂
⋆
ℓ′) (7.6)

and a minimum-momentum axis alignment estimator as:

Nℓℓ′ ≡ N j
l =

−→N ℓ(n̂
⋆
ℓ ) ·

−→N ℓ′=ℓ+j(n̂
⋆
ℓ′) tan(∡(n̂⋆

ℓ , n̂
⋆
ℓ′)) (7.7)

where −→Mℓ ≡ Mℓn̂
⋆
ℓ−→N ℓ ≡ Nℓn̂

⋆
ℓ

(7.8)

where thên⋆ define the directions that respectively maximize and minimize, the momen-

tum estimators as defined in Eqs. 7.4 and 7.5. By varying thej value, the estimators

measure degree of correlations between extremal momentum axes of different multipoles.

We define corresponding tail “probabilities-to-reject”: upper-tail probability for maximum-

momentum estimator and lower-tail for minimum-momentum estimator as:

Preject(M
sim
ℓℓ′ < Mdata

ℓℓ′ ) =
∑
i,

Msim,i

ℓℓ′
<Mdata

ℓℓ′

1
Nsim

Preject(N
sim
ℓℓ′ > Ndata

ℓℓ′ ) =
∑
i,

Nsim,i

ℓℓ′
>Ndata

ℓℓ′

1
Nsim

(7.9)

The probabilities are inferred using theNsim = 4000 MC simulations.

Eq. 7.8 defines the weightsMℓ andNℓ that are used in order to discriminate between

cases when two axes are strongly aligned by chance or whethera close alignment is accom-

panied by large (small) values of maximum (minimum) momentum estimator. Alternatively

one could assume the weightsMℓ andNℓ values of a unity and thereby consider only the

distributions of spatial alignments between axes assignedto different multipoles. To distin-

guish these differences we consider the two cases.

7.2.2 Results

Momentum: We first consider only the maximum and minimum momentum values as

defined by Eqs. 7.6 and 7.7.

In Fig. 7.1 we show the derived probabilities to reject of thederived from data values of

theMℓ andNℓ estimators. This quantifies anomalous individual multipoles are, compared

to simulations, with respect to the shape of the multipole; in particular to the sectoral like

multipoles possessing a large values ofMℓ and imposing a planarity features and to the

zonal like multipoles having a small values ofMℓ and imposing a axial features. Note the

correlation between the curves which shows that whereMℓ values are large and have large

Preject ≡ P (Msim
ℓ < Mdata

ℓ ), theNℓ are small but also have largePreject ≡ P (N sim
ℓ >

N data
ℓ ).
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Fig 7.1: Distribution ofPreject for the values ofMℓ (thick-solid line) andNℓ (thick-dashed

line) in function of multipole number. The horizontal linesindicate the 68%, 95% and 99%

CL contours.
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Fig 7.2: Alignments between pairs of multipoles of the three year WMAP ILC map, as measured by the
maximum and minimum momentum estimators defined in Eqs. 7.6 and 7.7. In the top panel we plot the signifi-
cance of alignments which is color-coded as indicated in thelegend box of the plot. (Preject < 68% are plotted
in white). For each pair of multipoles a quadruplet of probabilities to rejectPreject is given corresponding
to maximum (left-hand side doublet of points) and minimum momentum (right-hand side doublet) estimators.
The top doublet: circles and diamonds, represents the probabilities derived using weights defined in Eq. 7.8
and the bottom doublet: dots and triangles, represents the probabilities derived using a unit weights (Mℓ = 1,
Nℓ = 1). In the bottom panel we plot the distribution of the preferred directions of each multipole as indicated
by the numbers in the plot. The green (blue) dots indicate themaximum (minimum) momentum directions in
the northern hemisphere; the opposite directions are marked with squares.
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Alignments: In Fig. 7.2 (top panel) we plot the distribution of alignments between pair of

two different multipolesℓ < 20 andℓ′ < 21 as measured by the estimatorsMℓℓ′ andNℓℓ′ .

For each multipole pair, we plot a quadruplet of “probabilities of rejecting” (Preject) due to

relative alignment betweenℓ andℓ′ multipoles as derived from data and compared with the

MC simulations. The four probabilities correspond to: maximum(minimum)-momentum

estimator (Eq. 7.4), with weights defined either in Eq. 7.8 (large circles(diamonds)) of as-

suming a unitary weightsMℓ = 1 andNℓ = 1 (small dots(triangles)). The combinations

of multipoles that yield thePreject ≥ 99.73% CL are marked in red. Multipoles that yield

99.73% > Preject ≥ 99% are plotted in magenta. “Probabilities of rejecting” corresponding

to 1σ and2σ confidence levels are plotted in green and blue respectivelyand probabilities

below1σ significance level are plotted in white for clarity4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
ℓ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

ℓ
1

=j
M

Fig 7.3: Alignments between pairs of multipoles of the threeyear WMAP ILC map, as

measured by the maximum momentum estimatorM j=1
ℓ defined in Eq. 7.6. This defines a

slice through the matrix in Fig. 7.2 withMℓ,ℓ′=ℓ+1. The68%, 95% and99% confidence

contours are plotted in the same color convention as in Fig. 7.2. The simumations mean is

also plotted with gray, solid line.

Clearly the well known alignment between the quadrupole andthe octupole is apparent

(bottom-left corner of in Fig. 7.2) and is anomalous at99.3% CL, however the estimator

accounting for the proper weights of the derived momentum yields a smaller significance

of Preject ≈ 98.87% which translates onto a chance 1:88. The orientation of the maximized

momentum is found to be(l, b) = (238◦, 69◦) and(l, b) = (235◦, 63◦) for ℓ = 2 andℓ = 3

respectively which yields the angular separation of only6◦ (cos(6◦) ≈ 0.994).

Interestingly, except for the pair(ℓ, ℓ′) = (13, 20), there are no statistically signifi-

cant alignments detected via the minimum-momentum estimators. In particular we note an

alignment between neighboringℓ = 5 andℓ′ = 6, as detected via the maximum-momentum

estimator. The angular separation between the two axes is only ∼ 3.8◦ towards direction

(l, b) = (155◦, 36◦) for ℓ = 5, which remains in no special relation to the quadrupole

octupole alignment.

To complete the information gathered in the search in the bottom panel of Fig. 7.2 we

4Note that the white dots will not be seen in the plot.
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plot the spatial orientation of the most preferred directions in the first 21 multipoles of

the ILC three year data. In order to visualize the close alignments between multipoles of

which directions in the northern hemisphere are separated roughly by180◦ we plot both

the directions in the northern hemisphere (dots) and the corresponding opposite directions

found in the southern hemisphere (squares). It should be noted that generally the angular

separation of the maximum momentum directions and the minimum momentum directions

for the same multipole is generally close to90◦.

In particular the close alignment betweenℓ = 2 andℓ = 3 is clearly seen for the max-

imum momentum test with angular separation of only:6◦ corresponding to a probability

of ∼ 0.068% as inferred from the area enclosed by a spherical cap of aperture 6◦. Note

also a very close alignment ofℓ = 5 andℓ = 6. with angular separation of the maximum

momentum axes of only3.7◦.

Joint significance: We close up this section by performing a joint statistic of all align-

ments between different pairs of multipoles. In order to robustly quantify whether the mea-

sured degree and number of strong alignments are consistentwith the GRF expectations we

combine the information about all measured alignments intoa singleχ2 value using a full

covariance matrix estimates fromNsim = 2000 simulations.

We define theχ2 value for the set of consideredMℓℓ′ estimators as:

χ2
(Mℓℓ′)

= (Mℓℓ′)
T (Cℓℓ′ll′)

−1(Mll′) (7.10)

where

Cℓℓ′ll′ ≡ Cov(Mℓℓ′ ,Mll′) =
〈(

M sim,i
ℓℓ′ − 〈M sim,i

ℓℓ′ 〉
)(

M sim,i
ll′ − 〈M sim,i

ll′ 〉
)〉

sim
(7.11)

where(Mℓℓ′) is a vector ofMℓℓ′ values ordered in anℓ-major format. Of course for a GRF

the covariance matrix should be diagonal, however given an anisotropic noise (and in gen-

eral any simulated foregrounds) this need not be the case. Weconstrain theℓmax = 21

and hence the total size of the(M) vectors, including every combination of multipoles

pair, is 190. We analogically construct theχ2 values for the minimum-momentum es-

timator (Nℓℓ′) and χ2 values for the case of unitary weights in these estimators defined

earlier. This gives in total fourχ2 values, that for which a joint “probabilities of reject-

ing” are:{0.15, 0.47, 0.91, 0.82} for maximum-momentum (unweighted and weighted) and

minimum-momentum (unweighted and weighted) estimators respectively, which remains a

good consistency with GRF simulations5. This result indicates that the WMAP three year

ILC data do not violate the statistical isotropy or Gaussianity by an excessive total number

and degree of an accidental inter-multipole alignments if measured in a broad range of mul-

tipoles. As was shown earlier this is not the case for the selected pairs of multipoles. The

estimation of true oddity then must involve some prejudice or priors on which correlations:

i.e. between which pairs of multipoles are to be taken seriously and which can be treated as

5We usedNsim = 2000 independent MC simulations of probe the distribution of theunderlying probability

distribution functions of the simulatedχ2 values to derive these probabilities.
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unimportant. Of course such a prior seem natural in case of closely neighbouring multipoles

ℓ = 2 andℓ = 3 or ℓ = 5 andℓ = 6, and seem unnatural in case ofℓ = 13 andℓ = 20.

We note that the increased “probability of rejecting” in case of the unweighted minimal

momentum estimator is strongly build up by the contributionto the totalχ2 value from the

alignments between multipolesℓ = 13 and ℓ = 20 (see Fig. 7.2). This is clearly seen

when looking at contributions per degree of freedom, which in this case yield as much as

∆χ2 > 10.

Generalizations: Of course, even in case of a Gaussian random filed simulation,some

accidental correlations between pairs of different multipoles are expected. However an

analysis presented in the previous section, is not sensitive to cases where the inter-multipole

alignments span across range of multipoles, and where all ofwhich could result from the

same underlying process. Based on Fig. 7.2 however this doesn’t seem to be the case. Nev-

ertheless a more general statistic, optimized for joint measurements of alignments spanning

over a range of multipoles could be an interesting extensionto the two-multipole case.

We also note that given the quantity defined in Eq. 7.4, and thecorresponding alignment

estimator defined in Eq. 7.6 have somewhat limited freedom, because we choose to max-

imize theMl, instead of the estimatorMℓℓ′ itself. It is possible though that the estimator

could reach greater values for the two, or in generalized case for a range of multipoles, at

cost of a slight decrease of theMℓ andMℓ′ values, but covered by an increase due to larger

cos(∠(Mℓi
,Mℓj

)) factor. Analogical situation is possible with the minimized Nl defined

in Eq. 7.5 and the corresponding alignment estimatorNℓℓ′ (Eq. 7.7). While an accidental

alignments are possible in an GRF, an accidental alignmentsof more than two neighbour-

ing multipoles are way less probable.6, and hence such an extension applied to this is other

modified statistic could be introduced to further tests the statistical isotropy hypothesis.

While we will also return to the more generalized statisticsin Sec. 7.3

7.3 Testing the “m-preference”

In this section we perform a search of the mode-to-mode alignments in variety of renditions

of the Internal-Linear-Combination maps using statisticsdefined in equations 7.2 and 7.3.

Our aim will be to test the stability of the alignments with respect to different foregrounds

cleaning methods, which independently constrain the best approximations of the intrinsic

CMB fluctuations.

7.3.1 Data

We choose to test and compare alignments in five different renditions of the WMAP CMB

data: the three-year and the five-year Internal-Linear-Combination maps (Hinshaw et al.,

6The situation is similar to eg. nuclear reaction rates wherethe probability of an instant three particles fusion

eg. of two protons and neutron into a3
2He nuclei is thousands of times less probable than much more frequent

channels of two particle reactions.
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2007; Gold et al., 2008) available at

http://lambda.gsfc.nasa.gov/data/map/dr2/dfp/wmapilc 3yr v2.fits and

http://lambda.gsfc.nasa.gov/data/map/dr3/dfp/wmapilc 5yr v3.fits. We will call these maps

ILC3 and ILC5 respectively. We also compere the five year edition of the Wiener filtered

map provided by Max Tegmark (Tegmark et al., 2003) availableat

http://space.mit.edu/home/tegmark/wmap/wiener5yrmap.fits which we will refer to as TOH5.

Finally we analyse the so-called harmonic internal linear combination map (HILC5) avail-

able at http://www.nbi.dk/ jkim/hilc/HILC5YRsmo.fits (Kim et al., 2008) and the five year

KQ75 cut sky version of the inverse noise coadded map from theV channel (Hinshaw et al.,

2008) which we will call V5. We convert these data into the spherical harmonics space and

extract the multipoles fromℓ = 1 to ℓ = 6. This is the range within which we will seek for

the mode-to-mode alignments. In the following we describe each of the considered data in

more detail:

ILC3 and ILC5 The WMAP Internal Linear Combination method is a model indepen-

dent, self contained method of estimating the pure CMB component from the foregrounds

contaminated maps by a regional variance minimization of the linear combination of one

degree pre-smoothed multi-frequency observations. The principal idea is to exploit the fre-

quency dependence of the foregrounds component and frequency non-dependence of the

CMB component. The analysis is performed in separate regions exclusively, which are de-

fined according to the spectral properties of the foregrounds emissions. The regional anal-

ysis with sharp boundaries however leads to apparent discontinuities of a resulting map.

Also the method itself leads to a somewhat biased estimate ofthe true CMB with variance

σCMB > σILC due to arbitrary non-zero covariance between the foregrounds and the CMB.

This bias in the post-processing is accounted for statistically in each region individually.

Since the frequency band maps are pre-smoothed to a common resolution of one degree,

the resulting map has an effective resolution of one degree,which when compared to the

resolution of the WMAP radiometers (∼ 0.22◦ for W band) is rather sub-optimal.

It is also important to note that given that the area outside the Kp2 galactic plane cut

is treated as one single region, the minimization of a variance in such a large ares might

lead to somewhat inaccurate results since the foregrounds emissions may in general vary

spatially, although the initial division of sky into regions was performed exactly regarding

the spectral properties of these emissions. Also, given that the variance minimization is

performed directly in real space, the high-ℓ multipoles of the map ultimately receive too

much weight, relative to the amount of CMB signal they carry and the amount of the noise

by which they are dominated, as compared and the amount of theCMB variance carried by

the lower multipoles.

V5 As mentioned the V5 data is the foregrounds reduced version of the inverse noise co-

added (see Section 3.3) map using the five-year observationsfrom the V1 and V2 spectral

channels of the WMAP. The map is basically divided into two regions defined by the masked

http://lambda.gsfc.nasa.gov/data/map/dr2/dfp/wmap_ilc_3yr_v2.fits
http://lambda.gsfc.nasa.gov/data/map/dr3/dfp/wmap_ilc_5yr_v3.fits
http://space.mit.edu/home/tegmark/wmap/wiener5yr_map.fits
http://www.nbi.dk/~jkim/hilc/HILC5YR_smo.fits
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part of the KQ75 sky mask and the unmasked part. The KQ75 sky mask in turn, which

is used in this analysis, is obtained via combining the thresholded, one degree smoothed

foreground templates from the K and Q bands at the levels thateffectively leave 75% of the

sky unmasked. The foregrounds template for each band in turnis obtained either from the

three-year version of the ILC map (ILC3), which is a good estimate of the true CMB signal

at scales larger than1◦, or from modelling foregrounds based on external observations.

The foregrounds reduction outside the KQ75 sky region is performed by subtracting the

foregrounds templates for the synchrotron and free-free emissions estimated independently

from observations of the 408MHz radio continuum emission (Haslam et al., 1982) and the

all sky Hα observations of the Finkbeiner (2003) respectively. For the dust template the 94

GHz radio emission model of Finkbeiner et al. (1999) is used.The point source emission

was effectively masked out using point source detections inradio and X-rays observations

of Stickel et al. (1994); Hirabayashi et al. (2000); Kuehr etal. (1981); Teräsranta et al.

(2001); Perlman et al. (1998); Landt et al. (2001).

The main drawback of these maps as discussed in Delabrouilleet al. (2008) is that the

regions inside the Galactic plane are heavily contaminatedeven after foregrounds template

removal, which give more priority to cleaning the high latitude regions in order to obtain

relatively clean CMB maps, which when masked with the eg. KQ75 sky mask will be suffi-

ciently clean to constrain the CMB power spectrum in the limit of high multipoles. Outside

the region defined by the sky mask, the foregrounds removal accuracy is model dependent,

and as such imperfections of the model will be imprinted as residual foregrounds. As a re-

sult in the limit of low multipoles large differences shouldbe expected between these maps

and other full sky CMB map estimates. The noise and smoothingproperties however are

very well known of which statistical properties are easy to assess via appropriate Monte

Carlo simulations.

TOH5 In order to obtain the TOH5 map the five-year observations from the five spectral

channels were combined into a “cleaned” maps and wiener filtered in the spherical harmon-

ics space by multiplication of each of theaℓm coefficients of the input “cleaned” map by the

Wiener filter kernel:
Cℓb

2
ℓ

Cℓb
2
ℓ
+Nℓ

in order to obtain the TOH5 mapsaℓm coefficients, where the

bℓ is the instrumental beam transfer function and theCℓ andNℓ are the constrained CMB

and noise power spectra respectively.

The foregrounds reduction is performed by linear combination map variance minimiza-

tion which is performed independently for each multipole and exclusively in 9 selected,

different regions in the sky which are defined according to the spectral properties of the

cross-band difference maps.

As a result the cleaned, filtered map has an optimal resolution of the WMAP W channel,

which is approximately four times better than the resolution of the ILC3/5 maps. It should

be noted that the Wiener filter can only be adequately appliedif the shape of the underlying

power CMB power spectrum is known: i.e. if it is constrained using other methods (like

pseudo-Cℓ method).
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HILC5 The HILC5 data is obtained from an implementation of the foregrounds removal

method, based on variance minimization, where the weight coefficients are allowed to vary

smoothly across the sky, which solves the discontinuities problems of the ILC3/5 maps,

however the spatial resolution of these coefficients is constrained by the maximal cut off

scale multipole ofℓmax = 15, which possibly constrains the ability to resolve the smooth

galactic emissions of angular sizes smaller than the effective angular size to which multi-

poles ofl ≤ 15 are sensitive (roughly12◦).

Due to deconvolution of the single band maps by the instrumental beam prior the clean-

ing process, the resulting map has increased power in the limit of large multipoles as com-

pared to the TOH5 map, and the variance minimization processis driven mainly by mini-

mization of noise rather than foregrounds.

7.3.2 Statistics

We perform the statistics as defined in equation. 7.2 and 7.3:i.e. for each mode indepen-

dently, we look for such orientations of the map, so that the amount of power in that mode is

maximized. For each maximized mode we record the corresponding direction maximizing

the power in that mode and store it for further tests and for comparison purposes.

We perform the search by rotating the maps in the real space and measuring the amounts

of power absorbed by a given mode in spherical harmonic space. We use the search direction

density corresponding to the Healpix pixelization scheme of resolution parameterns = 128

which yields the approximated pixel size and consequently the search accuracy of about

∼ 0.45◦. The maps are generated in the resolutionns = 64.

For each pair of mode best fit orientationsn̂⋆, we calculate and compare the angular sep-

arations. We also maximize according to eq. 7.2 to derive thecross-multipole alignments.

In the next sections, we present the details of these searches, discuss them and consider a

approaches to significance analyses and their generalizations.

7.3.3 Results

In table 7.1 we present a compilation of the results obtainedfrom the statistics defined in

Eq. 7.3 using the considered data set. Note that for the case of dipole there exists the exact

degeneracy as it was mentioned in Section 7.1.

Firstly, we notice a strong competition between different modes in terms of the amount

of the absorbed power towards different directions. The close alignments between differ-

ent modes is visualized in figures 7.6 and 7.7 and also in tables 7.2, 7.3 and 7.4 where the

alignments within10◦ are highlighted in blue. For completeness we also highlighted the

perpendicular alignments that are greater than80◦ in green. Note however that the perpen-

dicular alignments have additional degree of freedom over the parallel alignments, and as

such it is expected, and indeed observed, that they will appear more numerously than the

parallel ones. Also, in order to ease the comparison betweendifferent data and modes, we

present graphically the distribution of the accumulated power in figure 7.8.
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Alignments: It is clear that some well known close alignments are found indifferent ren-

ditions of the CMB observations. Most notably, the consistent through all data sets are the

close modes-to-mode alignments between:a21-a31 and the well known sectoral harmonics

alignmenta22-a33, which both yield angular separation less than10◦. An exception is the

HILC5 map in which the alignment of these modes is larger than10◦ in both cases, and in

case of paira21-a31 the separation is as large as64◦.

The higher modes also yield some close alignments. In particular, the previously re-

ported in Land & Magueijo (2005b) alignment betweena53-a40 which is additionally aligned

with pair thea22-a33, is confirmed. All of these modes lie roughly in direction(l, b) =

(250◦, 50◦) within accuracy of about15◦. This feature of preferring roughly the same ref-

erence frame by independent within the GRF hypothesis modes, was found to be unusual

and the direction itself is dubbed the “axis of evil”.

It is interesting to see whether the difference between the data sets are strongly multi-

pole or mode dependent. To see this we consider the standard deviation of differences of the

orientations obtained from different data sets. In Fig. 7.4we plot the standard deviations of

differences taken in all 10 possible combinations of pairs of data as a function of a mode.

Note that while the differences between renditions of the foreground cleaned maps range up

to roughly50◦, as measured by the standard deviation, the differences forthe most aligned

modes: i.e. for the pairsa22-a33 anda40-a53 and also partially fora21 anda31 are very small
7. The latter ones are only small for the case when the V5 data isnot considered cross-data

in calculating the dispersion of the preferred separationsacross different data-sets. In fact,

given that the V5 data, are extensively masked, they should not be, trusted to be reliable

in the limit of the largest scales, and are presented here, and in what follows, only for the

comparison purposes.

Although the existence of the alignments seems to be obviousin different data sets,

given the notes put in section 7.1, the question of which particular axis of evil is preferred

seems less obvious. Namely, the modesa22-a33, which absorb a very large fraction of the

total quadrupole and octupole power respectively in an preferred reference frame oriented

towards∼(l, b) = (240◦, 50◦), very strongly compete with the more zonal-like modesa21

anda31 which absorb almost the same fraction of the total quadrupole and octupole power

but in an completely different reference frame, oriented towards∼(l, b) = (115◦, 15◦).

This has also been realized in Land & Magueijo (2007) and was referred as “as instability”.

Given however that thea31 mode is dubious in light of the fact that different foreground

cleaning methods lead to a results which give larger uncertainties between the data-sets, as

compared to the aforementioned sectoral mode pair (a22-a33), and also given that therℓ

values are slightly larger for that pair, tentatively the “axis of evil” as unveiled by the maxi-

mal momentum analysis (section 7.2.1) seems eventually more preferred towards direction

roughly∼(l, b) = (240◦, 50◦) over the direction preferred by the zonal harmonics pair.

7The dispersion withina31 is actually about30◦, while the dispersion forr21 is large only when the V5 data

are considered.
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Figure 7.4: Cross-data-set consistency check. For eachℓ,m value we plot with black dots

(blue triangles) a standard deviation of all 10(6), possible within all considered (all but V5)

data maps, combinations of angular separations between thedirections most preferred by a

given mode. Note the differences between the curves resulting from inconsideration of the

sky-cut V5 data which is most unreliable in the limit of the largest scales.

Alignment reconstruction degeneracy: It is important to mention the issue of certain

degree of degeneracy of the statistics as defined in Eq. 7.3 interms that the resulting max-

imized value ofrℓm(n̂⋆) may actually be one of many possible solutions, which however

will drastically differ in regard to the corresponding preferred axis orientation. In order to

visualize this, as an example, in figure 7.5, we plot the map oftherℓm(n̂) coefficients over

which the statistics maximize to find the final solution. Notethat the maps have a point sym-

metry resulting from the fact that the maximal possible angle between two axes is180◦. We

recall that according to our convention we consider only solutions in the northern galactic

hemisphere.

Note that, as indicated in panel d) of the figure 7.5, contraryto what it would seem

from the panel b), there is a substantial difference in the amplitude of therℓm coefficients in

the series of maximums, and hence the maximization does not loose significant alternative

solutions in this case. However as shown in the panel c) this is not the case for some of the

modes of the lower multipoles. It should be noted however that in general, the alternative

solutions could also be accounted for in the analysis devoted to the searching the alignments

and appropriately accounted for in the significance analysis by weighting eg. by the amount

of absorbed power: i.e. byrℓm(n̂⋆).

These issues has also been previously pointed out in Land & Magueijo (2007).

7.3.4 Significance and generalizations

Although we have not studied the issue of the statistical significance of the alignments, we

defer this analysis for a future work. For that purpose we have implemented an parallelled

algorithm for the general search of the preferred directions, which can be run on an arbitrary

number of cluster nodes, allowing thereby for speeding up the significance assessment.
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a) ILC5: r21(n̂) b) ILC5: r31(n̂)

c) thresholded ILC5:r21(n̂) d) thresholded ILC5:r31(n̂)
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Fig 7.5: Distribution ofrℓm(n̂) coefficients (Eq. 7.3) derived from the ILC5 data. Note that

the thresholded maps indicate that for the low multipoles the possible degeneracy in due

to multiple directions yielding a very high values ofrℓm(n̂) in their own reference frames,

may mislead the alignments analysis if not properly accounted for (panel c). The effect

for higher multipoles (eg. panel d) the degeneracy appears to be smaller, although more

solutions with close values ofrℓm(n̂) are possible. The distributions in panels e) and f)

visualize the well-known quadrupole-octupole alignment problem. Note that in this case

there is no degeneracy and there exist only one solution overthe entire hemisphere.

In the following we would like to point out a few generalizations that have not yet

been pursued. It would be interesting to question the significance of the alignments in an

analogical manner as it was put in section 7.2.1. For that purpose an estimator should be

defined equivalent to the one defined in equation 7.6. We propose a following mode to mode

alignment estimator:

Rℓmℓ′m′ = −→r ℓm(n̂⋆) · −→r ℓ′m′(n̂⋆′) (7.12)



138 CHAPTER 7. SEARCH FOR PREFERRED REFERENCE FRAME.

where
−→r ℓm(n̂⋆) = rℓm(n̂⋆)

n̂⋆

|n̂⋆| (7.13)

and the full covariance matrix is defined as:

Cℓmℓ′m′LML′M ′ ≡ Cov(Rℓmℓ′m′ , RLML′M ′)

=
〈(

Rsim,i
ℓmℓ′m′ − 〈Rsim,i

ℓmℓ′m′〉
)(

Rsim,i
LML′M ′ − 〈Rsim,i

LML′M ′〉
)〉

sim
(7.14)

The correspondingχ2 test would take into account all possible alignments and their mag-

nitude, proportional to therℓm value, and quantify over a range of considered multipoles

whether or not the field yields consistency with the GRF expectations, avoiding the prob-

lem of the operating only on an maximized statistics given byEq. 7.2 and the problem of

ambiguity of closely competing modes mentioned earlier. The problem of the multiple also

strongly competing solutions though should require a separate attention.

Finally, following the idea introduced in section 7.2.1 even further generalisation is

possible by changing the statistic to maximize the alignment estimator itself (Rℓmℓ′m′),

rather than therℓm values.

Maximum power test Additionally it could be interesting to introduce a new joint statis-

tics based on results from the m-preference search. If thereexists an significant m-preference

in power distribution for some reference frames, then the total power as measured by the

“maximized variance map” synthesized from therlm coefficients (Eq. 7.3) should be statis-

tically larger than the one obtained from GRF simulations. Therefore measuring a quantity:

σℓmax
=

ℓmax∑
ℓ=2

σℓ, where,

σℓ = (2ℓ+1)
4π

∑
m

|rlm|2
(7.15)

could in principle be also sensitive to this kind of anomalies. Note that such defined estima-

tors are completely independent from the underlying power spectrum properties, and hence

from the point of view of Monte-Carlo simulations any large scale discrepancies from the

ΛCDM model have no impact on the results of the question of the statistical isotropy. We

defer the implementation of this test for possible future work.
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ILC3 ILC5 V5 TOH5 HILC5

# ℓ m l [deg] b [deg] rℓm [%] l [deg] b [deg] rℓm [%] l [deg] b [deg] rℓm [%] l [deg] b [deg] rℓm [%] l [deg] b [deg] rℓm [%]

1 1 0 206.0 38.3 100.00 350.8 63.1 100.00 200.0 37.9 100.00 232.4 6.6 100.00 355.8 19.8 100.00

2 1 1 147.7 17.3 100.00 81.6 39.1 100.00 294.6 5.7 100.00 108.3 78.3 100.00 93.2 19.5 100.00

3 2 0 333.3 3.3 93.58 333.6 2.4 92.18 149.8 5.7 82.97 332.9 4.8 96.06 152.9 0.0 82.80

4 2 1 110.7 12.6 93.09 113.5 17.6 94.38 2.1 25.6 99.12 115.3 20.4 89.95 109.3 10.8 99.10

5 2 2 236.1 69.0 93.11 239.1 60.4 94.39 245.9 43.0 99.09 236.6 55.589.99 242.4 73.9 99.10

6 3 0 148.0 9.0 65.17 147.3 9.0 64.83 90.7 21.7 71.86 15.8 27.9 64.31 149.8 7.5 69.20

7 3 1 116.0 14.8 91.30 116.0 14.8 91.06 126.9 24.6 82.70 50.6 28.3 92.44 118.5 14.5 93.42

8 3 2 208.8 9.3 72.62 208.8 9.3 72.36 217.6 1.2 92.75 209.2 12.6 62.99 209.5 5.7 73.10

9 3 3 236.6 62.7 91.74 236.6 62.7 91.94 252.3 55.1 68.20 240.2 61.696.55 236.7 61.6 90.84

10 4 0 258.5 44.6 77.32 259.2 44.6 76.06 202.5 22.4 71.86 259.1 45.072.84 257.3 43.4 81.76

11 4 1 228.2 35.0 90.07 228.9 34.2 90.24 29.2 1.8 76.84 227.8 36.0 88.65 227.5 33.5 83.36

12 4 2 196.2 58.2 80.87 197.3 58.2 82.33 241.2 11.7 87.34 196.9 61.683.60 239.8 5.1 81.16

13 4 3 335.7 25.3 72.25 77.0 15.7 73.06 336.8 21.7 85.67 73.8 14.2 76.56 332.9 26.6 76.60

14 4 4 116.7 31.0 64.82 116.7 31.0 64.73 120.9 11.1 64.48 116.0 28.369.58 124.5 27.6 59.35

15 5 0 236.9 3.9 62.43 236.9 3.9 62.40 209.2 37.9 63.98 237.3 5.4 56.48 239.4 4.8 61.64

16 5 1 257.7 4.8 57.01 257.7 4.8 56.51 196.0 55.5 74.07 258.4 4.8 58.08 259.4 6.3 65.49

17 5 2 130.8 2.7 66.46 350.2 29.0 65.44 78.4 18.2 76.08 130.4 3.6 67.76 132.9 2.1 68.65

18 5 3 264.0 48.1 85.75 264.0 47.8 85.95 268.8 47.8 82.82 264.8 47.891.22 264.7 48.5 90.84

19 5 4 173.0 5.1 64.81 173.0 5.1 65.12 166.6 2.1 77.14 171.2 6.6 76.07 111.8 37.5 67.65

20 5 5 154.6 44.2 37.58 154.6 44.2 37.69 327.7 29.0 59.16 162.2 49.337.66 159.2 55.5 42.90

21 6 0 261.9 3.0 52.73 261.9 3.0 53.54 280.6 29.0 66.39 278.8 31.4 54.45 357.2 47.8 54.43

22 6 1 269.6 17.6 78.17 269.6 17.6 78.14 271.4 14.8 76.71 269.3 17.975.93 19.4 43.8 75.46

23 6 2 68.2 21.1 68.54 68.2 21.1 69.48 309.9 43.8 66.82 70.3 21.7 67.31 314.6 44.2 68.84

24 6 3 242.6 36.0 56.96 242.2 35.7 57.09 121.3 6.6 68.96 120.6 1.8 61.84 244.0 35.3 55.39

25 6 4 316.1 9.6 61.12 316.1 9.6 60.51 218.3 33.5 79.55 316.1 10.8 66.26 218.3 40.2 50.14

26 6 5 155.4 2.1 55.72 208.3 60.1 56.58 212.3 10.5 64.76 203.6 59.7 66.37 158.2 2.1 56.11

27 6 6 157.5 38.3 79.84 157.8 39.5 78.95 178.9 9.0 57.44 160.3 36.8 70.44 157.2 39.5 85.62

Table 7.1: Comparison of the different renditions of the WMAP foregrounds cleaned CMB data in terms of the mode-to-mode alignments. Note the perfect

degeneracy between the two modes of the dipole component.
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Fig 7.6: Mode to mode angular separation. Maximum power inter-mode (~rℓm(n̂⋆)) align-

ments comparison in the ILC3-ILC3 (top panel) (below diagonal), and ILC5-ILC5 (above

diagonal) data, and (bottom panel) ILC5-ILC5 (below diagonal), and V5-V5 (above diago-

nal) data.
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Fig 7.7: Mode to mode angular separation. Maximum power inter-mode (~rℓm(n̂⋆)) align-

ments comparison in the TOH5-TOH5 (below diagonal), and HILC5-HILC5 (above diago-

nal).
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l 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6
l m 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

1 0 0.0 54.7 64.0 86.3 34.7 59.5 80.9 29.1 30.6 39.2 18.1 20.9 79.1 70.9 44.4 57.5 76.7 42.4 44.7 38.5 61.9 58.7 71.4 29.1 80.6 58.6 37.6

1 1 89.2 0.0 21.3 36.0 73.3 8.3 30.5 59.8 74.2 88.1 72.6 54.1 43.3 31.3 88.1 72.5 22.1 86.5 27.6 27.5 68.0 67.0 74.4 83.8 29.2 17.0 22.7

2 0 18.2 72.0 0.0 45.2 89.5 13.4 41.1 56.7 89.9 76.9 79.6 70.3 22.1 48.9 83.8 75.4 23.3 73.8 21.4 47.5 71.3 64.0 86.6 88.6 18.2 5.8 41.8

2 1 57.5 31.9 40.1 0.0 89.9 36.8 5.6 84.2 86.1 64.2 75.9 77.0 58.0 19.2 55.9 37.1 22.2 65.2 61.9 49.0 32.6 36.7 41.4 66.5 33.6 45.5 48.7
2 2 68.5 22.6 85.5 54.4 0.0 80.9 86.3 62.3 6.3 26.9 34.3 20.2 69.8 70.7 65.1 65.8 87.1 25.0 75.8 46.5 68.2 55.5 89.5 33.2 77.5 84.7 50.6

3 0 39.8 64.3 25.4 37.6 85.3 0.0 31.8 60.0 81.4 82.2 76.8 61.3 35.1 36.5 88.3 71.4 18.2 80.0 25.1 35.7 67.0 63.5 77.3 88.4 22.1 10.1 30.5

3 1 55.1 34.3 37.6 2.6 56.9 35.2 0.0 89.7 89.9 68.5 81.2 72.3 55.7 16.2 61.5 42.7 19.0 69.1 56.8 44.0 38.2 41.6 45.8 71.6 31.5 40.9 43.4

3 2 46.3 53.8 58.8 83.4 33.4 61.9 86.0 0.0 57.0 55.4 31.2 49.9 62.2 87.0 28.4 48.7 77.7 60.2 35.8 58.2 53.1 59.5 49.2 40.7 74.8 53.6 54.2
3 3 66.2 25.1 83.0 56.9 2.6 87.9 59.4 30.9 0.0 22.0 28.2 20.1 71.7 74.8 58.8 60.0 85.2 21.0 73.6 48.3 62.6 50.5 84.3 27.0 76.7 84.1 51.8

4 0 89.2 4.4 74.0 34.0 20.7 67.9 36.6 50.4 23.1 0.0 25.0 39.5 63.7 83.2 44.9 39.8 66.3 5.2 83.2 68.5 41.7 28.6 66.4 14.8 60.4 82.2 70.8

4 1 58.8 32.9 75.4 64.6 10.3 84.6 67.1 24.1 7.8 30.6 0.0 31.4 88.7 87.8 32.1 40.7 85.5 29.5 58.9 55.5 44.7 40.6 59.2 11.8 82.8 74.8 55.4

4 2 32.5 64.8 45.4 84.3 42.8 52.2 81.7 13.8 40.1 61.9 32.5 0.0 90.0 58.7 62.9 71.2 75.0 40.0 56.1 28.9 74.9 66.4 89.8 37.5 83.3 64.5 31.8
4 3 87.7 6.8 75.8 35.9 19.3 70.2 38.5 48.2 21.5 2.4 28.9 59.9 0.0 67.5 83.8 77.1 37.0 59.5 34.7 69.5 74.1 61.4 83.3 77.8 24.4 27.4 63.6

4 4 59.6 33.9 41.4 12.3 55.7 30.6 11.7 87.7 58.3 37.3 66.0 81.6 39.6 0.0 66.7 51.6 31.3 84.3 58.7 32.4 47.5 55.1 44.3 84.0 44.7 46.6 34.1

5 0 72.9 26.9 87.4 54.5 16.3 89.6 57.1 29.0 15.9 22.8 18.3 42.0 20.4 59.8 0.0 20.8 74.2 49.9 63.7 81.8 25.0 34.8 27.3 32.5 78.7 81.4 79.3

5 1 89.9 8.4 73.7 34.2 22.1 69.5 36.8 49.4 24.2 4.3 31.4 61.5 3.4 38.9 20.9 0.0 53.6 43.6 84.3 84.0 4.6 17.3 27.5 34.1 58.1 77.9 85.0
5 2 33.1 87.2 30.5 59.5 72.2 22.9 57.0 39.1 69.6 89.2 62.3 30.6 86.9 53.5 66.8 87.7 0.0 65.1 42.2 46.5 49.2 45.4 63.5 74.2 13.4 24.6 43.1

5 3 86.6 3.0 69.5 29.5 25.0 62.9 32.0 55.4 27.4 4.9 35.1 66.7 7.3 32.4 27.7 7.6 85.9 0.0 86.9 68.9 45.1 30.8 70.6 19.9 58.1 79.3 71.8

5 4 34.9 89.9 33.5 62.6 69.9 25.7 60.1 36.6 67.3 86.5 60.1 29.0 84.1 56.3 63.9 84.8 3.2 88.6 0.0 42.3 88.6 85.3 78.2 70.5 39.6 17.8 36.1
5 5 61.2 68.7 50.0 53.3 83.9 25.1 51.7 63.8 86.2 73.1 87.8 60.0 75.5 41.9 84.9 76.2 31.5 68.7 31.8 0.0 79.8 85.5 73.0 64.5 56.4 42.1 6.3
6 0 86.3 6.6 69.8 30.1 25.2 65.2 32.7 53.6 27.5 4.8 35.0 65.6 6.0 34.7 25.1 4.3 88.1 4.5 89.1 72.4 0.0 16.4 27.6 37.5 54.2 73.7 80.7
6 1 81.2 8.0 64.0 23.9 30.5 57.7 26.4 60.8 33.0 10.4 40.7 72.3 12.6 27.1 32.7 11.9 80.6 5.6 83.4 64.9 7.7 0.0 44.0 30.1 45.8 67.7 84.6
6 2 80.5 15.2 83.6 44.2 14.0 79.1 46.8 39.5 15.6 11.2 22.1 51.5 8.9 48.5 11.6 10.0 78.0 16.2 75.2 83.7 14.2 21.4 0.0 57.4 73.4 86.6 76.6
6 3 78.8 22.4 86.7 48.6 17.7 84.9 51.2 35.0 18.3 18.0 22.6 47.9 15.6 54.4 6.0 15.5 72.4 22.7 69.5 89.0 19.7 27.4 7.7 0.0 71.1 86.5 65.3

6 4 48.4 52.8 31.5 28.4 73.7 11.6 26.3 73.5 76.3 56.583.8 63.8 58.9 19.5 79.2 58.4 34.4 51.6 37.0 26.6 54.1 46.5 67.8 73.8 0.0 22.5 51.9

6 5 56.9 55.9 65.7 81.0 40.0 61.7 83.6 14.8 38.0 51.8 33.4 25.6 49.3 88.1 29.0 49.4 39.5 56.5 36.4 56.5 53.6 61.3 40.6 33.9 72.40.0 36.2

6 6 23.3 75.7 13.2 45.1 82.0 16.7 42.5 51.5 79.4 78.6 71.7 39.5 80.7 42.3 80.5 79.2 17.8 73.8 21.0 38.6 75.0 68.2 89.2 86.3 26.6 55.6 0.0

Table 7.2: Mode to mode angular separation. Maximum power inter-mode (~rℓm(n̂⋆)) alignments comparison in the: ILC3-ILC3 data (below diagonal) and

ILC5-ILC5 data (above diagonal). The alignments below10◦ were highlighted in blue while the orthogonal alignments (≥ 80◦) were highlighted in green.
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l 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 6

l m 0 1 0 1 2 0 1 2 3 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5 6

1 0 0.0 89.2 18.2 57.5 68.5 39.8 55.1 46.3 66.2 89.2 58.8 32.5 87.7 59.6 72.9 89.9 33.1 86.6 34.9 61.2 86.3 81.2 80.5 78.8 48.4 56.9 23.3

1 1 85.4 0.0 72.0 31.9 22.6 64.3 34.3 53.8 25.1 4.4 32.9 64.8 6.8 33.9 26.9 8.4 87.2 3.0 89.9 68.7 6.6 8.0 15.2 22.4 52.8 55.9 75.7
2 0 50.8 35.5 0.0 40.1 85.5 25.4 37.6 58.8 83.0 74.0 75.4 45.4 75.8 41.4 87.4 73.7 30.5 69.5 33.5 50.0 69.8 64.0 83.6 86.7 31.5 65.7 13.2

2 1 18.7 67.6 32.4 0.0 54.4 37.6 2.6 83.4 56.9 34.0 64.6 84.3 35.9 12.3 54.5 34.2 59.5 29.5 62.6 53.3 30.1 23.9 44.2 48.6 28.4 81.0 45.1

2 2 46.0 48.6 83.9 63.8 0.0 85.3 56.9 33.4 2.6 20.7 10.3 42.8 19.3 55.7 16.3 22.1 72.2 25.0 69.983.9 25.2 30.5 14.0 17.7 73.7 40.0 82.0
3 0 70.6 24.0 59.2 88.5 24.7 0.0 35.2 61.9 87.9 67.9 84.6 52.2 70.2 30.6 89.6 69.5 22.9 62.9 25.7 25.1 65.2 57.7 79.1 84.9 11.6 61.7 16.7
3 1 73.5 13.1 22.9 55.3 61.0 36.3 0.0 86.0 59.4 36.6 67.1 81.7 38.5 11.7 57.1 36.8 57.0 32.0 60.1 51.7 32.7 26.4 46.8 51.2 26.3 83.6 42.5

3 2 29.8 74.8 70.3 40.9 31.0 53.1 87.9 0.0 30.9 50.4 24.1 13.8 48.2 87.7 29.0 49.4 39.1 55.4 36.6 63.8 53.6 60.8 39.5 35.0 73.5 14.8 51.5

3 3 52.5 42.2 77.5 70.2 6.5 18.3 54.6 36.1 0.0 23.1 7.8 40.1 21.5 58.3 15.9 24.2 69.6 27.4 67.3 86.2 27.5 33.0 15.6 18.3 76.3 38.0 79.4

4 0 22.4 89.8 54.9 27.1 45.0 68.2 76.7 15.4 50.6 0.0 30.6 61.9 2.4 37.3 22.8 4.3 89.2 4.9 86.5 73.1 4.8 10.4 11.2 18.0 56.5 51.8 78.6
4 1 12.8 85.1 59.4 27.4 36.8 61.4 82.3 17.1 43.1 14.4 0.0 32.5 28.9 66.0 18.3 31.4 62.3 35.1 60.1 87.8 35.0 40.7 22.1 22.6 83.8 33.4 71.7

4 2 43.0 52.7 88.2 59.8 7.1 29.5 65.5 24.4 11.7 38.9 32.4 0.0 59.9 81.6 42.0 61.5 30.6 66.7 29.0 60.0 65.6 72.3 51.5 47.9 63.8 25.6 39.5

4 3 50.6 45.6 18.4 32.7 89.4 66.1 32.9 60.8 83.6 45.8 55.0 84.7 0.0 39.6 20.4 3.4 86.9 7.3 84.1 75.5 6.0 12.6 8.9 15.6 58.9 49.3 80.7
4 4 84.2 17.3 34.4 65.5 53.0 30.2 15.7 83.1 47.3 82.1 89.2 58.9 36.4 0.0 59.8 38.9 53.5 32.4 56.3 41.9 34.7 27.1 48.5 54.4 19.588.1 42.3

5 0 35.2 81.0 65.8 40.7 41.6 61.5 86.0 11.8 45.9 14.0 24.2 34.6 53.4 88.3 0.0 20.9 66.8 27.7 63.9 84.9 25.1 32.7 11.6 6.0 79.2 29.0 80.5
5 1 41.4 87.7 57.6 39.8 55.9 74.7 75.2 25.7 60.0 19.6 33.7 48.8 42.4 75.4 14.3 0.0 87.7 7.6 84.8 76.2 4.3 11.9 10.0 15.5 58.4 49.4 79.2

5 2 60.6 34.7 70.3 77.8 15.0 12.3 47.6 40.9 8.9 56.1 50.4 18.0 78.3 42.5 49.2 62.5 0.0 85.9 3.2 31.5 88.1 80.6 78.0 72.4 34.4 39.5 17.8
5 3 68.8 25.8 61.0 86.7 22.9 1.9 38.1 51.2 16.5 66.3 59.6 27.6 68.0 32.0 59.7 73.0 10.50.0 88.6 68.7 4.5 5.6 16.2 22.7 51.6 56.5 73.8

5 4 47.9 57.1 30.1 32.9 82.2 75.9 44.7 51.5 87.5 37.5 49.0 75.8 12.4 45.7 42.7 30.6 88.2 77.7 0.0 31.8 89.1 83.4 75.2 69.5 37.0 36.4 21.0

5 5 79.3 49.5 46.1 63.6 72.7 57.1 43.1 77.0 69.0 65.9 79.2 79.7 32.4 32.3 65.8 51.5 68.1 58.5 31.4 0.0 72.4 64.9 83.7 89.0 26.6 56.5 38.6

6 0 77.5 18.8 51.8 84.1 32.8 9.9 29.1 62.5 26.8 77.3 69.5 38.4 56.9 20.6 71.3 84.6 22.1 11.6 66.2 47.6 0.0 7.7 14.2 19.7 54.1 53.6 75.0
6 1 71.3 23.3 58.4 89.2 25.4 0.7 35.5 53.8 19.1 68.9 62.2 30.2 65.4 29.5 62.1 75.3 13.02.6 75.2 56.6 9.3 0.0 21.4 27.4 46.5 61.3 68.2

6 2 75.1 21.9 26.2 56.4 62.4 39.2 13.7 87.7 56.6 72.8 81.4 68.2 27.1 9.4 79.5 67.1 51.5 41.0 36.9 29.4 29.8 38.5 0.0 7.7 67.8 40.6 89.2
6 3 86.2 20.7 37.1 67.6 52.3 30.6 19.6 82.9 46.8 82.7 87.9 58.5 37.3 4.0 88.0 74.7 42.8 32.4 45.7 29.4 20.7 30.0 11.2 0.0 73.8 33.9 86.3
6 4 38.6 71.9 74.6 47.6 33.7 52.4 84.8 9.4 37.4 20.7 26.2 26.6 62.6 82.5 9.2 22.6 40.1 50.6 51.9 73.7 62.2 53.0 88.8 83.0 0.0 72.4 26.6
6 5 40.6 76.7 71.0 46.6 40.5 58.4 89.5 13.9 44.1 19.8 29.0 33.4 57.7 88.3 5.9 16.3 46.3 56.7 46.4 67.0 68.3 59.0 83.2 89.0 6.8 0.0 55.6

6 6 29.5 66.0 31.7 15.8 67.9 88.2 53.0 39.2 73.9 23.8 32.2 62.4 22.8 59.1 34.2 28.0 79.889.9 18.4 49.8 79.3 87.5 49.7 60.1 42.9 39.5 0.0

Table 7.3: Mode to mode angular separation. Maximum power inter-mode (~rℓm(n̂⋆)) alignments comparison in the: ILC5-ILC5 data (below diagonal) and

V5-V5 data (above diagonal). The alignments below10◦ were highlighted in blue while the orthogonal alignments (≥ 80◦) were highlighted in green.
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1 0 0.0 55.9 80.9 62.9 4.2 42.8 10.9 23.8 19.1 28.4 15.5 36.9 22.2 60.4 21.0 27.6 76.0 32.7 64.2 78.6 45.1 37.0 23.4 65.4 82.1 39.3 81.0
1 1 82.6 0.0 45.6 7.0 51.7 89.5 57.1 79.0 46.3 28.4 59.4 89.0 34.2 15.1 48.6 29.2 24.6 23.3 64.5 58.9 12.0 18.9 36.4 17.4 29.5 81.7 57.5

2 0 23.2 59.7 0.0 39.0 84.8 44.2 77.7 57.1 88.1 73.6 75.1 44.2 79.1 38.8 85.9 74.4 23.1 68.1 19.1 23.8 54.5 63.6 81.9 33.7 17.0 53.7 24.5

2 1 66.8 16.2 43.7 0.0 58.7 83.1 64.0 86.0 53.0 35.3 66.2 82.1 41.2 14.8 55.1 36.1 19.4 30.3 58.0 54.0 18.5 25.9 43.2 14.9 23.5 87.8 52.8

2 2 67.0 30.8 89.6 46.9 0.0 45.7 11.4 27.8 16.4 24.2 16.1 40.7 18.0 56.5 18.9 23.4 72.1 28.4 67.9 81.6 41.0 32.8 19.5 61.6 78.2 41.3 83.9
3 0 42.5 57.2 27.9 42.9 85.1 0.0 35.9 23.4 44.5 63.3 32.3 14.9 58.5 80.0 41.9 62.6 65.5 69.1 25.1 35.9 83.0 73.5 54.6 75.2 60.1 10.3 38.2

3 1 57.6 25.3 34.5 9.2 56.1 36.3 0.0 22.7 12.6 28.8 4.7 33.9 23.2 64.5 12.8 28.0 79.6 34.2 59.6 71.5 47.9 38.7 21.0 69.4 85.5 30.4 73.7

3 2 48.9 63.1 64.8 78.0 37.3 59.7 85.9 0.0 35.1 50.7 22.3 13.3 44.8 84.2 34.5 49.9 80.2 55.7 40.9 57.1 68.8 60.1 43.6 89.2 74.1 25.6 59.6

3 3 61.0 36.5 83.8 52.5 6.6 88.9 61.8 35.9 0.0 18.9 13.4 45.5 15.1 55.8 3.6 18.3 70.0 24.8 69.4 78.3 38.6 29.1 10.1 60.4 75.5 36.780.4
4 0 82.9 15.6 74.7 31.6 15.9 72.4 40.7 48.0 22.2 0.0 31.4 62.6 6.2 36.8 21.9 0.8 51.3 5.9 88.0 82.8 19.7 10.2 8.9 41.5 56.9 55.6 80.9
4 1 52.7 45.6 74.9 61.8 14.9 80.7 71.0 26.7 10.4 30.4 0.0 32.1 26.3 67.8 12.3 30.6 82.6 37.0 56.6 67.5 50.9 41.5 23.0 72.6 88.3 26.0 69.7

4 2 65.3 33.3 87.5 49.4 4.0 88.6 58.5 33.4 7.5 17.9 12.7 0.0 56.9 82.8 44.0 61.8 67.2 67.9 27.6 44.4 81.3 72.4 54.9 77.8 61.2 22.2 46.9

4 3 32.0 60.0 17.3 44.3 89.8 11.2 36.0 58.1 85.5 75.6 75.4 87.1 0.0 41.5 18.5 5.4 56.4 11.0 82.8 86.8 24.7 15.5 6.7 46.3 62.2 51.4 84.7
4 4 56.8 31.8 34.2 17.6 61.0 25.6 13.3 85.2 65.7 47.2 75.8 64.2 28.9 0.0 58.7 37.5 15.7 31.0 55.9 46.3 17.2 26.7 45.7 5.1 21.8 87.6 44.5

5 0 72.2 33.0 87.5 47.8 16.4 89.8 56.0 30.2 21.1 18.7 22.2 13.6 88.1 64.6 0.0 21.4 72.6 27.8 67.0 75.2 41.5 32.0 13.1 63.2 78.0 33.7 77.2

5 1 86.3 13.2 71.4 28.8 19.4 70.3 37.7 49.9 25.8 3.6 33.7 21.1 73.0 44.9 20.0 0.0 52.0 6.5 87.2 83.4 20.4 10.9 8.3 42.2 57.7 55.0 81.4
5 2 51.1 40.2 29.9 25.9 69.1 17.1 20.1 76.7 73.5 55.683.7 72.3 21.2 8.5 73.1 53.4 0.0 45.6 40.8 34.6 31.8 41.1 59.9 10.6 6.2 73.9 33.4
5 3 89.0 8.5 68.2 24.6 22.3 64.5 33.8 55.9 28.0 7.8 37.2 25.0 68.0 39.5 26.4 6.8 47.8 0.0 86.4 77.0 13.9 4.5 14.8 35.7 51.3 61.5 75.0

5 4 66.0 18.9 42.8 5.5 49.0 38.6 9.6 81.8 54.2 34.5 63.9 51.9 41.1 13.1 51.6 32.0 21.5 26.90.0 19.6 72.6 81.9 79.4 51.0 35.2 34.6 21.9

5 5 62.7 67.7 53.3 58.4 87.1 25.7 55.3 55.9 88.2 79.7 82.2 88.8 36.0 42.1 81.7 79.2 35.8 72.4 53.0 0.0 63.5 72.9 88.3 42.2 31.2 41.8 2.5
6 0 45.5 85.0 46.6 71.7 70.5 28.9 65.3 33.3 68.5 80.8 58.5 66.6 32.2 54.1 62.2 82.2 45.8 88.5 67.0 24.3 0.0 9.5 28.5 21.8 37.6 75.2 61.6

6 1 33.4 73.5 50.4 89.4 44.1 50.9 82.0 15.5 40.3 57.9 29.9 40.8 46.5 75.1 42.4 60.5 66.9 65.587.6 55.0 30.6 0.0 19.0 31.3 46.8 65.7 71.0

6 2 50.1 41.9 29.3 27.6 70.7 15.4 21.7 75.0 75.0 57.285.2 74.0 19.7 10.2 74.8 55.1 1.7 49.5 23.2 34.6 44.1 65.3 0.0 50.3 65.4 46.7 89.8
6 3 73.9 28.6 85.0 43.9 12.7 85.8 52.4 34.5 18.4 13.7 22.0 11.0 88.2 60.4 5.2 15.4 68.8 21.5 47.4 86.9 67.0 45.6 70.5 0.0 16.8 83.1 40.6
6 4 52.7 54.4 71.1 69.7 28.1 68.5 78.0 9.2 27.1 39.1 18.7 24.1 66.1 86.2 22.0 41.2 85.4 46.9 73.2 64.9 42.5 20.7 83.7 25.8 0.0 68.8 30.4

6 5 37.0 65.5 27.5 50.8 86.3 8.6 43.6 51.4 82.5 80.8 72.1 82.8 10.7 33.8 81.6 78.7 25.3 73.0 46.8 26.7 22.2 42.2 23.6 85.9 60.1 0.0 43.9

6 6 34.1 64.4 23.6 49.2 86.6 9.2 41.5 52.8 82.5 79.9 72.2 83.3 7.0 32.7 83.0 77.6 24.4 72.2 45.5 30.4 25.3 42.5 22.7 87.1 61.2 3.9 0.0

Table 7.4: Mode to mode angular separation. Maximum power inter-mode (~rℓm(n̂⋆)) alignments comparison in the: TOH5-TOH5 data (below diagonal)

and HILC5-HILC5 data (above diagonal). The alignments below 10◦ were highlighted in blue while the orthogonal alignments (≥ 80◦) were highlighted

in green.
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Figure 7.8: Results of preferred reference frame search. Ineach panel, for each of the con-

sidered data we plot the distribution of power accumulated in individual modes as described

in table 7.1.
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Chapter 8
Tests of the Poincaré dodecahedral

space topology hypothesis

The matherial presented in this chapter was published in Astronomy and Astrophysics (Lew

& Roukema, 2008) as a follow-up paper to the Roukema et al. (2004).

8.1 Abstract

It has been suggested by Roukema and coworkers (hereafter R04) that the topology of the

Universe as probed by the “matched circles” method using thefirst year release of the

WMAP CMB data, might be that of the Poincaré dodecahedral space (PDS) model. An ex-

cess in the correlation of the “identified circles” was reported by R04, for circles of angular

radius of∼ 11◦ for a relative phase twist−36◦, hinting that this could be due to a Clifford

translation, if the hypothesized model were true. R04 did not however specify the statistical

significance of the correlation signal.

We investigate the statistical significance of the signal using Monte Carlo CMB simula-

tions in a simply connected Universe, and present an updatedanalysis using the three-year

WMAP data. We find that our analyses of the first and three year WMAP data provide

results that are consistent with the simply connected spaceat a confidence level as low as

68%.

8.2 Introduction

If the topology of the Universe were multiply connected, as opposed to simply-connected,

and if the comoving size of the fundamental domain (FD) were smaller than the comoving

distance to the surface-of-last-scattering (SLS), then itshould be possible to detect repeat-

ing patterns in the CMB fluctuations using full-sky data of sufficient signal-to-noise ratio.

These fluctuations would be those lying along pairs of circles defined by points of inter-

section between different copies of the SLS in the covering space (Cornish et al., 1998b).
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These patterns although found in different directions of the sky, would constitute so-called

“matched circles”, as they would represent the same physical points, but observed from dif-

ferent directions due to topological lensing.

While this principle is true for any 3-manifold model of space, the number of pairs of

“matched circles” or their sizes and relative spatial orientations, as well as their handed-

ness, or phase shift, depend significantly on the assumed 3-manifold and its topological

properties, thus providing a way to observationally distinguish between models.

While the positive correlation signal from matched pairs isexpected directly from the

metric perturbations, via the Sachs-Wolfe Effect (Sachs & Wolfe, 1967), there are many

other cosmological effects (e.g. the Doppler effect, the Integrated Sachs-Wolfe Effect

(ISW)) (Kunz et al., 2008), astrophysical foregrounds (Bennett et al., 2003b) and instru-

mental effects that constitute noise, from the point-of-view of a matched circles search, and

the magnitude of the effects depends on the angular scale.

Although the CMB data have been analyzed to detect topological lensing signals since

the availability of the COBE data (Roukema, 2000), the release of the WMAP observa-

tions has provided full-sky data of unprecedented accuracyand resolution, opening up more

promise for direct tests of the topology of the Universe. Although the “matched circles” test

is straightforward, it is limited due to noise and FD size constraints. Additional theoretical

predictions can be used as independent tests that involve predictions of CMB temperature

and polarization fluctuations for the case that the Universeis multiply connected, both in

real and spherical harmonic spaces, or topological effectson the CMB power spectrum (Au-

rich et al., 2004; Weeks, 2003; Gomero & Rebouças, 2003; Dineen et al., 2005; Riazuelo

et al., 2004a; Lehoucq et al., 1999; Inoue, 1999; Niarchou & Jaffe, 2007; Cornish et al.,

1998a; de Oliveira-Costa & Smoot, 1995; Kunz et al., 2006; Luminet et al., 2003; Niar-

chou & Jaffe, 2006; Phillips & Kogut, 2006; Caillerie et al.,2007). Although a successful

“matched circles” test would provide strong support for theUniverse being multiply con-

nected, no statistically-significant evidence has been found (Cornish et al., 2004; Key et al.,

2007).

In Roukema et al. (2004) we performed a “matched circles” search using the first year

WMAP ILC map (Bennett et al., 2003b) and found an excess correlation, which one would

expect under the PDS hypothesis for circles of angular radiiα ∼ 11◦ with centers towards

(l◦, b◦) = {(252, 65), (51, 51), (144, 38), (207, 10), (271, 3), (332, 25)} and their opposites

(Fig. 8.1).

In this present work we have two key objectives. We revisit those results, verify the

existence of the excess correlations and quantify their statistical significance. Secondly, we

update the search with the WMAP three year data release, extend it to probe three different

resolutions (smoothing lengths) and define the detection confidence thresholds. We also

discuss the effects of underlying 2-point correlations, smoothing length and incomplete sky

coverage on the value of correlation coefficient.

In section 8.3 we introduce the datasets used in the analysis, provide details of their

preprocessing, and describe simulations that we use to complete a statistical significance
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Fig 8.1: Visualization of the matched circles solution reported in Roukema et al. (2004) and

reproduced to constrain its statistical significance, over-plotted on the first year ILC map

masked with Kp2 sky mask.

analysis. In section 8.4 we introduce the details of the statistics being performed and our

confidence-level analysis. Results are presented in section 8.5. We conclude in section 8.8.

8.3 Data and simulations

We perform a “matched circles” search using two sets of data.Firstly, for the sake of

compatibility, we choose the same data as in Roukema et al. (2004) – i.e. the first year

WMAP ILC map.

The topologically interesting signal generally dominatesover the Doppler (and other)

components on large scales (Riazuelo et al., 2004a): this isa motivation for using a large

smoothing length. However, extended flat fluctuations that happen to have a similar large

scale trend can lead to false positives on large scales (Key et al., 2007). This implies a

trade off in the choice of the smoothing length of the data, between large smoothing lengths

preferred by the topologically interesting content, and small smoothing scales which avoid

false positives induced by chance correlations of extendedflat fluctuations.

We choose to test three different smoothing scales:FWHM ≡ λ ∈ {1◦, 2◦, 4◦}.

The ILC map was obtained from a linear combination of one degree smoothed maps in

the five frequency bands, by inverse noise co-adding them, hence its resolution is consistent

with a one degree smoothing scale.

We further Gaussian smooth this map in spherical harmonic space by convolving it with

Gaussian beam response kernels of FWHM corresponding to2◦ and 4◦ respectively, to

obtain the first set of data for matched circles tests.

Secondly, we choose the three year foreground reduced WMAP data from individual

frequency bands Q[1/2],V[1/2] and W[1/2/3/4] and co-add them into one map, according
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to the inverse noise weighting scheme used in Hinshaw et al. (2003b). We call the resultant

map the “INC map”. We smooth the INC map using a Gaussian convolution kernel to four

different FWHM smoothing lengths:λ ∈ {0.5◦, 1◦, 2◦, 4◦}.

We downgrade all data from the initial resolution defined by the Healpix pixelization

scheme (Górski et al., 2005) with resolution parameterns = 512 (res. 9) to a resolution pa-

rameter ofns = 256 (res. 8). We remove the the residual monopole and dipole components

(ℓ = 0, 1) in spherical harmonic space1, because these components are of no cosmological

interest. At the final stage of preprocessing, we remove the residual monopole by offsetting

the maps in real (2-sphere) space so that〈T 〉 = 0 outside the Kp2 sky mask.

Throughout the analysis, i.e. for both the ILC and INC maps, we use the Kp2 sky mask,

which masks∼ 15% of the sky including the brightest resolved point sources.The Kp2 sky

mask is different from the sky mask used in Roukema et al. (2004). While the ILC map

is best suited e.g. for the full sky low multipoles alignmentanalysis, for the purpose of the

matched circles test, the residual galactic contaminationshould be masked out, although we

realize that the use of the Kp2 mask may be too conservative. In App. 8.6.2 we compare the

impact of different sky masks and demonstrate that our results are not very sensitive to the

precise characteristics of the sky mask.

For each of the two data sets, we produceNsim = 100 realistic Gaussian random field

(GRF) signal and noise simulations of the WMAP data to quantify the statistical significance

of plausible detections, to discard false positives, and toresolve the2σ-confidence levels.

Therefore, for the first dataset we simulate the first year ILCmap, inside “region 0”

defined outside the Kp2 sky mask of Bennett et al. (2003b), andfor the second dataset we

simulate the three year WMAP INC map.

As will be shown in Sect. 8.4, the matched circles correlation coefficient depends on the

monopole value in the map. Also, in principle it is sensitiveto the shape of the two-point

correlation function, since the correlator is a two-point statistic, by construction, and so it

becomes a measure of the underlying intrinsic two-point correlations in the CMB (albeit

via a specially selected subset of pairs of points on the matched circles). Therefore it is

necessary to take into account possible variations in the underlying two-point correlation

function with varying angular separation, which if not properly accounted for in simulations

may lead to under(over)-estimation of the confidence level thresholds.

Given that the concordance best fit LCDM cosmological model (Spergel et al., 2007)

yields a very poor fit to the CMB data at large angular scales, due to lack of correlations in

the two-point correlation function of the data with respectto the LCDM model at scales>

60◦, and that the correlation statistic is sensitive to the details of the intrinsic two-point CMB

correlations (and in particular to any large scale anomalies), we do not assume the LCDM

model to help create our simulations. Instead, we take a model independent approach. As

the CMB reference power spectrum in our GRF simulations of the expected signal, we use

the reconstructed power spectrum from the three-year WMAP data (Hinshaw et al., 2007)

1Since the residual WMAP maps foregrounds are strong, we perform this step using the Kp2 sky mask to

keep the compatibility between the data and simulations.
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2. Furthermore, we neglect the effects of cosmic variance, and only randomize the phases

(and noise realizations) in our simulations. We remove theCℓ=0,1 (i.e. the monopole and

dipole) components from our simulations.

We use the same set ofalms representing the CMB signal for a single simulation of the two

datasets, followed by convolution with instrumental beam profiles.

For each differential assembly (DA), we simulate the noise according its properties and

scanning strategy (number of observations per pixel in map)using uncorrelated, Gaussian

noise.

The simulations are preprocessed in exactly the same way as the observational data. We

neglect the impact of the (resolved or unresolved) point sources which is negligible, since

we apply relatively large smoothing and use the Kp2 sky mask for the analysis.

In Section 8.6, we discuss the sensitivity of our results to the degree of smoothing, the

sky mask applied, and the assumed statistical approach in greater detail.

8.4 Statistics

We describe our correlator statistics, parameter space, search optimization and approach for

assessing the statistical significance.

8.4.1 Matched circles test

As in Cornish et al. (2004) and Roukema et al. (2004) we use a correlation statistic of the

form

S = 2
〈TimiTjmj〉

〈T 2
i mimj〉 + 〈T 2

j mimj〉
(8.1)

where the indexi defines a set of all points in the “first” set of six circles related to the

orientation of a fundamental dodecahedron; indexj is the set of corresponding points along

the matched six circles; andmi,mj are cut sky weights of the Kp2 sky mask, which can

have a value of either0 for a masked pixel or1 for an unmasked pixel. Clearly, perfectly

matched circles would yieldS = 1, which, due to non-zero noise contributions, is not

possible in reality.

The dispersion of the correlation coefficient as defined in Eq. 8.1 is statistically en-

hanced in the small circles regime, due to the joint effect ofthe reduced number of points

probing the matched circles as compared to larger circles, the accidental correlations of

large (w.r.t. the smoothing scale) flat fluctuations that happen to have similar (or opposite)

large scale trends, as well as due to the fact that the r.m.s. values necessarily shrink (down

to zero in case of zero mean fluctuations) for circles of size comparable or smaller than the

smoothing length.

2In the highl end (noise dominated range) of the reconstructed power spectrum, the unphysical negative

values are zeroed to have a zero contribution to the total variance of the map. This approximation has a negli-

gible effect due to small statistical weight of the large l multipoles, and large exponential Gaussian smoothing

that we apply to the data. In practice, this approximation has a negligible effect on the variance of the resulting

simulation. Moreover, it can at most only make our analysis more conservative.
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As shown in Sect. 8.5, this reduces the ability to robustly determine the degree of con-

sistency or inconsistency of data with simulations, due to the finite accuracy of theS values

and significant steepening of confidence-level contours in this regime.

We note that theS statistic value would tend to unity, regardless of the shapeof the

underlying CMB fluctuations, as the monopole increases in the CMB maps. One could

expect a similar effect for the dipole component, for small circles. This effect would affect

the simulations and the data to the same extent. The sensitivity of the test would however be

significantly weakened and as such we remove the monopole anddipole components from

the datasets for the analysis, and defer study of the impact of other smallℓ multipoles to

section 8.6.

8.4.2 Parameter space

We perform a resolution-limited, full parameter-space search over the orientation of the

fundamental dodecahedron, and over a limited range of the identified circles sizes of up to

20◦. The parameters are defined as follows:l, b – galactic longitude and latitude of the first

circle, g – the angle of rotation of the dodecahedron about the axis determined by(l, b), a

– the angular radius of the matched circle, ands – the twist parameter defining the relative

phase offset of the matched circles.

We use the following parameter space:

l ∈ [0◦, 72◦)

b ∈ [ 26.57◦, 90◦)

g ∈ [0◦, 72◦)

a ∈ [1◦, 20◦]

s ∈ {−36◦, 0◦, 36◦}

(8.2)

The boundaries in(l, b) conservatively cover a larger region than the one twelfth ofthe

sphere from which a “first” circle centre can be chosen non-redundantly. The range of angle

g is 72◦, to cover all possible orientations of the fundamental dodecahedron for a chosen

“first” circle centre. Values larger than72◦ would yield the same set of 12 circle centres as

a rotation by that angle modulo72◦. The interval in circle sizea is chosen to be roughly

symmetric and centered about the11◦ value suggested by Roukema et al. (2004). The three

twistss are chosen as in Roukema et al. (2004).

For all datasets we use the same resolution of1◦ in probing the parameter space, except

for the data with smoothing lengthλ = 0.5◦, in which case we use a resolution of0.5◦.

8.4.3 Accuracy and search optimization

The resolution of the data that we analyze is spatially constant and is limited by the finite

pixel size, so circles of different sizes are probed by different numbers of pixels.

As the parameter space of the search is large, it is importantto consider the trade-off be-

tween the accuracy of the estimates ofS (directly related to the number of pixels probing
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Fig 8.2: Left panel: Convergence ofS values to the “ideal” fiducial valueSfid = S(r =

1000) as a function of resolution parameterr (a sampling density resolution parameter,

defining the number of pixels to be used, to probe the CMB fluctuations along circles

through Eq. (8.3)) and as a function of circle sizea. TheNpix(a) function shape for a given

smoothing length is fitted linearly, so that the accuracy inS values was approximately con-

stant for all considered circles radii. The assumed workingprecision level of∆S = 0.01 is

marked with thick horizontal line. For clarity, only∆S relation derived for data smoothed

with Gaussianλ = 0.5◦ is shown. Similar relations are obtained for the remaining three

smoothing lengths. The average value (black thick line) from all tested circles radii is used

to define the required value ofr parameter for the circle search with data smoothed to

0.5◦, in order to achieve the targeted accuracy onS value. Right panel: AverageS con-

vergence relations derived for data with different smoothing lengthsλ ∈ {0.5◦, 1◦, 2◦, 4◦},

along with1σ error bars from 20 simulations. The intersections of these with the horizontal

(black thick) line give the required values ofr for each smoothing length in order to obtain

the assumed working precision of∆S = 0.01.

the underlying fluctuations) and the numerical computational time needed to obtain better

accuracy. However, the speed of the search can be substantially increased, since the ef-

fective resolution of the data in our case is not limited by the pixel size, but rather by the

smoothing length.

In this section, we focus on the density of points (probing the fluctuations along circles

in the sky) required to obtain a given accuracy in estimatingS, and its dependence on the

angular radius of the circlesa, a circle sampling density parameterr, the map resolution

parameterns, and the smoothing length properties of the data.

Maps smoothed with larger smoothing lengths have fewer significant, high-spatial fre-

quency Fourier modes, and there is no need for fine sampling inorder to fully encode the

information content along the circles. Assessing the same level of precision for smaller

circles also requires a smaller number of pixels than for larger circles.

We perform a series of tests to determine the sampling density required to achieve our

desired accuracy level. The tests rely on measuring the speed of convergence to the “ideal”

fiducial Sfid value, derived using far more points in the circle than the number of available
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pixels along the circle in our datasets3, as a function of the increasing sampling density.

We empirically model the circle sampling-density functionin such a way that for a given

r value parameter, and for a given smoothing length of the data, the accuracy of the resulting

S values (i.e. the statistical size of the departure from the fiducial value) is approximately

the same for all circle sizes (Fig. 8.2 left panel). We use thefollowing fitted function:

Npix =
(
3.40a[deg] + 76.85

)( r

32

)( ns

256

)
(8.3)

whereNpix is the number of pixels used for calculation ofS, for a circle of angular sizea,

and for a map of resolutionns. The resolution parameterr controls the sampling density.

In practice, we choose the closest, even integer as anNpix value for the calculations. This

empirically-devised formula yields approximately the same accuracy of derived values of S

for all circle sizes (Fig. 8.2 left panel), and holds for all smoothing lengths. The aim is to

find a value ofr, for each smoothing length, which will provide sufficient accuracy.

We therefore calculate the deviation∆S(r)

∆S(r) = 〈|Si(r) − Sfid
i (r = 1000)|〉 (8.4)

where the〈〉 averaging is performed over all curves derived from Eq. 8.3 for circle radii

a[deg] ∈ {3, 5, 10, 20, 30, 40}.

We assume the working accuracy forS values to be∆S = 0.01 throughout the analysis.

This defines the required values of the sampling density parameterr (Fig. 8.2 right panel)

and the corresponding number of pixels to be used (Eq. 8.3) toachieve the targeted accuracy.

For the smoothing lengthsλ[deg] ∈ {0.5, 1, 2, 4}, the required resolution parameter values

arer ∈ {26, 18, 12, 8}. We use these values throughout the analysis with both the data and

the simulations.

8.4.4 Statistical significance

In this section we discuss our statistical approach for quantifying the confidence intervals.

Since our simulations simulate CMB fluctuations in an isotropic, simply-connected Uni-

verse, we test the consistency of the WMAP data with the null hypothesis that the CMB is

an arbitrary realization of the GRF in a simply-connected space. We quantify the degree

of consistency viaS correlator values obtained from the data, and compared withthose of

simulated distributions fromNsim = 100 GRF simulations (Sect. 8.3). As an alternate

hypothesis we choose the PDS topological model. The inconsistency of the data with the

simulations, at high significance level, would then be considered as consistency in favor of

the alternative hypothesis (PDS model).

Since we are interested only in the highest positiveS correlations, we build probability

distribution functions (PDFs) ofSmax(a), the maximal value of the correlationS(a) found

in the matched circle search in the parameter space(l, b, g, s) (Eq. 8.2), usingNsim = 100

3 For all directions pointing inside a single pixel, the same temperature value of that pixel is used.
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simulations4. We probe the underlying PDFs ofSmax(a) at8 different values ofa, i.e. for

a ∈ {1, 2, 5, 8, 11, 14, 17, 20} in degrees.

We reconstruct the confidence intervals[c(a), d(a)], for the 68% and 95% confidence

levels defined by the (cumulative) probabilityP of finding a GRF, simulated, CMB realiza-

tion that yieldsSmax
sim > Smax

data :

P (Smax
sim > Smax

data )(a) = 1 −
d(a)∫

c(a)

f(Smax, a)dSmax

= 1 −
i=Nsim∑

i=1,Smax
sim,i ≤Smax

data

1/Nsim

(8.5)

wherec(a) = min(Smax)(a) andf(Smax, a) is the MC probed PDF of theSmax values.

We interpolate confidence interval contours for the remaininga values of the parameter

space using 4th order polynomial fit.

In the next section we apply this procedure to the consideredWMAP datasets and sim-

ulations and present our results.

8.5 Results

In Fig. 8.3 we present results of the all-parameter-space search for the WMAP first year

ILC map (left panel), and the three year WMAP INC map (right panel).

The signal at∼ 11◦ in Fig. 4 of Roukema et al. (2004) is reproduced and plotted with

red crosses in Fig. 8.3 (middle-left).

Clearly, it is not necessary to process large number of simulations to resolve high con-

fidence level contours, since all the datasets are consistent with the simply connected space

GRF simulations at a confidence level as low as about 68% at allsmoothing scales.

Is is easily seen that as the circle size shrinks to zero (a ≤ 2◦), it is difficult to estimate

precisely the significance of the detections since the CL contours steepen, while the accu-

racy of the S value determination is fixed at∆S ∼ 0.01. This effect is most severe for large

smoothing scales, as expected.

We note that the correlationsS tend to increase in relation to the smoothing length

applied to the data.

In particular, the signal reported in Roukema et al. (2004) is sensitive to increases in the

smoothing length. While at the smoothing length ofλ = 1◦ there is practically no excess

maximum inSmax(a ≈ 12◦) for s = −36◦ relative to theSmax values fors = 0◦ and

s = +36◦, on the other hand, the excess is clearly seen at the smoothing length ofλ = 4◦,

where its significance increases almost up to the 95% CL.

4 Statistically there are some small differences in theS values resulting from probing slightly different

angular separations (arising due to different separationsof pairs of points, for the same pair of matched circles,

when calculated with two different phase twists:s = 0 and= ±36), due to the dependence of theS value

on the underlying CMB two-point correlation function. For such small twists, this is found to be of the same

magnitude as the statistical error on the∆S(≈ 0.01) for all considered circle radii.
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The results for the three year INC data are consistent with the first year data, in the sense

that no statistically important excess correlations are found.

In addition to analysing our two primary datasets, we also carried out the following

complementary searches.

We completed an all-parameter-space search using the threeyear WMAP ILC data. We

find that the excess correlation corresponding to the hypothesized PDS model is weakened

for all smoothing lengths (fors ∈ {0◦,+36◦}), and basically indistinguishable from the

noise of what would be false positive detections if we were todefine the 68% confidence

level as a detection threshold. Fors = −36◦, we plot theSmax(a) values for the three year

ILC data with a black line in the left column of Fig. 8.3.

Our other complementary test was that we performed a0.5◦ resolution all parameter

space search, using first and three year INC data and did not find extra strong localized

correlations. However since the computation time increases with the power of the increased

resolution (i.e. increasing the resolution by a factor of two increases the calculation time

by a factor of2n wheren = 4 is the number of parameters in parameter space) we haven’t

performed the significance analysis with simulations, and therefore we do not present these

results.
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Fig 8.3: Results of the search in the parameter space (see Sect. 8.4.2) for the highestS

correlations in the first year WMAP ILC map (left column) and three year INC map (right

column) smoothed toλ = 1◦ (top), λ = 2◦ (middle), λ = 4◦ (bottom). For clarity only

the highest 72S(a) statistic values are plotted for each of the three considered phase shifts:

−36◦, 0◦, 36◦ marked with red (+), green (×) and blue (∗) respectively, and separated by

0.2◦ offset for better visualization and comparison. The red crosses correspond to the PDS

model. The thick solid line in the left column show theSmaxvalues for a search in the three-

year ILC data with a phase shift of−36◦. The68% and95% confidence level contours from

Nsim = 100 simulations are over-plotted. Clearly we reproduce the results of Roukema

et al. (2004). Most of the points with the highestS values in the range of10◦ ≤ a ≤ 12◦

closely correspond to the solution depicted in Fig. 8.1. It is easily seen that much higher

correlation coefficients would have been required in order to significantly reject the null

hypothesis that the Universe is simply connected in favor ofthe PDS model alternative

hypothesis.
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8.6 Power spectrum, cut sky and smoothing length dependence

on S correlations.

8.6.1 S dependence on the CMB power spectrum

As mentioned in Sect. 8.3 theS correlation value depends not only on the particular align-

ment of CMB fluctuations, but also on the underlying CMB two-point correlation function

(or its Legendre transform – power spectrum), as it is also a two point statistic. Therefore

any discrepancies of the data from the assumed model will be statistically imprinted onto

theS values evaluated from simulated maps (generated accordingto the assumed model).

This will lead to biases in estimates of the confidence level thresholds. Given that the na-

ture of the large scale (mostly quadrupole and octupole) anomalies of the WMAP data w.r.t.

concordance LCDM model is unknown, we assumed a model independent approach for

generating simulations as described in Sect. 8.4. In this section we show the impact of

biasing ofS values due to large scale uncertainties in the assumed CMB power spectrum.

In order to quantify the impact of the underlying CMB power spectrum on theS corre-

lator values, we perform the following exercise.

We create two INC simulations of the WMAP three year data, fortwo different power spec-

tra, yet keeping exactly the same phase information in both cases.

One simulation is made using exactly the power spectrum reconstructed from the WMAP

observations as in Sect. 8.3 (i.e. neglecting cosmic variance effects).

The other simulation is made using a random realization of the best fit LCDM model (Hin-

shaw et al., 2003b) but with the same phase information as in the first simulation. We Gaus-

sian smooth them to common resolution with beam of FWHM= 1◦. This guarantees that

the differences in S values will only be due to different underlying power spectra5. More

specifically, since the LCDM model yields a good fit to the WMAPdata for largel’s, the

discrepancies will be only due to the large scale anomalies.Using20 random orientations

of the fundamental dodecahedron, we then calculate the average of differences of theS cor-

relator values between the two maps. That is, we calculate:〈∆S〉 = 〈SLCDM −SWMAP 〉.
Hence, the positive〈∆S〉 values show the excess correlations that one would additionally

get if the LCDM model was assumed, as compared to the “exact” realization of the recon-

structed WMAP power spectrum (andvice-versafor the negative values).

In Fig. 8.4 the〈∆S〉 relation is shown with red line. Clearly, the strongest additional

correlations appear for the smallest circles, i.e. for the largest angular separations in the

two-point correlation function, and are as large as∼ 0.15. (These scales are additionally

contaminated due to large smoothing scales as compared to the circle size). While for the

circle sizes of abouta ∼ 10◦ the effect is small, it is obvious that at smaller circle sizes

the confidence level contours obtained from the simulationsperformed according to the

LCDM model would be too conservative than it is needed. Therefore, in this regard, given

that the LCDM model is currently widely accepted, we consider our analysis to be very

5The noise component is negligible at the considered smoothing scales of1◦
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Fig 8.4: Average difference〈∆S〉 = 〈SLCDM − SWMAP 〉 correlator values, as a func-

tion of circle size, statistically probing different regions of the underlying power spectrum

(red line). With green line also the difference relation is plotted for the orientation of the

dodecahedron depicted in Fig. 8.1.

conservative. This plot includes the dependence of〈∆S〉 for larger circle sizes than those

which we analyzed. And it is easily seen that for scales of about 40◦ the confidence level

intervals would be underestimated.

We therefore conclude that the simply connected space hypothesis would be consistent

with the data at yet even smaller CL, if the LCDM model were assumed for the generation

of simulations.

8.6.2 S dependence on galactic sky cut

In this section we show the effects of different galactic skycuts on the resulting amplitude

of the correlation signal. For this purpose we work with the first year WMAP ILC map,

smoothed to a resolution of2◦ without mask.

We compute the the correlation statistics for the orientation of the dodecahedron found

in Roukema et al. (2004) and confirmed in this work (i.e. for the dodecahedron with the

following face centers

(l◦, b◦) = {(252, 65), (51, 51), (144, 38), (207, 10), (271, 3), (332, 25)} and their opposites).

We then apply different sky masks and show theS(a) relations in Fig. 8.5. We used three

different sky masks: which we call “bgc”, “Kp2”, and “kp03”.The first of these is the one

that was used in Roukema et al. (2004) (i.e. the galactic plane is masked for|b| < 2◦, and

points within20◦ from the Galactic Center are masked). The second and third sky masks

correspond to the Kp2 and the third year Kp0 sky masks (Bennett et al., 2003b).

Clearly, the fine details on the sky masking in case of ILC mapsdo not have large impact

on the resultingS correlation value, except for the “no mask” case where the correlation

peak is lower (most likely due to some residual foreground contaminations of the Galactic
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Fig 8.5: Effects of different sky masks on theS(a) correlation statistic. See text for mask

abbreviations definition (Sect. 8.6.2). One sigma CL contour derived for the case of Kp2 is

also plotted.

plane).

We do not show the galactic sky cut dependence for the INC dataset. This is because

there are stronger foregrounds present than for the ILC dataset, so that it is not straight-

forward to presmooth the map without contaminating the “clean” regions of the sky by the

Gaussian tails of smoothing kernel.

8.6.3 S dependence on smoothing length

In this section we present the impact of different smoothinglengths used during map smooth-

ing process on theS correlation values. We show the dependence using the dodecahe-

dron orientation corresponding to the highest correlationvalue (Smax value) ata = 12◦

in Fig. 8.3 (middle-right) which corresponds to the dodecahedron with faces(l◦, b◦) =

{(49, 51), (91,−2), (144, 40), (256, 64), (333, 23), (28,−10)} and their opposites. This

closely matches the dodecahedron depicted in Fig. 8.1. We use the WMAP three year INC

map and the Kp2 sky mask.

In Fig. 8.6 we show

theS(a) values for three different smoothing lengths used in the analysis. The charac-

teristic trend towards higher correlation coefficients as smoothing length increases is clearly

apparent, but the the 68% CL contours increase by about the same amount.
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8.7 Discussion

The analysis of the correlations derived from the data and presented in the previous section

finds no statistically-significant detections. The cross-correlations of theS values, obtained

for different angular radii of the matched circles, were however neglected. It is of course

faster to compute confidence intervals for a sparse parameter space and interpolate in be-

tween. However, the significance of any detections found this way (i.e. conditionally to the

a priori assumed circle radii) might be overestimated, compared to the case when all pos-

sible correlations were accounted for in the full covariance matrix analysis. In the present

work, since we do not find any significant deviations from the null hypothesis (i.e. we do

not find any strong outliers in theS correlations) in any individually probed value of the “a”

parameter, we find no need for any further extensions to the significance analysis already

pursued.

We note that these cross-correlations are present not just in the data, but also in the

Monte-Carlo simulations, so they affect the analyses of simulations and data to the same

extent.

Finally, we note that our statistical approach of considering only the maximalS correla-

tion values could be altered to consider the full distributions ofS correlations. However, we

are especially interested in viable candidates for non-trivial topology (especially in the pro-

posed correlation signal around angular circle radii of11◦) and as such, the models with the

largestS values are the best candidates. Given that there can be only one correct orientation

of the fundamental dodecahedron and hence only oneS correlation value corresponding to

it (most likely the largest locally foundS value), in the alternative way involving the full

distributions ofS correlations, the test would be heavily dominated by numerous values

that will not be associated with the true topological correlation signal. As a result, the test
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would mostly measure a degree of consistency between the simulations and data with re-

spect to underlying two-point correlations via the circleson the sky, rather than candidates

for non-trivial topology. We therefore build and rely on thestatistics of specifically selected

(in the full parameter space search)S values, one for a given simulation at a given circle

radius, to build our statistics and reconstruct the confidence thresholds. Although we are

aware that relying on the distributions of maximal values ofrandom variates may lead to

asymmetrical distributions with enhanced tails, we note that in the case of theS statistics,

the possible values are by definition restricted to within the range[−1, 1]. We also note that

it is unnecessary to resolve high confidence level contours,since the data are consistent with

simulations mostly to within∼ 1σ confidence contour.

8.8 Conclusions

In Roukema et al. (2004) it has been suggested that the shape of the space might be con-

sistent with the Poincaré dodecahedral space (PDS) model (Fig. 8.1). This suggestion was

due to an excess positive correlation in the matched circlestest (Cornish et al., 1998b) of

the first year WMAP ILC map, however the statistical significance of this excess was not

specified.

We have revisited those results and found consistent correlation excess corresponding

to the same orientation of the fundamental dodecahedron using independent software.

We extended and updated the matched circles search with the WMAP three year ILC

data and the three year foreground reduced, inverse noise co-added map, and tested these at

three different smoothing scales(1◦, 2◦, 4◦).

We performed an analysis of the statistical significance of the reported excess, based on

realistic and very conservative MC GRF CMB simulations of the datasets.

We find that under “matched circles” tests, both the first and three year WMAP data

are consistent with the simply-connected topology hypothesis, for all smoothing scales, at

a confidence level as low as 68%, apart from the first year ILC data smoothed to4◦, which

are consistent at 95% CL.



Chapter 9
Summary, conclusions and outlook

The current concordance cosmological model offers number of predictions that allow, or

will allow experimentally verify its properties and concretize the inflationary physics that is

now embedded into the standard cosmological model as a generic solution to the number of

long-standing cosmological problems, and as a generator ofa nearly-adiabatic, and nearly-

Gaussian, density perturbations imprinted over nearly-flat, homogeneous and isotropic back-

ground, with nearly scale invariant power spectrum, and with small amount of tensor per-

turbations in a form of gravitational wave background. Someof these predictions, most

notably, the curvature of spatial sections, statistical isotropy, Gaussianity and tilt of the

primordial power spectrum are now currently accessible cosmological observables via the

observations of the cosmic microwave background radiation(CMBR) and they serve as

valuable discriminators between viable cosmological models. Violations of any of these

predictions would escape beyond the scope of the standard model and would rise a need for

its revision.

The work pursued in this thesis aimed at direct testing two ofthese predictions: the

Gaussianity, and the statistical isotropy. Interestinglythere exist few puzzling anomalies in

the available observations of the CMBR, that are tentatively incompatible with the generic

ΛCDM cosmological model. We performed a number of statistical tests: both in real, and

in spherical harmonics space, utilizing the recent CMBR observations of the Wilkinson

Microwave Anisotropy Probe (WMAP). Apart from what has already been known, we at-

tempted to either seek for new deviations from the predictions of Gaussianity or statistical

isotropy, or further explore the well-known anomalies via number of new and independent

statistical assessments in order to quantify how strongly they violate the two predictions.

Throughout the work, the analysis was heavily based on realistic Monte-Carlo simula-

tions of Gaussian random fields (GRF), fitted to the technicalspecifications of the WMAP

satellite, and to the requirements of the generic simplest cosmological scenario: i.e. to the

best-fit, reconstructed power spectrum of theΛCDM model. These simulations defined a

reference null hypothesis, and were created along with a number of statistical tools, esti-

mators and other utilities, and were entirely implemented in a self-developed, dedicated

numerical, object-oriented code, that has been developed over the last few years.
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We have addressed number of problems some of which were published in a refereed

cosmological journals.

In particular we performed a blind real-space test of Gaussianity and the statistical

isotropy via local measurements one-point temperature distributions, and addressed the sta-

tistical significance in a number of different ways (chapter3). We tested the significance of

local deviations from Gaussianity (such as the cold spot), and global hemispherical asym-

metry anomalies in the CMBR power distribution. This work has been published in Journal

of Cosmology and Astroparticle Physics (Lew, 2008b), and the details are specifically sum-

marized in section 3.8.

We developed and implemented a new efficient method for measuring the significance

of the hemispherical power asymmetry, and working within a dipolar modulation model,

for the first time, we explicitly estimated the relevant model parameters as a function of

scale (multipole bin) (chapter 4). These results are currently accepted for publication in

Journal of Cosmology and Astroparticle Physics and are alsoavailable as Lew (2008a), and

the details of this analysis are summarized in section 4.9.

We also pursued a Gaussianity tests of the CMBR WMAP maps using Minkowski func-

tionals (chapter 5). This work was motivated by the fact thatthe previous analyses were not

optimized on testing gaussianity exclusively within a particular angular scale, and therefore

were dominated by the cumulative effects up to the effectivescale of the either: resolution

defined by the pixel size of a low-resolution map, or by an applied low-ℓ-pass filter. In

order to complement some of these tests we performed an analysis in a selected multipole

bins, testing thereby the corresponding scales with largersignal-to-noise ratio, and detected

a strong signatures of the residual galactic foregrounds contamination. The details of these

tests are outlined in section 5.6. The work presented in chapter 5 is now in preparation for

subsequent publication.

We have also pursued (chapter 8) a statistical analysis of one of the cosmological sce-

narios with compact space topology: i.e. the one with multiply-connected topology of

Poincaré dodecahedral shape. These models were motivatedby tentative indication from

the recent measurements of curvature of space, hinting on its slightly positive values, as

well as by the apparent suppression of power at the currentlyobservable horizon scales. We

tested the model via the method of identified circles. We found results consistent with our

previous works on this subject, however we and managed to refute the previously found

correlation signals as statistical unimportant. This worktherefore complements the earlier

one, in which the statistical significance analysis was not performed. This work has been

published in Astronomy and Astrophysics (Lew & Roukema, 2008) and the main results

are summarized in section 8.8.

Furthermore, we studied the well-known large-scale anomalies of the CMBR: i.e. the

alignments of the low-ℓ multipoles, issues of so called m-preference (chapter 7) and the

low order multipoles power spectrum shape anomalies (chapter 6). We introduced and

performed a new real-space based tests, corresponding to their, previously studied, spherical

harmonic space counterparts. We extended the search for theinter-multipole alignments,
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quantified their significance, and proposed a number of possibly useful generalizations.

We also discussed the stability and robustness of the methods assumed in the literature,

and performed a comparison statistics using a number of currently available renditions of

the CMBR full sky foregrounds cleaned maps. We also estimated the significance of the

anomalous, at first glance, shape of the low order multipolesin the CMBR angular power

spectrum. The analysis yielded consistent results with theprevious similar analysis. The

results and discussion are detailed in sections 6.4 and 6.5 respectively.

Outlook There is a number of future paths that will be of great interest from both: the

scientific point of view, but also from the point of view of thenumerical programming.

Both of these always provide lots of fun and a large margin foroptimizations.

Apart from few updates, which were already discussed in the concluding sanctions of

the previous chapters, the practical constraints of the levels of the primordial non-Gaussianity

will require generation of high resolution non-Gaussian simulations, which serve as testing

ground for various statistical estimators. Also, utilization of the future, accurate CMBR po-

larization observations will increase the signal-to-noise ratio of maps of the primordial grav-

itational potential, reconstructed from temperature and polarization observations. Since the

polarization radiation transfer function is out-of-phasewith the temperature radiation trans-

fer function, it will necessarily complement the primordial gravitational potential signals.

These challenges open up a qualitatively new window on the aspects of tests of primordial

non-Gaussianity, whose importance is continuously increasing in the recent years in the

context of constraining consistent inflationary models.

Finally, as far as the constraints on the inflationary physics are concerned, it will be very

interesting to address the issue of the significance of glitches, found in the CMBR power

spectrum, and investigate these in light of the previously proposed inflationary models that

can explain these features via modifications in the shape of the inflaton potential, especially

via the expected glitch-like features that alter the primordial power spectrum at both the

horizon scales and the sub-horizon scales.
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Riazuelo, A., Caillerie, S., Lachièze-Rey, M., Lehoucq, R., & Luminet, J.-P. 2006, ArXiv

Astrophysics e-prints,[astro-ph/0601433]

Riazuelo, A., Uzan, J.-P., Lehoucq, R., & Weeks, J. 2004a, Phys. Rev. D, 69, 103514,

[astro-ph/0212223]

Riazuelo, A., Weeks, J., Uzan, J., Lehoucq, R., & Luminet, J.2004b, Phys. Rev. D, 69,

103518 (arXiv:astro-ph/0311314)

Riess, A. G. et al. 2004, Astrophys. J., 607, 665,[astro-ph/0402512]

Rigopoulos, G. I., Shellard, E. P. S., & van Tent, B. J. W. 2007, Phys. Rev. D, 76, 083512,

[arXiv:astro-ph/0511041]

Roukema, B. F. 2000, MNRAS, 312, 712,[astro-ph/9910272]

Roukema, B. F. & Blanlœil, V. 1998a, Classical and Quantum Gravity, 15, 2645+

Roukema, B. F. & Blanlœil, V. 1998b, Classical and Quantum Gravity, 15, 2645

(arXiv:astro-ph/9802083)

Roukema, B. F., Lew, B., Cechowska, M., Marecki, A., & Bajtlik, S. 2004, A&A, 423, 821,

[astro-ph/0402608]

http://arxiv.org/abs/astro-ph/9801024
http://arxiv.org/abs/astro-ph/0404400
http://arxiv.org/abs/0809.0010
http://arxiv.org/abs/astro-ph/0609188
http://arxiv.org/abs/astro-ph/0703266
http://arxiv.org/abs/astro-ph/0610911
http://arxiv.org/abs/0801.1491
http://arxiv.org/abs/astro-ph/0601433
http://arxiv.org/abs/astro-ph/0212223
http://arxiv.org/abs/astro-ph/0402512
http://arxiv.org/abs/arXiv:astro-ph/0511041
http://arxiv.org/abs/astro-ph/9910272
http://arxiv.org/abs/astro-ph/0402608


BIBLIOGRAPHY 179

Rudnick, L., Brown, S., & Williams, L. R. 2007, ApJ, 671, 40,[arXiv:0704.0908]

Sachs, R. K. & Wolfe, A. M. 1967, ApJ, 147, 73

Samal, P. K., Saha, R., Jain, P., & Ralston, J. P. 2008, MNRAS,385, 1718,[0708.2816]

Sasaki, M. 2008, Progress of Theoretical Physics, 120, 159,[arXiv:0805.0974]

Savage, R., Battye, R. A., Carreira, P., et al. 2004, MNRAS, 349, 973

Schmalzing, J. & Gorski, K. M. 1998, MON.NOT.R.ASTRON.SOC., 297, 355

Schwarz, D. J., Starkman, G. D., Huterer, D., & Copi, C. J. 2004, Physical Review Letters,

93, 221301

Seljak, U., Slosar, A., & McDonald, P. 2006, Journal of Cosmology and Astro-Particle

Physics, 10, 14,[astro-ph/0604335]

Shafieloo, A. & Souradeep, T. 2007, ArXiv e-prints, 709,[0709.1944]

Shandarin, S. F. 2002, MNRAS, 331, 865

Sievers, J. L., Bond, J. R., Cartwright, J. K., et al. 2003, ApJ, 591, 599,

[arXiv:astro-ph/0205387]

Silverstein, E. & Tong, D. 2004, Phys. Rev. D, 70, 103505,

[arXiv:hep-th/0310221]

Sinha, R. & Souradeep, T. 2006, Phys. Rev. D, 74, 043518,

[arXiv:astro-ph/0511808]

Smith, K. M. & Huterer, D. 2008, ArXiv e-prints, 805,[0805.2751]

Souradeep, T., Hajian, A., & Basak, S. 2006, ArXiv Astrophysics e-prints,

[astro-ph/0607577]
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Appendix

A-1 WMAP simulations

A-1.1 Signal and noise pseudoCℓ tests.

In order to assess the confidence levels we have performed Monte-Carlo simulations of

the signal (ℓmax ≤ 1024 andC0,1 = 0) and inhomogeneous but uncorrelated Gaussian

noise maps for all DAs, according to the best fit to theΛCDM model power spectrum,

extracted from observations (Hinshaw et al., 2007). The simulations include the WMAP

window functions for each DA. TheNsim(= 104) full sky simulations were generated at

theHEALPIX resolutionns = 512, for each DA and preprocessed in the same way as the

data.

In Fig. A-1 an example of simulated, and recovered pseudo-Cℓ is compared with the

pseudo-Cℓ of the WMAP data from channel Q1 as a simple consistency check. Similar

simulations were performed for the remaining DAs.

As a simple consistency test, we present in Fig. A-2 statistics of the full sky WMAP

third year data as compared with the simulations. The data are well consistent with the

simulations.

Tests of modulated-simulations’ power spectrum

As mentioned in Section 3.5.4 the modulation (Eq. 3.3) alters the underlying power spec-

trum of the modulated simulations and could possibly mislead us in the interpretation of the

high rejection confidence level thresholds, reported in Table 3.2 for the modulated simula-

tions, since the additional power could be merely a result ofthe inconsistency on grounds

of the intrinsic power spectrum mismatch, rather than the regional variance distribution

analysis, and violation of the statistical isotropy.

In this section we quantify this effect. We generate a set of 10 WMAP V3 simula-

tions and modulate their CMB component using modulationsA1024(n̂ = (225◦,−27◦)) =

{0.114, 0.2}. We next extract their Kp03 cut sky pseudo-power spectra up to ℓmax = 700

i.e. up to the scales where the noise component already strongly dominates over any pos-

sible CMB modulation signals. We derive the contribution tothe total variance of the map
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Fig A-1: Consistency check between the simulations and WMAPthree-year observations.

The pseudo-Cℓ power spectra of the WMAP (light blue/dot-dashed curve) andits simulation

(the underlying blue/dashed line) in channel Q1 are well consistent both in Kp03 sky cut

regime and in the noise dominated regime. Reconstructed power spectrum of the Hinshaw

et al. (2007) is plotted as big red crosses.

per multipole according to:σℓ = 2l+1
4π Cℓ (ℓ ∈ {2, . . . , 700}). We measure the degree

of the consistency of the modulated simulations’ power spectra with the non-modulated

simulations’ power spectra, using the unbiased estimator of the full covariance matrix

Σll′ = Cov(σℓ, σℓ′) derived from 3000, analogously preparedσℓ vectors extracted from

the GRF WMAP V3 simulations, and using the corresponding Monte-Carlo probedχ2 val-

ues distribution from 223 additional simulations.

We find that the average rejection thresholds for the modulations A1024 = 0.114 and

A1024 = 0.2 are54% and59% respectively with the standard deviation∼ 30% in both

cases. We therefore conclude that our results given in Table3.2 cannot result from simply

alteration of the power spectra after the modulation field has been introduced. Similar re-

sults are obtained if the off-diagonal terms of the covariance matrix are neglected, which

indicates that the low detection threshold does not result from the limited number of simu-
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Fig A-2: The distributions of means, variances, skewness and kurtosis ofNsim = 104, full

sky, INC simulated data realizations, calculated outside the Kp03 sky mask. Skewness and

kurtosis values of the distributions are also given. Vertical bars indicate the values derived

from the WMAP three-year data. The quantile probabilities of the mean, variance, S, and K

values of the WMAP data are{0.57, 0.015, 0.34, 0.35} respectively – well consistent with

Gaussian, random simulations. Low probability of the totalvariance results primarily from

the low quadrupole (octupole) of the WMAP data as compared with the best fitΛCDM

model. Note that the distribution of the means of the simulations represents only a numer-

ical noise since during preprocessing all maps were shiftedto zero the mean outside the

Kp03 sky mask (< T >→ 0) and therefore it does not carry any important cosmological

information. The spectral analysis yields a similar results.

lations and a possible non-convergence of the covariance matrix.
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A-2 Assessing statistical significance

In this appendix we give details on out statistical approaches. For fast reference, we sum-

marize the principal symbols used in Table: A-1.

A-2.1 Individual region analysis

In the case of individual regions statistics for everyith region (i ∈ {1, .., Nreg(r,m)}) of

everymulti-maskm ∈ {1..Nm} and for every MOD (X ∈ {m, σ,S,K}) and every data-set

(d ∈ {Q,V,W, INC}) we define a parameter vectorp = {r,m, d} and independently cal-

culate the tail probabilityP
(
Xp,i

)
of occurrence ofXp,i value of the data in theNsim = 104

simulations, probing the corresponding probability distribution functions (PDF). The quan-

titiesm, σ,S,K correspond to the first four moments of distribution respectively. Hence we

defineP
(
Xp,i

)
as:

P
(
Xp,i

)
≡ Pq

(
|Xsim

p,i − Q2p,i| > |Xdata
p,i − Q2p,i|

)
(A-1)

whereQ2p,i is the second quartile of the corresponding PDF, andPq is the quantile tail

probability.

In principle, consideringN simulations allows us to probe a region of the underlying

PDF corresponding to Gaussian number of “sigmas”

± nMC
σ =

√
2erf−1(1 − 2/N) = |cdfG

−1(1/N)| (A-2)

wherecdfG
−1 is the inverse Gaussian cumulative distribution function (CDF). ForN =

Nsim = 104, as it is the case for individual region statistics,nMC
σ ≈ 3.72 corresponding to

a probability of exceeding of 0.02%.

To derive the probability from Eq. A-1, we use linearly interpolated quantile probability

within the MC probed PDF range:

P
(
Xp,i

)
= Qlin

(
Xp,i

)
for

Xp,i ∈
(
min(Xsim

p,i ),max(Xsim
p,i )

) (A-3)

whereQlin is the linearly interpolated quantile probability, andmin(Xsim
p,i ) andmax(Xsim

p,i )

are the minimal and maximalXp,i values obtained from a sample ofNsim simulations that

probe the underlyingXp,i PDF. Outside the probed range (Xp,i ∈
(
−∞,min(Xsim

p,i )
]
∪
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[
max(Xsim

p,i ),∞
)
) we extrapolate using a Gaussian distribution of the form

P
(
Xp,i

)
=

(
1 − erf

(
nσ√

2

))

nσ =

{ nMC
σ

(
1 +

min(Xsim
p,i )−Xp,i

|min(Xsim
p,i )−Q2p,i|

)
; Xp,i ≤ min(Xsim

p,i )

nMC
σ

(
1 +

Xp,i−max(Xsim
p,i )

|max(Xsim
p,i

)−Q2p,i|
)

; Xp,i ≥ max(Xsim
p,i )

(A-4)

Note that the extrapolation form is connected to the MC probed PDF range by the matching

condition P (Xp,i(n
MC
σ )) = P (min(Xsim

p,i )) = P (max(Xsim
p,i )) = 2/N – i.e. the prob-

ability of finding aXp,i value anywhere in range(−∞,min(Xsim
p,i )] ∪ [max(Xsim

p,i ),∞).

An example of this extrapolation is shown in Fig. A-3. This extrapolation is obviously not

validated for MODs higher than the mean, but we use it as a guide for very low probability

events. Note that all our results with a lower significance (roughly outside3σ CL) are ob-

tained modulo this approximation.

A-2.2 Multi-region joint analysis

In the multi-region analysis, we account for all correlations between regions of a given

multi-maskusing an unbiased estimator of the full covariance matrix. Using the same

parameter vectorp = {r,m, d}, we define a one column vector for each MOD (Xp ∈
{mp, σp,Sp,Kp}) of sizeNreg(r,m) such thatXp =

(
Xr,m,d,i=1, ...,Xr,m,d,i=Nreg(r,m)

)T

containXp,i values for each region of a givenmulti-maskm of given pixelization scheme

r and data-setd ∈ {Q,V,W, INC}. Introducing a parameter vectorq = {X, r,m, d} we

define a correspondingχ2
q value as:

χ2
q = (Xdata

p − 〈Xsim
p 〉)T C−1

q (Xdata
p − 〈Xsim

p 〉) (A-5)

where the〈〉 is the averageX from Nsim(Cq) simulations andC−1
q is an unbiased estimator

of the inverse covariance matrix (Hartlap et al., 2007) calculated fromNsim(Cq) simulations

and is given by:

(C−1
q )ii′ =

Nsim(Cq) − Nreg(r,m) − 2

Nsim(Cq) − 1
(C̃−1

q )ii′ (A-6)

andC̃−1
p is the inverse covariance matrix.

In Fig: A-4 we show the convergenceχ2
q with the number of simulations used to calcu-

late the covariance matrix,Nsim(Cq), for all six types of pixelization schemes. The biasing

of theχ2
q values with regards to the idealχ2

q(Nsim(Cq) = ∞) value is caused by the limited
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Fig A-3: Example of extrapolation (solid lines) used to compute the distribution of104

MODs from one of the regions in one of themulti-masks. Mean and variance MODs values

were multiplied by a factor of104 for the sake of clarity. Note that the Gaussian extrapola-

tion (used only outside MC probed PDF region) also interpolates the data quite well in case

of the means (red crosses).

number of available simulations. As expected, for a given number of simulations, this bias

decreases with the effective number of DOF and as such with themulti-maskresolution. We

account for this biasing by using simulations to probe the underlying PDF of theχ2
q values,

instead of using theoreticalχ2 distributions. In fact, it would not be valid to use theoretical

χ2 PDFs, since the distributions of individual MODs (except for the mean) are not Gaussian.

As such, we will probe the underlying distributions usingNsimPDF(χ2
q) = Nsim−Nsim(Cq)

simulations, for each MOD and for eachmulti-mask.

In the case of the joint multi-region statistics we useN = NsimPDF(χ2
q) = 103 simula-

tions corresponding tonMC
σ ≈ 3.09, which gives a probability of exceeding and 0.2%. The

remainingNsim(Cq) = 9 · 103 simulations are used for covariance matrix calculation.

Given a(χ2
q)data value we define a corresponding joint probability as:

P
(
χ2

q

)
≡ 1 − Pq

(
(χ2

q)sim > (χ2
q)data

)
(A-7)

We use the same formulas for inter/extrapolation as described in Sect. A-2.1 by replacing
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Fig A-4: Convergence ofχ2
q values as a function of the number of simulation used for

the covariance matrix calculation for a given MOD. Each color corresponds to a type of

pixelization schemes. The number of regions increases frombottom (48, forHP 2) to top

(1024 forLB 64 16) (see. Table 3.1). Horizontal lines indicate the effective numbers of

degrees of freedom for thatmulti-mask(i.e. number of unmasked regions due to Kp03 sky

mask). Theseχ2 corresponds to the the first MOD only (mean) but other MODs exhibit

similar dependence.

Xp,i with χ2
q.

We note that, in fact, in case of the multi-region analysis itdoesn’t make any difference

whether the derivedχ2 values are statistically debiased or not, since exactly thesame bias-

ing affects the simulatedχ2 values used to probe the underlying PDF. We also find that the

convergence of such derived probabilities is actually muchbetter than one could infer when

looking at the worst case ofLB 64 16 presented in Fig. A-4. We estimate that the derived

probabilities converge to their true values within∼ 10% of that value in this worst case of

LB 64 16 pixelization scheme, while in case of theHP 2 the convergence of the derived

probabilities is. 2%.

The statistical debasing used for theχ2 values matters however in our third-stage analysis,

i.e. in case of the all-multi-masksanalysis.
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A-2.3 All Multi-masksanalysis

There is no a unique way to generalize from the results of the multi-region analysis. Al-

though the most straightforward way would be to compute the inverse covariance matrix

between all the MODs and for all regions of allmulti-masks, this turns out to be computa-

tionally not feasible.

Note the fact that theχ2
q values are partially correlated with each other, since theyre-

sult from a different sampling of the same data-set. Howeverthe degree of correlation

strongly depends on the particularmulti-maskproperties and resolutions. In particular the

inter-multi-maskcorrelations are largest in the lowest resolutionmulti-masks. The smaller

correlations between variousmulti-masks, the more additional information themulti-mask

analysis explores about the data-set. Large inter-multi-maskcorrelations indicate that not

much new information is gained making it unnecessary to process large number ofmulti-

masks.

In the following, in order the integrate all the informationprobed by differentmulti-

maskswe calculate the cumulative probability of rejecting the GRF hypothesis using the

median distributionϕ(χ2
qMC

) of all processedχ2
qMC

distributions and the medianχ2
q value

of the data. Therefore we calculate the distribution andχ2
q value as:

ϕ(χ2
qMC

) = 〈ϕ(χ2
qMC

/DOFeff)〉m

χ2
q = 〈χ2

q/DOFeff 〉m

(A-8)

where〈〉m is the average over allmulti-masks, DOFeff = DOF(r,m) is the effective num-

ber of degrees of freedom which is a function of resolutionr, of the pixelization scheme

and of a particularmulti-maskdue to interplay with the sky cut.

We define the joint cumulative probability of rejecting the GRF hypothesis of the WMAP

CMB data via inconsistency with our simulations as a function of q analogically as in

Eq. A-7, and we use the same extrapolation and interpolationformula as in case of multi-

region analysis.
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Table A-1: List of principal acronyms used in this section and in the main body of section 3,

briefly summarized for quick reference.⋆ - indicates “unless specified otherwise”.

Symbol explanation

MOD moment of distribution

data upper index to indicate a measurement on data

sim upper index to indicate a measurement on simulations

Nm total number ofmulti-masksin a given

pixelization scheme (Nm = 100⋆)

m multi-maskindex numberm ∈ {1, . . . , Nm}
r pixelization scheme resolution parameter

r ∈ {48, 192, 256, 512, 768, 1024} (Tab. 3.1)

X MOD: X ∈ {m, σ,S,K},

mean, variance, skewness, kurtosis respectively

d data-set:d ∈ {Q,V,W, INC}
Nreg(r,m) number of regions inm’th multi-mask

of the pixelization schemer

i region index within amulti-mask

p parameter vector:p = {r,m, d}
q parameter vector:q = {X, r,m, d}
Xp,i value of a MOD for i’th region ofm’th multi-mask

of r’th pixelization scheme in a data-setd

Nsim total number of simulations;

number of simulations used in the single-region analysis

P
(
Xp,i

)
probability corresponding toXp,i derived fromNsim

simulations (Eq. A-1)

nMC
σ defined in Eq. A-2

Xp vector of MOD values for for a given value of parameterp

Nsim(Cq) number of GRF simulations used to derive the covariance

matrix in multi-region analysis (Nsim(Cq) = 9000⋆)

NsimPDF(χ2
q) number of GRF simulations used to probe the distribution of

χ2
q values in multi-region analysis (NsimPDF(χ2

q) = 1000⋆)

χ2
q χ2 value for the correspondingXdata

p (Eq. A-5)

P
(
χ2

q

)
probability corresponding toχ2

q (Eq. A-7)



192 APPENDIX

A-3 Noise simulations tests

Difference maps obtained from observations in nearly the same frequency, and with nearly

the same beams profile provide a good opportunity to measure the statistical properties of

the instrumental noise.

We have performed a reducedχ2 tests, directly in pixel domain, of the difference maps

obtained from different channels of the WMAP data (Q12, V12,QV and Q1V1) at the

Healpix resolutionns = 512, and compared with results of the same tests performed at a

low Healpix resolutionns = 4.

Since the covariance matrix of the noise realizations is well diagonal a single variate

Gaussian statistics was assumed, and reducedχ2 distributions used. The Q12 and V12

yielded a well consistency with the simulations at both resolutions. The QV and Q1V1

difference data however, turns out to be more troublesome. Whereas there is a good consis-

tency at high resolution, the low resolution reducedχ2 tests show significant discrepancy

yielding a “probability of rejecting”P = 0.999963 in case of QV map andP = 0.998 in

case of Q1V1 map. This result is also discussed in Sect. 3.6.5in light of the anomalous

dipole component of the V band map.

We also performed a single-region, joint multi-region, andall multi-masksanalyses on

the Q12 difference map, using a subset of 10 selectedmulti-masksof the HP 2 pixeliza-

tion scheme. Since the low resolution analysis yields a quick convergence (Fig. A-4 in

Sect. A-2.2) a small number of 500 simulations were generated and half of them used for

covariance matrix calculation, and the other half was used for probing distributions of the

χ2 values.

We found strong anomalies in the distribution of means (of which joint probability is

well extrapolated using Eq. A-4 outside the MC probed range (Fig. A-3)). The variance

of the scrambled∆ maps show that the rms amplitude of the differences is limited to the

1.7µK at these scales which is consistent with the limits to the residual systematical uncer-

tainties in Q1 and Q2 channels of the WMAP (Hinshaw et al., 2003a) at these scales. The

constraint includes not only the systematical uncertainties but also possible differences due

to uncorrelated white noise used in our simulations, which in principle in the regional statis-

tics do not average out in the same way as the pre-whitened 1/fpink noise of the WMAP

data.

A difference∆ map of the variances can also serve as a rough estimate of the level of
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local systematical effects. Anomalies in the scrambled mapare indeed found, with strongest

deviations concentrated in parts of regions adjacent to theGalactic Center, with extreme

values< 3µK. However a close orientation of the regions to the Galactic Center is more

likely a hint on the residual foregrounds contamination, due to slight differences in the

effective frequency of the Q1 and Q2 differential assemblies, as well as in the beam profiles,

rather than a manifestation of a systematical effects. Due to this leakage the limits to the

aforementioned systematical effects at the level of1.7µK should be considered as an upper

limits.

A-4 Symmetries of the spherical harmonics

In chapter 6 we argued that the zigzag shape, apparent in the reconstructed angular CMB

power spectrum would necessarily induce a point symmetries, alternatively anti-symmetries

in the sky due to the symmetries in realizations of Gaussian random fields synthesized only

out of a single multipole. This feature is easily seen by noticing that the synthesis of a

temperature fieldT (π − θ, φ + π) yields:

T (−n̂) = T (π − θ, φ + π)

= a00N00e
i(0)(φ+π)P 0

0 (cos(π − θ)) + a1−1N1−1e
i(−1)(φ+π)P−1

1 (cos(π − θ))

+ a10N10e
i(0)(φ+π)P 0

1 (cos(π − θ)) + a11N11e
i(1)(φ+π)P 1

1 (cos(π − θ)) + · · ·

= (−1)a00N00e
i(0)(φ)P 0

0 (cos(−θ)) + (−1)a1−1N1−1e
i(−1)(φ)P−1

1 (cos(−θ))

+ (−1)a10N10e
i(0)(φ)P 0

1 (cos(−θ)) + (−1)a11N11e
i(1)(φ)P 1

1 (cos(−θ)) + · · ·

= (−1)(−1)0a00N00e
i(0)(φ)P 0

0 (cos(θ)) + (−1)(−1)0a1−1N1−1e
i(−1)(φ)P−1

1 (cos(θ))

+ (−1)(−1)1a10N10e
i(0)(φ)P 0

1 (cos(θ)) + (−1)(−1)2a11N11e
i(1)(φ)P 1

1 (cos(θ)) + · · ·

=

{
T (n̂) = T (θ, φ) for ℓ ∈ {0, 2, 4, · · · } ∧ aℓ+1,m = 0

−T (n̂) = −T (θ, φ) for ℓ ∈ {1, 3, 5, · · · } ∧ aℓ−1,m = 0

(A-9)

where we introducedNℓm =
√

2ℓ+1
4π

(ℓ−m)!
(ℓ+m)! to denote the normalization coefficients of the

spherical harmonics, and where thePℓm(cos θ) denote the associated Legendre polynomi-

als.

Similarly, the plane symmetry is realized only if the only non-vanishingaℓm coefficients

are those for which theℓ + m is even.
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T (π − θ, φ) = (−1)0a00N00e
i(0)(φ)P 0

0 (cos(θ)) + (−1)0a1−1N1−1e
i(−1)(φ)P−1

1 (cos(θ))

+ (−1)1a10N10e
i(0)(φ)P 0

1 (cos(θ)) + (−1)2a11N11e
i(1)(φ)P 1

1 (cos(θ)) + · · ·
= T (θ, φ) ⇔ ∧

ℓ+m

(ℓ + m + 1)/2 ∈ Z, aℓm = 0

(A-10)

whereZ denote the set of integer numbers. However note that zeroingaℓm coefficients that

yield oddℓ + m removes power from both: even and odd multipoles.

A-5 Minkowski Functionals

Following the derivation of Schmalzing & Gorski (1998), fora temperature fieldf ≡ T (n̂),

defined over the surface of the sphere, and for the field temperature thresholdν, we calculate

thejth Minkowski functionalvj, as:

vj(f, ν) =
1

4π

∫

S2

Ij(f, ν)da (A-11)

where

I0(f, ν) = Θ(f − ν)

I1(f, ν) = 1
4δ(f − ν)

√
f2
;φ + f2

;θ

I2(f, ν) = 1
2π δ(f − ν)

2f;φf;θf;θφ−f2
;φ

f;θθ−f2
;θ

f;φφ

f2
;φ

+f2
;θ

(A-12)

whereΘ(f − ν) is the Heaviside step function, andδ(f − ν) = 1
∆ν

w(f − ν) with

w(f − ν) =
{ 0, f /∈ [ν − ∆ν/2, ν + ∆ν/2),

1, f ∈ [ν − ∆ν/2, ν + ∆ν/2)
(A-13)

where∆ν defines the distance between the neighbouring thresholds. The “;” denotes the

covariant derivative with respect to the spherical coordinatesθ or φ. For the sphere, these

derivatives yield:f;φ = 1
sin θf,φ andf;θ = f,θ, where “,” denote the partial derivatives.

The derivatives in longitudinal direction are calculated utilizing the iso-latitude, ring

pixels orientation of the Healpix pixelization scheme, while in the latitudinal direction the

closest matched pixel is used. In order to account for the edge effects from the KQ75 cut-

sky, we neglect the regions that are directly adjacent to thesky mask. This allows to utilize

as much of the map sky as possible - in contrast to the methods based on the harmonic space

based derivative calculations.
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