基本 \mathbb{Z}_p 拡大上の馴分岐 $\operatorname{pro-}p$ ガロア群について

水澤 靖(名古屋工業大学)

2008年12月20日

§ 1. 序

素数 p を固定し,素数の有限集合 S を考える.有限次とは限らない代数体 K に対して,混同を招く場合を除き,S 上の K の素点全体の集合 S(K) も S で表すことにする.このとき,K の S 外不分岐最大 $\operatorname{pro-}p$ 拡大 K_S のガロア群 $G_S(K)$ を考える S .

$$G_S(K) = \operatorname{Gal}(K_S/K)$$

p拡大で分岐し得る素数のみを考えて,Sの元は p または $q\equiv 1\pmod p$ と仮定する.K が有限次代数体であるとき, $G_S(K)$ は $\operatorname{pro-}p$ 群として有限表示を持つことが知られている $(\operatorname{cf.}[5]\S11,[6]\operatorname{etc.})$ が,その詳細な構造は,S が p を含むか否かによって趣きが大きく異なる. $p\in S$ である場合は, K_S が K の円分 \mathbb{Z}_p 拡大 K_∞ を含むことから,岩澤理論とも関係して研究が進んでいる $(\operatorname{cf.}[6]\operatorname{etc.})$.一方, $p\not\in S$ であるとき, $G_S(K)$ は " fab " $\operatorname{pro-}p$ 群,即ち任意の開部分群 H のアーベル商 H^{ab} は有限となる.このとき, $G_S(K)$ は有限か否かという問題も自明でないが, $S=\emptyset$ のときは p-類体塔問題に他ならず,一般に $G_S(K)$ は有限にも無限にもなり得る.さらにFontaine-Mazur 予想の帰結として, $G_S(K)$ は p 進解析的な無限商を持たないと予想されている $(\operatorname{cf.}[8]\operatorname{etc.})$.

例 $\mathbf{1}$. $S=\{p\}$ のとき, \mathbb{Q}_S は \mathbb{Q} の \mathbb{Z}_p 拡大 \mathbb{Q}_∞ に等しく, $G_S(\mathbb{Q})\simeq \mathbb{Z}_p$.この \mathbb{Q}_∞ を基本 \mathbb{Z}_p 拡大と呼び,有限次代数体 K との合成体 $K_\infty=K\mathbb{Q}_\infty$ が K の円分 \mathbb{Z}_p 拡大である.

例 $2 \cdot p \neq 2$, $S = \{q\}$, $q \equiv 1 \pmod{p}$ のとき, \mathbb{Q}_S はq 分体 $\mathbb{Q}(\zeta_q)$ に含まれる \mathbb{Q} の最大 p 拡大 $\mathbb{Q}(q)$ に等しく, $G_S(\mathbb{Q})$ は有限巡回群.

例 3. $p \neq 2$, $S = \{q_1, q_2\}$, $q_i \equiv 1 \pmod{p}$, $q_i \not\equiv 1 \pmod{p^2}$ (i = 1, 2), p 冪剰余記号 $(q_2/q_1)_p \not\equiv 1$ のとき, $G_S(\mathbb{Q})$ は位数 p^3 の非可換有限群 (cf. [5] Example 11.15) .

例 $4 \cdot p \neq 2$, $S = \{q_1, \dots, q_m\}$, $q_i \equiv 1 \pmod{p}$ $(i = 1, \dots, m)$, $m \geq 4$ のとき , Golod-Shafarevich 不等式により , $G_S(\mathbb{Q})$ は p 進解析的でない無限 pro-p 群 (cf. [4] [8] etc.) .

ここで唐突ではあるが,馴分岐 $\operatorname{pro-}p$ ガロア群 $G_S(K), p \not\in S$ を岩澤理論的な対象と捉えて,次の問題を考える.

問題.有限次代数体 K の円分 \mathbb{Z}_p 拡大 K_∞ と, $q\equiv 1\,(\mathrm{mod}\,p)$ なる素数 q の有限集合 S に対して, $G_S(K_\infty)$ は——

(1) 有限表示を持つか? 即ち, generator rank d と relation rank r は共に有限か?

 $^{^1}$ より一般には、代数体 K の素点の有限集合 $^S=S(K)$ に対する $^GS(K)$ が興味の対象である.

(2) *K* が総実ならば fab pro-*p* 群か?

 $S=\emptyset$ のとき,(1) の d の有限性は所謂 " $\mu=0$ 予想" と同値であり,r の有限性は [7] などで提示されている問題である.さらに (2) は,Greenberg 予想 [3] と同値である a^2 . これらに対する肯定的具体例は多く存在するが,いずれも一般的な解決には 至っていない.

一方, $K=\mathbb{Q}$ のとき, $S=\emptyset$ ならば $G_S(\mathbb{Q}_\infty)=\{1\}$ であるので自明な問題だが, $S\neq\emptyset$ の場合はそれほど明らかではない.しかしながら,(1) d の有限性,即ち $G_S(\mathbb{Q}_\infty)$ が有限生成であることは容易にわかり, \mathbb{Q} 上の p 拡大を扱うことの利点も多い.また(2)が肯定的ならば, $G_S(\mathbb{Q}_\infty)$ の任意の不分岐アーベル部分商も有限なので,任意の \mathbb{Q} 上S 外不分岐ガロア p 拡大に対して Greenberg 予想が肯定的に成立することになるが,(2) が否定的であっても,その詳細な構造を調べることによって Greenberg 予想への貢献が期待できる.

本稿ではこの問題に対する一歩として, $K=\mathbb{Q},\#S<2$ の場合を考察する.

§ 2. 結果³

#S = 1 の 場合として,次の結果が容易に得られる.

定理 1. 素数 $p \neq 2$ と素数の集合 $S = \{q\}, \ q \equiv 1 \pmod{p}, \ q \not\equiv 1 \pmod{p^2}$ に対し,p 冪剰余記号について $(p/q)_p \not= 1$ と仮定する.このとき,有理数体 \mathbb{Q} の \mathbb{Z}_p 拡大 \mathbb{Q}_∞ 上の S 外不分岐最大 $\operatorname{pro-}p$ 拡大のガロア群 $G_S(\mathbb{Q}_\infty)$ は位数 p の巡回群である.特に,この場合の問題 (1)(2) の答は肯定的である.

p 冪剰余に関する条件を除いた場合でも, $S=\{q\},\,q\equiv 1\,(\mathrm{mod}\,p),\,q\not\equiv 1\,(\mathrm{mod}\,p^2)$ である場合は,以下の計算例から問題 (1)(2) ともに肯定的であると予想される.

例 5 . pari/gp の bnf init, bnr init(option 無し, GRH より強い条件を仮定)によると, p=3 と $q\equiv 1\ (\mathrm{mod}\ p),\ q\not\equiv 1\ (\mathrm{mod}\ p^2),\ (p/q)_p=1$ である素数 q=61,67,103,151 について, $S=\{q\}$ とするとき, $A_S(\mathbb{Q}_1)\simeq A_S(\mathbb{Q}_2)\simeq \mathbb{Z}/p^2\mathbb{Z}$ (記号は $\S 3$ 参照).この結果に[2]の定理(後述の定理 3)を適用すると, $G_S(\mathbb{Q}_\infty)$ は位数 p^2 の巡回群.

#S=2 の 場合として,次の主結果が得られる.

定理 2 . 素数 $p \neq 2$ と素数の集合 $S = \{q_1,q_2\},\ q_i \equiv 1 \pmod p,\ q_i \not\equiv 1 \pmod p^2$ (i=1,2) に対し,p 冪剰余記号について $(p/q_1)_p = 1,\ (p/q_2)_p \not\equiv 1,\ (q_2/q_1)_p \not\equiv 1$ と仮定する.このとき,有理数体 $\mathbb Q$ の $\mathbb Z_p$ 拡大 $\mathbb Q_\infty$ 上の S 外不分岐最大 $\operatorname{pro-}p$ 拡大のガロア群 $G_S(\mathbb Q_\infty)$ は $\operatorname{metacyclic}$ $\operatorname{pro-}p$ 群である.特に,この場合の問題 (1) の答は肯定的である 4 .

 $^{^2}G_S(K_\infty)$ が fab であることと, $K_{\infty,\emptyset}$ に含まれる任意の有限次代数体 F に対して,その円分 \mathbb{Z}_p 拡大 F_∞ の岩澤不変量が" $\lambda=\mu=0$ "をみたすことが同値である.

 $^{^3\,}p=2\,$ の場合にも同様の結果が得られるが , 簡単のために省略する .

 $^{^4}$ この場合の問題 (2) の答は否定的であることを,本稿執筆中に近畿大の尾崎学氏より御指摘いただきましたが,ここではその詳細は省略いたします.

ここに $\operatorname{pro-}p$ 群 G が $\operatorname{metacyclic}$ であるとは , ある正規部分群 N が存在し , N および G/N が共に $\operatorname{pro-}p$ 巡回群であることをいう .

§3. 準備

素数の有限集合 $S=\{q_1,\cdots,q_d\},\ q_i\equiv 1\,(\mathrm{mod}\,p)\ (i=1,\cdots,d)$ と有限次代数体 K に対して, $\mathrm{mod}\,\mathfrak{m}=q_1\cdots q_d$ イデアル類群(ray class group) $Cl_{\mathfrak{m}}(K)$ に関する次の完全列が得られる.ここに, O_K は整数環,Cl(K) は広義のイデアル類群である.

$$O_K^{\times} \longrightarrow (O_K/\mathfrak{m})^{\times} \longrightarrow Cl_{\mathfrak{m}}(K) \longrightarrow Cl(K) \longrightarrow 0$$

 $\mathrm{Ker}((O_K/\mathfrak{m}^n)^{\times} \to (O_K/\mathfrak{m})^{\times})$ の位数が p と素であることに注意すると,類体論から $Cl_{\mathfrak{m}}(K)$ のシロー p 部分群 $A_S(K)$ は $G_S(K)^{ab}$ と同型である.

 \mathbb{Q}_{∞} の p^n 次部分拡大を \mathbb{Q}_n とし,有限次代数体 K との合成体を $K_n=K\mathbb{Q}_n$ とする. K_n は K_∞ の部分体であり, $K\cap\mathbb{Q}_\infty=\mathbb{Q}$ ならば $\mathrm{Gal}(K_n/K)\simeq\mathbb{Z}/p^n\mathbb{Z}$ である. $A_S(K_n)$ および $G_S(K_n)^{ab}$ は,n に関して ノルムおよび制限写像による射影系を成し, $\Gamma=\mathrm{Gal}(K_\infty/K)$ 上の加群として $\varprojlim A_S(K_n)\simeq\varprojlim G_S(K_n)^{ab}\simeq G_S(K_\infty)^{ab}$ となる.その Γ 加群としての基本性質が,Cl(K) のシロー p 部分群 $A(K_n)$ に対する岩澤加群 $\lim A(K_n)\simeq G_\emptyset(K_\infty)^{ab}$ と共通することから,[2] の定理が同様に成立する.

定理 $\mathbf{3}\left([2]
ight)$. K_{∞} において分岐するKの素点はすべて完全分岐すると仮定する.

- (1) あるnで $A_S(K_n) \simeq A_S(K_{n+1})$ ならば, $A_S(K_n) \simeq G_S(K_\infty)^{ab}$.
- (2) あるnで $\operatorname{rank} A_S(K_n) = \operatorname{rank} A_S(K_{n+1})$ ならば $\operatorname{rank} A_S(K_n) = \operatorname{rank} G_S(K_\infty)^{ab}$.
- (3) その分岐素点が唯一つであるとき,あるnで $A_S(K_n)\simeq A_S(K_{n+1})$ かつ $A_S(K_n)$ の exponent が p^r ならば,持ち上げ写像 $A_S(K_n)\to A_S(K_{n+r})$ は零写像.

 $q_i \not\equiv 1 \pmod{p^2}$ $(i=1,\cdots,d)$ であるとき, q_i は $\mathbb Q$ で不分解ゆえ, $O_{\mathbb Q_n}/q_i$ は有限体である.また $G_{\emptyset}(\mathbb Q_{\infty})=\{1\}$ であるので, $A(\mathbb Q_n)=0$ である.よって $(O_{\mathbb Q_n}/\mathfrak m)^{\times}\simeq \oplus_{i=1}^d (O_{\mathbb Q_n}/q_i)^{\times}$ であることから, $\operatorname{rank} A_S(\mathbb Q_n)\leq d$ が導かれる.一方, $A_S(\mathbb Q_n)\simeq G_S(\mathbb Q_n)^{ab} \twoheadrightarrow G_S(\mathbb Q)^{ab}\simeq \oplus_{i=1}^d G_{\{q_i\}}(\mathbb Q)^{ab}\simeq (\mathbb Z/p\mathbb Z)^d$ であるので, $\operatorname{rank} A_S(\mathbb Q_n)=d$ である.後述の $\operatorname{Burnside}$ の基定理から,次の命題を得る.

命題 $\mathbf{1}$. $S=\{q_1,\cdots,q_d\},\ q_i\equiv 1\ (\mathrm{mod}\ p),\ q_i\not\equiv 1\ (\mathrm{mod}\ p^2)\ (i=1,\cdots,d)$ に対して, $G_S(\mathbb{Q}_\infty)$ はd元生成 $\mathrm{pro-}p$ 群である.

 $\operatorname{pro-}p$ 群 G に対して,降中心列 $G_1=G,\,G_i=[G_{i-1},G]\,\,(i\geq 2)$ および Frattini 部分群 $\Phi(G)=G^p[G,G]$ を定める.

Burnside の基定理. pro-p 群 G は, $d = rank G/\Phi(G)$ 元生成である.

命題 ${\bf 2}$ (cf. [1] Theorem 2.3 etc.) . p 群 G が metacyclic であるための必要十分条件は, $G/\Phi(G_2)G_3$ が metacyclic であることである.

§ 4. 証明

(定理 1 の証明)p は \mathbb{Q}_n で完全分岐し, \mathbb{Q}_S で不分解である. \mathbb{Q}_S は \mathbb{Q} の p 次拡大であって, $(\mathbb{Q}_S)_n$ は $G_S(\mathbb{Q}_n)$ の極大部分群に対応する.命題 1 より $G_S(\mathbb{Q}_n) \simeq A_S(\mathbb{Q}_n)$ は 巡回群であるので, \mathbb{Q}_n の p 上の素点 \mathfrak{p} は $(\mathbb{Q}_n)_S$ でも不分解である.よって, $A_S(\mathbb{Q}_n)$ は \mathfrak{p} の冪の類で生成されるので, $\Gamma = \operatorname{Gal}(\mathbb{Q}_\infty/\mathbb{Q}) = \gamma^{\mathbb{Z}_p}$ は $A_S(\mathbb{Q}_n)$ に自明に作用する.よって $A_S(\mathbb{Q}_n) \simeq A_S(\mathbb{Q}_n)_\Gamma = A_S(\mathbb{Q}_n)/A_S(\mathbb{Q}_n)^{\gamma-1} \simeq A_S(\mathbb{Q}) \simeq \mathbb{Z}/p\mathbb{Z}$.ゆえに, $G_S(\mathbb{Q}_\infty) \simeq \mathbb{Z}/p\mathbb{Z}$.

(定理2の証明)補題を幾つか用意する.

補題 $\mathbf{1}$. $n\geq 1$ に対して, $G_{\{q_1\}}(\mathbb{Q}_n)\simeq A_{\{q_1\}}(\mathbb{Q}_n)$ は位数 p^2 以上の巡回群である. (証明) $\Gamma=\mathrm{Gal}(\mathbb{Q}_\infty/\mathbb{Q})=\gamma^{\mathbb{Z}_p}$ とし, $A_{\{q_1\}}(\mathbb{Q}_n)$ の部分群を次のように定める.

$$B_n = A_{\{q_1\}}(\mathbb{Q}_n)^{\Gamma} = \{ [\mathfrak{a}] \in A_{\{q_1\}}(\mathbb{Q}_n) \mid [\mathfrak{a}]^{\gamma} = [\mathfrak{a}] \}$$

$$B'_n = \{ [\mathfrak{a}] \in B_n \mid \mathfrak{a}^{\gamma} = \mathfrak{a} \}$$

任意に $[\mathfrak{a}] \in B_n$ をとる.ある $\alpha \in \mathbb{Q}_n^{\times}$, $\alpha \equiv 1 \pmod{q_1}$ が存在して, $\alpha = \mathfrak{a}^{\gamma-1}$ である. \mathbb{Q} へのノルム $N\alpha = \pm 1$ であるが, $N\alpha \equiv 1 \pmod{q_1}$ であるので, $N\alpha = 1$. Hilbert 90 より,ある $\delta \in \mathbb{Q}_n^{\times}$ が存在して, $\alpha = \delta^{\gamma-1}$ である. $q_1 = q_1^{\gamma}$ は \mathbb{Q}_n の素点であるゆえ, δ は q_1 と素であるとしてよい. $\mathrm{Gal}(\mathbb{Q}_n/\mathbb{Q})$ は剰余体のガロア群とみなせるので, $\delta \bmod q_1 \in O_{\mathbb{Q}_n}/q_1$, $\delta^{\gamma} \equiv \delta \pmod{q_1}$ であることから, $\delta \bmod q_1 \in \mathbb{Z}/q_1\mathbb{Z}$,即ちある $z \in \mathbb{Z}$ が存在して, $\delta \equiv z \pmod{q_1}$. $\eta = \delta z^{-1} \equiv 1 \pmod{q_1}$ と定めると, $\eta^{\gamma-1} = \delta^{\gamma-1} = \alpha = \mathfrak{a}^{\gamma-1}$, $\eta^{-1} \equiv 1 \pmod{q_1}$ ゆえ, $\mathfrak{a}' = \mathfrak{a}\eta^{-1}$ について, $\mathfrak{a}'^{\gamma} = \mathfrak{a}'$, $[\mathfrak{a}] = [\mathfrak{a}'] \in B'_n$.ゆえに, $B_n = B'_n$ である.

命題 1 より $G_{\{q_1\}}(\mathbb{Q}_n)\simeq A_{\{q_1\}}(\mathbb{Q}_n)$ は巡回群であるが,その位数がp であると仮定する.すると $A_{\{q_1\}}(\mathbb{Q}_n)\simeq A_{\{q_1\}}(\mathbb{Q})$ であるので, $A_{\{q_1\}}(\mathbb{Q}_n)=B_n=B_n'$. $A_{\{q_1\}}(\mathbb{Q}_n)$ の生成元 $[\mathfrak{a}]$ 、 $\mathfrak{a}^\gamma=\mathfrak{a}$ に対して, \mathfrak{a} の素イデアル分解から, $[\mathfrak{a}]=i_{0,n}([\mathfrak{a}_0])[\mathfrak{p}_n]^z$ となる $[\mathfrak{a}_0]\in A_{\{q_1\}}(\mathbb{Q}),\ z\in\mathbb{Z}$ がとれる.ここに $i_{0,n}:A_{\{q_1\}}(\mathbb{Q})\to A_{\{q_1\}}(\mathbb{Q}_n)$ は持ち上げ写像, \mathfrak{p}_n は \mathbb{Q}_n の p 上の素イデアルである.すると,仮定と定理 3 (3) から $[\mathfrak{a}]=[\mathfrak{p}_n]^z$ であり,ノルム写像 $N:A_{\{q_1\}}(\mathbb{Q}_n)\to A_{\{q_1\}}(\mathbb{Q})$ の全射性から, $N[\mathfrak{a}]=[p]^z$ が $A_{\{q_1\}}(\mathbb{Q})$ を生成する.ところが, $(p/q_1)_p=1$ ゆえ p は $\mathbb{Q}_{\{q_1\}}$ で完全分解するので,矛盾である.ゆえに, $G_{\{q_1\}}(\mathbb{Q}_n)$ の位数は p^2 以上である.

補題 $2.n \ge 1$ に対して, $A_{\{q_2\}}((\mathbb{Q}_{\{q_1\}})_n)$ は巡回群である.

(証明) 合成体 $K=\mathbb{Q}_{\{q_1\}}\mathbb{Q}_{\{q_2\}}$ は \mathbb{Q} 上 (p,p) 拡大である. $K_n=(\mathbb{Q}_{\{q_1\}})_n\mathbb{Q}_{\{q_2\}}$ は $(\mathbb{Q}_{\{q_1\}})_n$ 上 $\{q_2\}$ 外不分岐 p 次拡大であり,ここで $(\mathbb{Q}_{\{q_1\}})_n$ の q_2 上の素点は完全分岐 する. $A_{\{q_2\}}((\mathbb{Q}_{\{q_1\}})_n)$ が巡回群でないと仮定すると, K_n と異なる $(\mathbb{Q}_{\{q_1\}})_n$ 上 $\{q_2\}$ 外不分岐 p 次拡大 p が存在する.p が存在する.p は $(\mathbb{Q}_{\{q_1\}})_n$ 上 p 外不分岐 p 次拡大 p が存在する.p が存在する.p が存在する.p が存在する.p が存在する p がたる p が存在する p が存在する p が存在する p が存在する p が存在する p が存在する p がたる p がたる p が存在する p がたる p

は K_n 上不分岐 p 次拡大である.よって, $G_\emptyset(K_\infty) \neq \{1\}$ となるが,p 冪剰余に関する条件と [9] Theorem 1 から 5 $G_\emptyset(K_\infty) = \{1\}$ であることに矛盾する.よって, $A_{\{q_2\}}((\mathbb{Q}_{\{q_1\}})_n)$ は巡回群である.

 $n\geq 1$ とする. $G_S(\mathbb{Q}_n)^{ab}$ における q_1 上の素点の惰性群 I_{q_1} は唯一つなので,次の完全列が得られる.

$$0 \longrightarrow I_{q_1} \longrightarrow G_S(\mathbb{Q}_n)^{ab} \longrightarrow G_{\{q_2\}}(\mathbb{Q}_n)^{ab} \longrightarrow 0$$

 I_{q_1} は馴分岐な素点の惰性群なので巡回群であり,定理 1 から $G_{\{q_2\}}(\mathbb{Q}_n)^{ab}\simeq \mathbb{Z}/p\mathbb{Z}$ である.命題 1 より $\mathrm{rank}\,G_S(\mathbb{Q}_n)^{ab}=2$ であって,補題 1 から全射 $G_S(\mathbb{Q}_n)^{ab} ou$ $G_{\{q_1\}}(\mathbb{Q}_n)^{ab} ou$ $\mathbb{Z}/p^2\mathbb{Z}$ が存在するので, $G_S(\mathbb{Q}_n)^{ab}\simeq \mathbb{Z}/p\mathbb{Z}\oplus \mathbb{Z}/p^{N_n}\mathbb{Z}, \ (N_n\geq 2)$.

 $G_S(\mathbb{Q}_n)^{ab}$ において, rank が2 の極大部分群 \overline{H} が唯一つ存在する. $(\mathbb{Q}_{\{q_2\}})_n(\mathbb{Q}_n)_{\{q_1\}}$ は \mathbb{Q}_n 上および $(\mathbb{Q}_{\{q_1\}})_n$ 上S 外不分岐アーベルp 拡大であって,補題1 より $(\mathbb{Q}_{\{q_1\}})_n$ \subsetneq $(\mathbb{Q}_n)_{\{q_1\}}$ ゆえ, rank $\operatorname{Gal}((\mathbb{Q}_{\{q_2\}})_n(\mathbb{Q}_n)_{\{q_1\}}/(\mathbb{Q}_{\{q_1\}})_n)=2$ である.よって,その極大部分群 \overline{H} には $(\mathbb{Q}_{\{q_1\}})_n$ が対応する.

 $G_S((\mathbb{Q}_{\{q_1\}})_n)^{ab}$ における q_1 上の素点の惰性群 I'_{q_1} も唯一つゆえ,次の完全列を得る.

$$0 \longrightarrow I'_{q_1} \longrightarrow G_S((\mathbb{Q}_{\{q_1\}})_n)^{ab} \longrightarrow A_{\{q_2\}}((\mathbb{Q}_{\{q_1\}})_n) \longrightarrow 0$$

 I'_{q_1} は巡回群であり,補題 2 より $A_{\{q_2\}}((\mathbb{Q}_{\{q_1\}})_n)$ も巡回群. $G_S((\mathbb{Q}_{\{q_1\}})_n)^{ab} woheadrightarrow \overline{H}$ であるので, $\mathrm{rank}\,G_S((\mathbb{Q}_{\{q_1\}})_n)^{ab}=2$ である.

 $n\geq 1$ を固定し, $G=G_S(\mathbb{Q}_n)^{metab}$ (metabelian quotient), $N=N_n\geq 2$ とすると, $G^{ab}\simeq \mathbb{Z}/p\mathbb{Z}\oplus \mathbb{Z}/p^{N_n}\mathbb{Z}$.G の $(\mathbb{Q}_{\{q_1\}})_n$ に対応する極大部分群 H について, $H^{ab}\simeq G_S((\mathbb{Q}_{\{q_1\}})_n)^{ab}$ である.よって,次のようなG の生成元a,b が存在する.

$$G = \langle a, b \rangle$$
, $a^p, b^{p^N} \in G_2$, $H = \langle a, b^p, G_2 \rangle$

双線形な全射 $[\ ,\]:G/G_2\otimes G/G_2 \twoheadrightarrow G_2/G_3$ から, $[a,b^p]\equiv [a,b]^p\equiv [a^p,b]\equiv 1\,(\mathrm{mod}\,G_3),\,G_2/G_3=\langle\,[a,b]G_3\,\rangle\simeq\mathbb{Z}/p\mathbb{Z}$ であるので, $H=\langle\,a,b^p,[a,b],G_3\,\rangle$ であって, H/G_3 はアーベル群である. $H^{ab}\twoheadrightarrow H/G_3$ ゆえ $\mathrm{rank}\,H/G_3=\dim_{\mathbb{F}_p}H/H^pG_3=2$ であるので, $a,b^p,[a,b]$ の間には次のような非自明な関係式が存在する.

$$a^x b^{py} [a, b]^z \equiv 1 \pmod{H^p G_3}, \quad x, y, z \in \mathbb{Z}_p, \quad (x, y, z) \not\equiv (0, 0, 0) \pmod{p}$$

 $H^p=\langle\,a^p,b^{p^2},G_3\,
angle$ ゆえ, $a^xb^{py}[a,b]^z\equiv a^{px'}b^{p^2y'}\,(\mathrm{mod}\,G_3),\,x',y'\in\mathbb{Z}_p$,即ち $[a,b]^{-z}\equiv a^{x-px'}b^{p(y-py')}\,(\mathrm{mod}\,G_3)$ となる.このとき, $a^{x-px'}b^{p(y-py')}\in G_2$ であるので, $x-px'\equiv 0\,(\mathrm{mod}\,p),\,y-py'\equiv 0\,(\mathrm{mod}\,p^{N-1})$.特に $x\equiv y\equiv 0\,(\mathrm{mod}\,p)$ ゆえ $z\in\mathbb{Z}_p^{\times}$ でなければならず, $x_1=-(x-px')z^{-1}/p,\,x_2=-(y-py')z^{-1}/p^{N-1}\in\mathbb{Z}_p$ とおけば

$$[a,b] \equiv a^{px_1}b^{p^Nx_2} \pmod{G_3}$$

 $⁵p_i=q_2, p_j=q_1, y=0$ として, $(q_1/q_2)_p=(p/q_2)_p^{-x}\in\langle\,\zeta_p\,
angle=\langle\,(p/q_2)_p\,
angle, q_2=q_1^{-z}\in 1+p\mathbb{Z}_p=\langle\,q_1\,
angle$ となる x,z を選べばよい.

となる.一方, $a^p,b^{p^N}\in G_2$ ゆえ,次のように書ける.

$$a^p \equiv [a, b]^{z_1}, b^{p^N} \equiv [a, b]^{z_2} \pmod{G_3}, z_1, z_2 \in \mathbb{Z}_p$$

先の式に代入すると $[a,b]^{x_1z_1+x_2z_2}\equiv [a,b]\ (\mathrm{mod}\ G_3)$ ゆえ, $x_1z_1+x_2z_2\equiv 1\ (\mathrm{mod}\ p)$ である.よって, z_1,z_2 のどちらか一方は \mathbb{Z}_p^{\times} の元である.ゆえに, $C=\langle\ a,G_3\ \rangle$ または $\langle\ b,G_3\ \rangle$ について, $G_2/G_3\subset C/G_3$ であり, C/G_3 は G/G_3 の正規部分群となる. $G/C,C/G_3$ はともに巡回群となり,完全列

$$1 \longrightarrow C/G_3 \longrightarrow G/G_3 \longrightarrow G/C \longrightarrow 1$$

から $G/G_3=G/\Phi(G_2)G_3$ は metacyclic であるので,命題 2 より,G は metacyclic である. $G_S(\mathbb{Q}_n)$ の交換子群に Burnside の基定理を適用して, $G_S(\mathbb{Q}_n)$ も metacyclic であることがわかる.

制限写像に関して $G_S(\mathbb{Q}_\infty)\simeq \varprojlim G_S(\mathbb{Q}_n)$ であるので, $G_S(\mathbb{Q}_\infty)$ は pro -p群として $\mathrm{metacyclic}$ である.

参考文献

- [1] N. Blackburn, On prime-power groups with two generators, Proc. Cambridge Philos. Soc. 54 (1958), 327–337.
- [2] T. Fukuda, Remarks on \mathbb{Z}_p -extensions of number fields, Proc. Japan Acad. Ser. A **70** (1994), 264–266.
- [3] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. **98** (1976), no. 1, 263–284.
- [4] F. Hajir and C. Maire, *Unramified subextensions of ray class field towers*, J. Algebra **249** (2002), 528–543.
- [5] H. Koch, Galois theory of p-extensions, Springer Monographs in Mathematics, Springer-Verlag Berlin Heidelberg, 2002.
- [6] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Grundl. Math. Wiss. 323, Springer-Verlag Berlin Heidelberg, 2000.
- [7] M. Ozaki, Non-Abelian Iwasawa theory of \mathbb{Z}_p -extensions, J. Reine Angew. Math. **602** (2007), 59–94.
- [8] Y. Taguchi, "Fontaine-Mazur 予想の紹介", 数理解析研究所講究録 1097 (1999), 37-49.
- [9] G. Yamamoto, On the vanishing of Iwasawa invariants of absolutely abelian p-extensions, Acta. Arith. **94** (2000), no. 4, 365–371.

YASUSHI MIZUSAWA Department of Mathematics Nagoya Institute of Technology Gokiso-cho, Showa-ku, Nagoya Aichi 466-8555 JAPAN mizusawa@nitech.ac.jp