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We study the properties of chaos in the motions of a spinning test particle in Schwarzschild spacetime.
We characterize the chaos using the power spectrum of the time series of z components of the particle’s
position. It is found that the pattern of the power spectrum shows not only white noise but also 1=f-type
fluctuation, depending on the value of the total angular momentum J and the spin S of the test particle.
Therefore we succeed in classifying the chaotic motions, which have been classified as simply chaotic
ones in former works, into the two distinct types. One is 1=f, and the other is white noise. Based on this
classification, we plot, in the two-dimensional parameter space �J; S�, the phase diagram for the properties
of the chaos. This phase diagram enables us in principle to guess the properties of the system �J; S� by
observing the dynamics of the test particle, even if the motion is chaotic. Furthermore, we detect that the
origin of the 1=f fluctuation is that the particle motion stagnates around regular orbits (tori), while
traveling back and forth between them, which is called ‘‘stagnant motion’’ or ‘‘sticky motion’’ in
Hamiltonian dynamical systems. The point is that the difference of the property of the chaos or the
power spectra is due to the topological structure of the phase space, which in turn is governed by the
physical parameter set �J; S� of the system. From this point of view, the chaos we found in this system is
not always merely random.

DOI: 10.1103/PhysRevD.76.064031 PACS numbers: 04.70.�s, 05.45.�a

I. INTRODUCTION

Nature is filled with phenomena that exhibit chaotic
behavior. In chaotic systems we cannot predict the sys-
tem’s future state exactly [1,2]. Such chaotic behavior has
also been found in some relativistic systems [3–23]. For
example, in Schwarzschild spacetime, the motions of a
spinning test particle can be chaotic [13]. If the test particle
does not have spin, the motion of the test particle is regular.
They have found that, as the magnitude of the spin in-
creases extremely, the motions switch from regular to
chaotic, using the Poincaré map and the Lyapunov expo-
nent. In practice, the magnitude of the spin where the
particle motion is remarkably chaotic is so large that
such a system is not realistic, which has been remarked
in the paper [13]. However, this model is important in
understanding chaos in general relativistic systems.

In this paper, we look for statistical laws to characterize
the chaos in the motions of the spinning test particle in
Schwarzschild spacetime. Actually, the chaotic motions in
this system have been classified merely as chaotic, accord-
ing to the distribution of the points in Poincaré maps and
positiveness of the Lyapunov exponents, but the details of
the properties of the chaos have not been clarified [13].
Once we find chaotic behavior, however, we should rather
characterize it to extract the specific properties of the
system. Indeed, we can hardly learn anything about the
chaos if we judge it only from the randomness of the
distribution of the points in Poincaré maps or the positive-

ness of the Lyapunov exponents [1–3]. Not a few people
believe that a chaotic system is simply random and com-
pletely unpredictable. It is true that we cannot predict the
time evolution of the state of the system exactly, when the
system is chaotic. However, we should note that, even in
such cases, we can frequently find some statistical laws
which are specific to the system. One possible measure of
chaos is the power spectrum of the time series of the
system. If the power spectrum is white noise, the time
evolution of the system is not time-correlated. In not a
few cases, however, the pattern of the power spectrum
obeys power laws, so-called 1=f fluctuations [24–29],
which can be clearly distinguished from the white-noise
type. That the power spectrum obeys some power laws
means that the time evolution of the system is time corre-
lated. Thus we can classify the chaos from the pattern of its
power spectrum.

Let us explain our strategy to characterize the chaos in
the motions of the spinning test particle in Schwarzschild
spacetime in this paper. To begin with, we introduce the
power spectrum of the time series of z components of the
particle’s position. Next we characterize the properties of
the chaos, using the pattern of the power spectrum. It is
found that the pattern of the power spectrum can be clas-
sified as 1=f or white noise. That is, we succeed in clas-
sifying the chaotic motions into two distinct types.
Furthermore, based on this classification, we can plot, in
the two-dimensional parameter space �J; S�, the phase
diagram for the properties of the chaos. Finally, we detect
the origin of the 1=f fluctuations of the power spectrum in
this system. We find out that the orbit stagnates around the
tori, while traveling back and forth between them, when-
ever the power spectrum shows 1=f spectral pattern.
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This paper is organized as follows. In Sec. II we shall
briefly review the basic equations, i.e., the equations of
motion for a spinning test particle in Schwarzschild space-
time. In Sec. III we plot the Poincaré maps of the chaotic
motions in this system. Here we point out a weakness in the
Poincaré maps, which brings a motivation to introduce
another method to characterize such chaotic motions. In
Sec. IV we introduce the power spectrum to characterize
the properties of the chaos in this system. Then we find the
pattern of the power spectrum can be classified into two
types, 1=f and white noise, depending on the values of the
system parameters. In Sec. V we detect the origin of the
1=f fluctuations. The final section is devoted to summary
and discussion. Throughout this paper we use units c �
G � 1.

II. EQUATIONS FOR A SPINNING TEST PARTICLE
IN SCHWARZSCHILD SPACETIME

We consider a spinning test particle in Schwarzschild
spacetime,

 ds2 � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2 � r2d�2

� r2sin2�d�2; (1)

where M is the mass of the black hole. The equations of
motions of a spinning test particle in relativistic spacetime
have been derived by Papapetrou [30] and then reformu-
lated by Dixon [31]. The set of equations is given as

 

dx�

d�
� v�; (2)

 

Dp�

d�
� �

1

2
R����v

�S��; (3)

 

DS��

d�
� 2p��v��; (4)

where �, v�, p�, and S�� are an affine parameter of the
orbit, the four-velocity of a particle, the momentum, and
the spin tensor, respectively. p� deviates from a geodesic
due to the coupling of the Riemann tensor with the spin
tensor. We adopt the additional condition formulated by
Dixon [31],

 p�S
�� � 0; (5)

which gives a relation between p� and v�, and consis-
tently determines the center of mass of the spinning parti-
cle. The mass of the particle � is defined by

 �2 � �p�p�: (6)

To make clear the freedom of this system, we have to check
the conserved quantities. Regardless of the symmetry of
the background spacetime, it is easy to show that the mass
� and the magnitude of spin S defined by

 S2 � 1
2S��S

�� (7)

are constants of motion [32]. If a background spacetime
possesses some symmetry described by a Killing vector
��,

 C� � ��p� �
1
2��;�S�� (8)

is also conserved [31]. Because the spacetime we consider
in this paper is static and spherically symmetric, there are
two Killing vector fields, ��

�t� and ��
���. From (8), we find

the constants of motion related with those Killing vectors
as

 E � �C�t� � �pt �
M

r2 S
tr; (9)

 Jz � C��� � p� � r�S
�r � rS�� cot��sin2�: (10)

E and Jz are interpreted as the energy of the particle and the
z component of the total angular momentum, respectively.
Because the spacetime is spherically symmetric, the x and
y components of the total angular momentum are also
conserved. In addition, without loss of generality we can
choose the z axis in the direction of total angular momen-
tum as

 �Jx; Jy; Jz� � �0; 0; J�; (11)

where J > 0. In the following sections, we integrate the
above equations of motion numerically for various values
of parameters E, J, and S, using the Bulirsch-Stoer meth-
ods [33].

III. POINCARÉ MAPS

In this section, we illustrate the particle motions in the
model formulated in the previous section (see also
[13,30,31]) using Poincaré maps as shown in Fig. 1. As
mentioned in the paper [13], the parameter range of the
energy E for each fixed parameter set �J; S� is restricted to
enable the particle to move around the black hole without
going to infinity or falling into the black hole. Although
similar analyses have been already done in the paper [13],
the analysis in this section motivates us to introduce in the
next section another method to characterize the motions.

Using a Poincaré map, we can judge if the motions are
chaotic or not. To plot the Poincaré map, we adopt the
equatorial plane (� � 	=2) as a Poincaré section and plot

z=0

B.H.
P(i)

P(i+1)

P(i+2)

FIG. 1. The schematic drawing of the Poincaré maps.
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the point �r; vr� when the particle crosses the Poincaré
section with v� < 0 (Fig. 1). In Fig. 2, we plot the
Poincaré maps for the total angular momentum J �
4�M. The values of the spin S are set to S � 1:2�M in
Fig. 2(a) and S � 1:4�M in Fig. 2(b). Each value of the
energy E is chosen as an appropriate one so that the test
particle does not escape to infinity and does not fall into a
black hole. The parameter sets �J; S; E� in Figs. 2(a) and
2(b) are the same as those in Figs. 4 (e) and 4 (f) in the
paper [13]. In Fig. 2 dots with different colors correspond
to the data from the orbits with different initial conditions.
If the orbit is chaotic, some of the tori are broken and the
Poincaré map no longer consists of a set of closed curves.
Both in Figs. 2(a) and 2(b), the points in the Poincaré maps
are scattered randomly, and the so-called chaotic sea is
formed. That is, the orbits with both sets of parameters are
chaotic.

Now it is worthwhile to note a weakness in the Poincaré
map. The chaotic sea in Figs. 2(a) and 2(b) cannot be
distinguished apparently. Indeed, the existence of chaotic
sea in the Poincaré map allows us to judge whether the
particle motions in this model are regular or chaotic [13].
The positiveness of the Lyapunov exponent, which for this
model have been also investigated in [13], does too. That
is, we can tell that the motion is chaotic using these
measures. However, only from these measures, we cannot
know more than that the motion is merely chaotic, when it
is chaotic. Once we find the chaotic behaviors, we should
rather characterize the chaos, since being chaotic does not
always mean randomness or no rule. Therefore, another
method is necessary to characterize the chaos in more
detail. In the next section, we will introduce the power
spectrum to classify such chaotic motions.

IV. 1=f FLUCTUATIONS OF THE POWER
SPECTRUM

In this section, we characterize the chaos in the spinning
test particle motions which was shown in the previous
section. Here we analyze the time series of the particle

position. In order to do that, first of all, we introduce the
power spectrum. The power spectrum of the time series of
z components of the particle’s position, Pz�!�, is defined
by

 Pz�!� �
��������
Z T

0
z�t�ei!tdt

��������
2
: (12)

Here we set T � 105 in our computation. If we define the
autocorrelation function �z��� as

 �z��� �
1

2T

Z T

�T
z�t�z�t� ��dt; (13)

and take the limit T ! 1, Wiener-Khinchin’s theorem
[34] relates the power spectrum Pz�!� and the autocorre-
lation function �z��� as

 Pz�!� �
Z 1
�1

�z���e�i!�d�: (14)

We plot the power spectrum Pz�!� in Fig. 3. In Figs. 3(a)
and 3(b), we choose parameter sets with the same values as
those in Figs. 2(a) and 2(b), respectively. Each line color in
Figs. 3(a) and 3(b) also corresponds to that of the dots in
Figs. 2(a) and 2(b), respectively. Note that the patterns of
the power spectra are different between Figs. 3(a) and 3(b).
In particular, we find that one is 1=f� (f � !=2	) where
� ’ 1:2 [Fig. 3(a)], while the other is white noise
[Fig. 3(b)] in the low-frequency range about ! 	 0:01.
Using Eq. (14), we see that if the power spectrum is of
1=f� type, the temporal correlation is also of the power-
law type, which means a strong temporal correlation with
no typical time scale. On the other hand, if the power
spectrum is of white noise type, temporal correlation is a

-function, which means no temporal correlation. There-
fore we can clearly distinguish the chaotic motions by
using the pattern of the power spectrum. Moreover,
Fig. 3 shows that the pattern of the power spectrum
Pz�!�, that is the property of the chaos, depends on the
system parameters, the total angular momentum J, and the
spin S of the test particle. In addition, as shown in Fig. 3,
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FIG. 2 (color online). The Poincaré maps with z � 0 and v� < 0. All orbits have the total angular momentum J � 4:0�M. The
magnitude of spin and the total energy are S � 1:2�M and E � 0:935 455 65� in panel (a), and S � 1:4�M and E � 0:922 929 41�
in panel (b), respectively. The dots with different colors correspond to the data from the orbits with different initial conditions.
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the pattern of the power spectrum is independent of the
initial conditions, if we fix the parameter set.

Furthermore, we test the pattern of the power spectrum
Pz�!� for various grid points in the two-dimensional space
�J; S�, and obtain a new phase diagram for the properties of
the chaos, summarized in Fig. 4. Each value of the energy
E is chosen as an appropriate one so that the test particle
does not escape to infinity and does not fall into the black
hole, and the chaotic motions that we pay attention to in
this paper are dominant. In the blank region in Fig. 4, the
test particle goes to infinity or falls into a black hole, since
the energy surface is unbounded. This blank region agrees
with the region of the type (U2) in Fig. 3 in the paper [13].

In the region where circle (
 ) and cross (� ) symbols are
marked in Fig. 4, the particle motion is chaotic and
bounded. In the region where circle symbols (
 ) are
marked in Fig. 4, the power spectrum Pz�!� shows the
1=f-type spectrum. On the other hand, in the region where
cross symbols (� ) are marked, the power spectrum Pz�!�
shows white noise. The total region together with dotted
and crossed regions is included in the region of the
type (B2) in Fig. 3 in the paper [13]. In the paper [13],
the motions in the region of the type (B2) are classified as
to be merely chaotic ones. Therefore, Fig. 4 means that we
succeed in classifying the chaotic motions for various
values of parameter set �J; S�, which have been classified
as simply chaotic in former works, into two distinct types,
1=f and white noise, using the power spectrum Pz�!�.

Now we consider the physical meanings of the tendency
of the power spectrum pattern to change from 1=f to white
noise by increasing the magnitude of spin S of the test
particle in Fig. 4. Let us note that the system is integrable
and the motion of the test particle is not chaotic, if the test
particle does not have spin (S � 0) [2,13]. Furthermore,
the motion of the test particle with the small magnitude of
spin remains almost regular [35–37]. The motion becomes
remarkably chaotic at last, if the magnitude of the spin is
extremely large [13]. Then it is reasonable to regard the
magnitude of the spin S of the test particle as a measure of
chaos. Considering these facts, our results can be inter-
preted to mean that the pattern of the power spectrum
Pz�!� changes from 1=f type to white noise as the strength
of the chaos increases. Therefore, Fig. 4 means that we
succeed in classifying the chaotic motions into two cate-
gories in accordance with the strength of chaos. In the next
section, we investigate the origin of the 1=f fluctuations in
the power spectrum Pz�!�.

V. ORIGIN OF THE 1=f FLUCTUATIONS IN THE
POWER SPECTRUM

In this section, we investigate the origin of the 1=f
fluctuations in the power spectrum Pz�!� that we found
out in the previous section. The relations between the
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FIG. 4. The phase diagram for the type of the power spectrum
pattern. The patterns of the power spectrum for the chaotic orbits
at grid points in a two-dimensional �J; S� configuration are
tested. At the points where circle symbols (
 ) are marked,
the 1=f-type power spectrum is observed. At the points where
cross symbols (� ) are marked, the white-noise power spectrum
is observed. At the points where triangular symbols (4) are
marked, the orbit apparently behaves almost regular in the
temporal interval of numerical computation. In the blank region,
the test particle goes to infinity or falls into the black hole, since
the energy surface is unbounded.
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FIG. 3 (color online). The power spectrum of the time series of z components of the particle. Each set of the parameters and the
initial conditions in panels (a) and (b) are the same as in Figs. 2(a) and 2(b), respectively. The long-time correlations with the power
law, so-called 1=f fluctuations, are observed in panel (a), while no such correlations are observed in panel (b).
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physical quantities and figures are summarized in Table I.
To begin with, we look more closely at the time evolution
of the orbits which were analyzed in the previous section
(see Fig. 3).

First, in Fig. 5, we plot the time series of the vr compo-
nents in the Poincaré map with z � 0 and v� < 0. We
choose parameter sets in Figs. 5(a) and 5(b) with the
same values as those in Figs. 2(a) and 2(b), respectively.

In Fig. 5(a) the values of the vr components in the Poincaré
map fluctuate with stagnation. It seems that the duration of
the stagnation varies from time to time, and is a mixture of
various lengths. There is no typical one. This feature is
observed commonly when the power spectrum Pz�!� is the
1=f type. Then we expect that this behavior is closely
related to the 1=f fluctuations in the power spectrum
Pz�!� in Fig. 3(a). In Fig. 5(b), on the other hand, the
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FIG. 5 (color online). The time series of the vr�t� components of the Poincaré map with z � 0 and v� < 0. Parameter sets �J; S; E� in
panels (a) and (b) are chosen so as to have the same values as those in Figs. 2(a) and 2(b), respectively.

FIG. 6 (color online). The orbit which we saw in Fig. 5(a) in the two-dimensional configuration space �r; z�. (a) The orbit for the
whole period 0< t < 50 000. (b) The orbit for the period 4000< t < 11 000. (c) The orbit for the period 24 000< t < 28 000.

TABLE I. Summary of figures.

S 1:2�M 1:4�M

Pz�!� 1=f� [Figs. 3(a) and 10(a)] White noise [Figs. 3(b) and 10(b)]
vr�ti� Stagnating [Figs. 5(a) and 8(a)] Nonstagnating [Figs. 5(b) and 8(b)]
Tori A, B Observed [Figs. 6, 7(a), 9, and 11(a)] Not observed [Figs. 7(b) and 11(b)]
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values of the vr components in the Poincaré map oscillate
almost monotonously. This behavior is consistent with the
power spectrum Pz�!� showing white noise in Fig. 3(b).

Second, in Fig. 6, we plot the same orbit we show in
Fig. 5(a) in the two-dimensional configuration space �r; z�.
We find that the whole orbit [Fig. 6(a)] has two significant
components [Figs. 6(b) and 6(c)]. The periods when the
orbit stagnates around each component in Fig. 6 perfectly
correspond to that when vr components in the Poincaré
map stagnate in Fig. 5(a). We never see such stagnant
motions when the power spectrum becomes white noise
[Fig. 5(b)]. These results suggest that the 1=f fluctuations
in the power spectrum Pz�!� are originated by the stagna-
tion and the stickiness around these two distinguishable
components, while traveling back and forth between them,
in the particle motions.

Now, let us show a mechanism by which the motion is
stagnant or not, as shown in Figs. 5 and 6; that is, the power
spectrum Pz�!� shows 1=f or white noise as shown in
Figs. 3, depending on the combination of �J; S�, as shown
in Fig. 4. The essence of the mechanism is that such
stagnant motions are originated around the tori (regular
orbits), and the structure of the tori changes depending on
the combination of �J; S�. To see the structure of tori more
clearly, it is useful to see the motions at lower energy where
the chaotic sea shrinks and the tori get larger. In Fig. 7 we

plot the Poincaré maps with the same values of J and S as
in Fig. 2 but smaller values of E. Around this value of
energy E, the structure of tori is not very sensitive to the
change of E, compared to the changes of J or S. The
volume of the chaotic sea in the Poincaré maps in Fig. 7
is smaller than that in Fig. 2. However, we will see that the
topological structure of the phase space is quite similar to
that of Fig. 2.

First, we pay attention to the chaotic orbits which we
saw in Fig. 7. In Fig. 8 we plot the time series of the vr

components in the Poincaré maps in Fig. 7. We adopt each
data in Figs. 8(a) and 8(b) as the chaotic orbits that are
plotted in Figs. 7(a) and 7(b), respectively. It is found that
the values of the vr components fluctuate with stagnation
in Fig. 8(a), while they do not in Fig. 8(b). The feature
about the stagnation in Figs. 7(a) and 7(b) is similar to that
in Figs. 5(a) and 5(b), respectively. In Fig. 9, we plot the
same orbit we showed in Fig. 8(a) in the two-dimensional
configuration space �r; z�. Similar to the higher-energy case
in Figs. 5 and 6, the periods when the orbit stagnates
around each component in Fig. 9 perfectly correspond to
that when vr components in the Poincaré map stagnate in
Fig. 8(a). Now, in Fig. 10 we plot the power spectrum
Pz�!� of the same chaotic orbits as Figs. 8(a) and 8(b). It is
clearly confirmed that the pattern of the power spectrum
Pz�!� shows 1=f in Fig. 10(a), while the pattern shows

FIG. 8 (color online). The time series of the vr�t� components of the Poincaré map with z � 0 and v� < 0. Each orbit corresponds to
that of the chaotic orbits in Figs. 7(a) and 7(b), respectively.

FIG. 7 (color online). The Poincaré maps with z � 0 and v� < 0. Parameter sets �J; S� in panels (a) and (b) are chosen as the same
values as those in Figs. 2(a) and 2(b), respectively. The values of the total energy are chosen as E � 0:933� (panel (a)) and E �
0:9205� (panel (b)), that are smaller than that of Figs. 5(a) and 5(b), respectively.
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white noise in Fig. 10(b). Therefore, similar to the higher-
energy case, it is suggested that the 1=f fluctuations in the
power spectrum Pz�!� are originated by the motion which
stagnates and sticks around the two distinguishable com-
ponents [Figs. 9(b) and 9(c)], while traveling back and
forth between them. Our results indicate that the pattern
of the power spectrum Pz�!� of the chaotic orbits strongly
depends on the value of the total angular momentum J and
spin S, while the value of energy E does not affect the
pattern of the power spectrum so strongly, although it
affects the volume of the tori.

Second, we pay attention to the tori (regular orbits)
which we saw in Fig. 7. In Fig. 11 we plot the orbits of
the tori in the two-dimensional configuration space �r; z�.
Each color of lines in Figs. 11(a) and 11(b) corresponds to

that of closed curves in Figs. 7(a) and 7(b). For example,
the orbits A and B in Fig. 11(a) correspond to the closed
curves A and B in Fig. 7(a). Indeed, the existence of some
regular orbits in this model have been shown in the paper
[13]. In this paper, however, we should emphasize that the
structure of the phase space is quite different between
panels (a) and (b) in Fig. 7 or Fig. 11. For example, any
tori which correspond to A and B in Fig. 7(a) or Fig. 11(a)
can never be found in Fig. 7(b) or Fig. 11(b). That is, we
should emphasize that the topological structure of the tori
changes depending on the parameter sets �J; S�, and the
change is in accordance with the change of types of the
power spectra (see Figs. 10 and 11). Moreover, it is quite
important to note that the orbits of the tori A and B in
Fig. 11(a) resemble the chaotic orbits in Figs. 6(c) and 6(b),

FIG. 9 (color online). The orbit which we saw in Fig. 8(a) in the two-dimensional configuration space �r; z�. (a) The orbit for the
whole period 0< t < 70 000. (b) The orbit for the period 22 000< t < 38 000. (c) The orbit for the period 42 000< t < 70 000.

FIG. 10 (color online). The power spectrum Pz�!� of the chaotic orbits in Figs. 7(a) and 7(b). We adopt the time series z�t� in
panels (a) and (b) as the chaotic orbits in Figs. 7(a) and 7(b), respectively. The long-time correlations with power law, so-called 1=f
fluctuations, are observed in panel (a), while no such correlations are observed in panel (b).
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or Figs. 9(b) and 9(c), respectively. This resemblance
means that the orbits in Figs. 6 and 9 stagnate around the
tori A and B in Fig. 11(a), although it is not easy to detect
such tori in Fig. 2(a) since chaotic sea dominates and the
tori A and B shrink extremely with the larger value of the
energy E.

Summing up the above results leads us to the following
conclusions. The 1=f fluctuations in the power spectrum
are originated by the orbit which stagnates around the tori
while traveling back and forth between them. Whether we
can observe 1=f fluctuations in the power spectrum in the
time series of a component depends on the topological
structure of the phase space. It is the pair of tori A and B
in Figs. 7(a) and 11(a) that gives rise to the 1=f fluctuations
in the power spectrum Pz�!�. Moreover, our results sug-
gest that the topological structure of the tori changes
strongly depending on the total angular momentum J and
spin S rather than the energy E. Therefore, it is reasonable
that the pattern of power spectrum Pz�!� of the chaotic
motion depends mainly on the parameter sets �J; S�, and we
can expect that the phase diagram that we obtained in the
previous section (see Fig. 4) is reliable.

VI. SUMMARY AND DISCUSSION

In this paper we have characterized the properties of
chaos in a spinning test particle in Schwarzschild space-
time. We have calculated the power spectrum of the time
series of z components of the test particle’s position,
Pz�!�, and found out that the pattern of the power spec-
trum Pz�!� is 1=f or white noise in the low-frequency
range (see Fig. 3). That is, we have succeeded in classify-
ing the chaotic motions, which had been classified as

merely chaotic in the paper [13], into these two distinct
types (see Table II). The important point is that the pattern
of the power spectrum strongly depends on the spin S and
the total angular momentum J of the test particle and not
on the initial conditions. Our analyses also suggest that the
value of the energy E does not affect so strongly whether
the power spectrum Pz�!� becomes a 1=f-type spectrum
or not (see Figs. 3 and 10). Then, testing the pattern of
Pz�!� for various grid points in the two-dimensional �J; S�
plane, we have obtained the phase diagram for the charac-
ter of the chaotic motions (see Fig. 4). This phase diagram
enables us in principle to guess the properties of the system
(J and S) by observing the dynamics of the test particle,
even if the motion is chaotic.

Furthermore we have pointed out that the pair of tori A
and B in Figs. 7(a) and 11(a) gives rise to the 1=f-type
power spectrum of the time series of z components of the
particle’s position Pz�!�. The important point is that the
chaotic orbits stick near the tori, while traveling back and
forth between them. Whenever the power spectrum Pz�!�
becomes the 1=f spectral pattern, we have found that the
orbit [Fig. 6(a)] stagnates around two significant compo-
nents [Figs. 6(b) and 6(c)]. Moreover, investigating the
motions with the value of lower energy where more tori
dominate, we have confirmed that such significant compo-
nents imitate the orbits of the tori characterized as A and B
in Figs. 7(a) and 11(a).

Eventually, the conclusion is summarized as follows. We
have two types of chaos as we have seen by the power
spectra in the system we have studied in this paper. One is
1=f, and the other is white noise. The difference of the
properties of chaos or the power spectra is caused by the
topological structure of the phase space, which in turn is
governed by the physical parameter set �J; S� of the system.
From this point of view, the chaos we found in this paper is
not always merely random.

The type of motion where the phase point in chaotic
orbit stays close to some regular orbits (tori) for some long
time is known as ‘‘stagnant motion’’ or ‘‘sticky motion,’’
and is often observed in Hamiltonian dynamical systems

FIG. 11 (color online). The orbits in the two-dimensional configuration space �r; z� corresponding to each torus in Figs. 7(a) and
7(b). Each line color in panels (a) and (b) corresponds to that of the closed curves in Figs. 7(a) and 7(b), respectively. For example, the
regular orbits A and B in Fig. 9(a) correspond to the tori A and B in Fig. 7(a).

TABLE II. Schematic classification of motions in this system.
8>><
>>:

bounded . . .

8><
>:

regular . . . �periodic or quasiperiodic�

chaotic . . .
�

1=f� . . . �correlated�
white noise . . . �uncorrelated�

unbounded

HIROKO KOYAMA, KENTA KIUCHI, AND TETSURO KONISHI PHYSICAL REVIEW D 76, 064031 (2007)

064031-8



[38–40]. Stagnant motions are usually accompanied by
1=f fluctuations and are considered to be due to the fractal
structure of the phase space [41–43]. In particular, stagnant
motions are often observed for weakly chaotic, nearly
integrable systems. This is consistent with the fact that
we have observed the 1=f fluctuations for smaller values of
spin S when the chaos is weak, and white noise for larger
values of spin S when the chaos is strong. Until now such
1=f fluctuations have not been discovered in any relativ-
istic systems. We have shown that the 1=f fluctuations we
observed for the first time in the relativistic system are also
generated by such a stagnant motion, that the particle
motion stagnates around regular orbits, while traveling
back and forth between them in Schwarzschild spacetime.

Finally the astrophysical implications of our results
should be mentioned. It is true that the value of the spin
S where the particle motion is remarkably chaotic is so
large that such a star cannot exist, which has been re-

marked in the paper [13]. Then the result obtained in this
paper is relevant as an illustration and is not directly
applicable to a physical system. However, it is also sug-
gested that there can be chaos when the spins do indeed
have physically accessible values in the case of a pair of
black holes of comparable masses [18,20,21,23]. We ex-
pect that the method and theory in this paper can also be
useful and applied to astrophysical systems in practice,
since nature is filled with phenomena that exhibit chaotic
behavior.
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