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We theoretically study the induced odd-frequency pairing states in ballistic normal-metal/superconductor
�N/S� junctions where a superconductor has even-frequency symmetry in the bulk and a normal-metal layer has
an arbitrary length. Using the quasiclassical Green’s function formalism, we demonstrate that, quite generally,
the pair amplitude in the junction has an admixture of an odd-frequency component due to the breakdown of
translational invariance near the N/S interface where the pair potential acquires spatial dependence. If a
superconductor has an even-parity pair potential �spin-singlet s-wave or spin-singlet dxy-wave state�, the
odd-frequency pairing component with odd parity is induced near the N/S interface, while in the case of an
odd-parity pair potential �spin-triplet px wave� the odd-frequency component with even parity is generated. We
show that in conventional s-wave junctions, the amplitude of the odd-frequency pairing state is strongest in the
case of a full-transparency N/S interface and is enhanced at energies corresponding to the peaks in the local
density of states �LDOS�. In px- and dxy-wave junctions, the amplitude of the odd-frequency component on the
S side of the N/S interface is enhanced at zero energy where the midgap Andreev resonant state �MARS�
appears due to the sign change of the pair potential. The odd-frequency component extends into the N region
and exceeds the even-frequency component at energies corresponding to the LDOS peak positions, including
the MARS. At the edge of the N region the odd-frequency component is nonzero while the even-frequency one
vanishes. We show that the concept of the odd-frequency pairing state plays a pivotal role to interpret a number
of phenomena in nonuniform superconducting systems, like McMillan-Rowell and midgap Andreev resonance
states.
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I. INTRODUCTION

The odd-frequency superconducting pairing state, charac-
terized by a pair amplitude that is an odd function of energy
or Matsubara frequency, was first predicted by Berezinskii1

and has attracted a lot of interest recently. Although the ex-
istence of odd-frequency pairing in bulk uniform systems is
not fully established yet,2–6 there is a number of proposals to
realize it in superconducting junctions. The realization of the
odd-frequency pairing state without a finite pair potential
was proposed by Bergeret, Volkov, and Efetov in Ref. 7 in
ferromagnet/superconductor heterostructures with inhomoge-
neous magnetization and several related works have been
presented up to now.8–10 In particular, it was predicted that
the local density of states �LDOS� in the ferromagnet is en-
hanced in the presence of the odd-frequency pairing.11

Recently, it was shown that an odd-frequency pairing state
is possible even without magnetic ordering. Tanaka and Gol-
ubov predicted that the odd-frequency pair amplitude can be
induced in a diffusive normal metal attached to a spin-triplet
superconductor.12 According to this study, the origin of the
anomalous proximity effect specific to spin-triplet p-wave
superconductor junctions13 is the realization of the odd-
frequency pairing state in a diffusive normal metal. It is also
clarified that the penetration of the midgap Andreev resonant
state14,15 �MARS� into the diffusive normal metal is a mani-
festation of the existence of the odd-frequency spin-triplet
s-wave superconducting state. The MARS is the well-known
resonant state specific to unconventional superconductors
with sign change of the pair potential on the Fermi surface,
and was observed experimentally in various materials.16

Furthermore, it was predicted very recently17,18 that, due
to spatial variation of the pair potential near a normal-metal/
superconductor �N/S� interface,19 the odd-frequency pairing
state can be induced even in a conventional ballistic N/S
system without spin-triplet ordering. By studying infinite
normal-metal/infinite superconductor �N/S� junctions, it was
shown that, quite generally, the spin-singlet even-parity
�spin-triplet odd-parity� pair potential in the superconductor
induces an odd-frequency pairing component with spin-
singlet odd-parity �spin-triplet even-parity� near the N/S
interface.17 The magnitude of the induced odd-frequency
component is enhanced in the presence of the MARS due to
the sign change of the anisotropic pair potential at the inter-
face. In Ref. 17, only the generation of the odd-frequency
component at the S side of the N/S interface was studied by
Tanaka et al. Therefore the questions remain how this com-
ponent extends into the N region and how it manifests itself
in the properties of the normal metal. In a semi-infinite bal-
listic normal metal attached to a superconductor, the LDOS
normalized by its value in the normal state is always unity.
This well-known property of the LDOS is due to the absence
of interference between electrons and Andreev reflected
holes in a semi-infinite N metal. In this case, the LDOS
cannot be used to characterize the superconducting correla-
tions in a normal metal. Thus, in order to understand mani-
festations of the induced odd-frequency pairing state in the N
metal in a much clearer way, it is necessary to study junc-
tions with finite length of the N region.

In the present paper, using quasiclassical Green’s function
theory, we study the pair amplitude and the LDOS at the N/S
interface when the N region has finite thickness L. The spa-
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tial dependence of the pair potential is determined self-
consistently. For convenience of the actual numerical calcu-
lation, we have used the boundary condition in the Ricatti
parametrization.20 The superconductor is assumed to have
the conventional even-frequency pairing state in the bulk,
being in the spin-singlet even- �s-wave or dxy-wave symme-
try� or the spin-triplet odd-parity state �px-wave symmetry�.
We show that, quite generally, the spatial variation of the pair
potential and the proximity effect lead to the generation of
the odd-frequency component near the N/S interface and on
the N side. Moreover, when the superconductor is in the
even-parity �odd-parity� state, the resulting odd-frequency
component is odd parity �even parity� in order to conserve
the spin component. In the absence of the MARS, as in the
case of spin-singlet s-wave junctions, the magnitude of the
odd-frequency component of the pair amplitude is sup-
pressed when the transmission coefficient through the inter-
face decreases. The resulting odd-frequency pair amplitude
has its maximum value at the interface. At the edge of the N
region, the odd-frequency component is always absent, as
well as in the S region far away from the interface. The
LDOS is suppressed around �=0, where � is the quasiparti-
cle energy measured from the Fermi level. For large magni-
tude of L, the resulting LDOS has an oscillatory � depen-
dence. The amplitude of the odd-frequency pair amplitude
can exceed that of the even-frequency one at some � values.
For the case of spin-triplet px-wave and spin-singlet dxy-wave
junctions, the amplitude of the odd-frequency component at
the S side of the N/S interface is much larger than that of the
even-frequency pair amplitude. This is due to the fact that
the presence of the MARS at the interface14 enhances the
amplitude of the odd-frequency pairing state as shown in
Ref. 17. At the edge of the N region, the even-frequency
component is always absent and only the odd-frequency
component is nonzero. At �=0 the resulting odd-frequency
component always exceeds the even-frequency one.

The organization of the present paper is as follows. In
Sec. II, we introduce the model and the quasiclassical
Green’s function formalism. In Sec. III, the results of the
numerical calculations are discussed for the case of spin-
singlet s-wave, spin-triplet px-wave, and spin-singlet
dxy-wave junctions. In Sec. IV, the conclusions and outlook
are presented.

II. MODEL AND FORMULATION

In the following, we consider a N/S junction as the sim-
plest example of a nonuniform superconducting system with-
out impurity scattering. Both cases of spin-triplet odd-parity
and spin-singlet even-parity symmetries are considered in the
superconductor. In the spin-triplet superconductor, we
choose Sz=0 for simplicity. We assume a thin insulating bar-
rier located at the N/S interface �x=0� with N �−L�x�0�
and S �x�0� modeled by a �-function H��x�, where H is the
strength of the �-function potential. The length of the normal
region is L. The reflection coefficient of the junction for the
quasiparticle for injection angle � is given by R=Z2 / �Z2

+4 cos2 �� with Z=2H /vF, where � �−� /2���� /2� is
measured from the normal to the interface and vF is the
Fermi velocity.

The quasiclassical Green’s functions21 in a normal metal
�N� and a superconductor �S� in the Matsubara frequency
representation are parametrized as

ĝ±
�i� = f1±

�i� �̂1 + f2±
�i� �̂2 + g±

�i��̂3, �ĝ±
�i��2 = 1̂ �1�

where the subscripts i �=N ,S� refer to N and S, respectively.

Here, �̂ j �j=1,2 ,3� are Pauli matrices and 1̂ is a unit matrix.
The subscript � �	� denotes the left �right� going
quasiparticles.22 The functions ĝ±

�i� satisfy the Eilenberger
equation23

ivFxĝ±
�i� = 
 �Ĥ±, ĝ±

�i�� �2�

with

Ĥ± = i�n�̂3 + i�̄±�x��̂2.

Here vFx is the x component of the Fermi velocity, �n
=2�T�n+1/2� is the Matsubara frequency, n is an integer

number, and T is the temperature. �̄+�x� ��̄−�x�� is the effec-
tive pair potential for left �right� going quasiparticles. In the

N region, �̄±�x� is set to zero due to the absence of a pairing
interaction in the N metal. The above Green’s functions can
be expressed as

f1±
�i� = ± i�F±

�i��x� + D±
�i��x��/�1 − D±

�i��x�F±
�i��x�� ,

f2±
�i� = − �F±

�i��x� − D±
�i��x��/�1 − D±

�i��x�F±
�i��x�� ,

g±
�i� = �1 + D±

�i��x�F±
�i��x��/�1 − D±

�i��x�F±
�i��x�� , �3�

where D±
�i��x� and F±

�i��x� satisfy the Ricatti equations20 in the
N region,

vFx�xD±
�N��x� = − 2�nD±

�N��x� , �4�

vFx�xF±
�N��x� = 2�nF±

�N��x� , �5�

and in the S region,

vFx�xD±
�S��x� = − �̄±�x��1 − �D±

�S��x��2� + 2�nD±
�S��x� , �6�

vFx�xF±
�S��x� = − �̄±�x��1 − �F±

�S��x��2� − 2�nF±
�S��x� , �7�

respectively.
The boundary conditions at the edge of N region, x=−L,

have the form

F+
�N��− L� = − D−

�N��− L�, F−
�N��− L� = − D+

�N��− L� . �8�

The boundary conditions at the N/S interface, x=0, are

F±
�S��0� = −

�1 − R�D±
�N��0� + �R + D+

�N��0�D−
�N��0��D


�S��0�
�1 + RD+

�N��0�D−
�N��0�� + �1 − R�D


�N��0�D

�S��0�

�9�

and
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F±
�N��0� = −

�1 − R�D±
�S��0� + �R + D+

�S��0�D−
�S��0��D


�N��0�
�1 + RD+

�S��0�D−
�S��0�� + �1 − R�D


�N��0�D

�S��0�

,

�10�

where R is the reflection coefficient at the interface. Since
there is no pair potential in the N region, the solutions for the
spatial dependence of above functions can be easily found:

D−
�N��x� = − At−1, D+

�N��x� = − Bt−1,

F+
�N��x� = At, F−

�N��x� = Bt ,

with t=exp��x+L� /� and =�vFx /2��n�. The constants A
and B are given by

A =
− 2�1 − R�D+

�S��0�t0

� + ��2 + 4�1 − R�2t0
2D+

�S��0�D−
�S��0�

, �11�

B =
− 2�1 − R�D−

�S��0�t0

� + ��2 + 4�1 − R�2t0
2D+

�S��0�D−
�S��0�

, �12�

with

� = t0
2�1 + RD+

�S��0�D−
�S��0�� − �R + D+

�S��0�D−
�S��0��

and t0=exp�L /�. After simple manipulation, we obtain f1±
�N�,

f2±
�N�, and g±

�N�,

f1+
�N� = − i�At − B/t�/�1 + AB�, f1−

�N� = i�Bt − A/t�/�1 + AB� ,

f2+
�N� = − �At + B/t�/�1 + AB�, f2−

�N� = − �Bt + A/t�/�1 + AB� ,

�13�

g+
�N� = g−

�N� = �1 − AB�/�1 + AB� . �14�

Note that, as follows from Eq. �14�, the functions g+
�N�

and g−
�N� are spatially independent. For Z=0, since A

=−D+
�S��0� / t0 and B=−D−

�S��0� / t0 are satisfied, then Eqs. �13�
and �14� can be expressed much more simply as

f1±
�N� = ± i

D±
�S��0�t − D±

�S��0�/t
t0 + D±

�S��0�D±
�S��0�/t0

, �15�

f2±
�N� =

D±
�S��0�t + D±

�S��0�/t
t0 + D±

�S��0�D±
�S��0�/t0

, �16�

and

g+
�N� = g−

�N� =
t0 − D±

�S��0�D±
�S��0�/t0

t0 + D±
�S��0�D±

�S��0�/t0

. �17�

Here, we consider the situation without mixing of differ-
ent symmetry channels for the pair potential. Then the pair

potential �̄±�x� is expressed by

�̄±�x� = ��x��±�����x� �18�

with form factor �±��� given by �±���=1, ±sin 2�, and
±cos � for s-wave, dxy-wave, and px-wave superconductors,
respectively. For the s-wave case, D+

�i��x�=D−
�i��x� are satis-

fied, while for the px-wave and dxy-wave cases, D+
�i��x�

=−D−
�i��x� are satisfied.

��x� is determined self-consistently by the following
equation:

��x� =
2T

ln �T/TC� + �
n�0

1

n + 1/2

�
n�0

�
−�/2

�/2

d� G���f2+

�19�

with G���=1 for the s-wave case and 2���� for other
cases.24 TC is the transition temperature of the supercon-
ductor. We introduce a cutoff of the summation of n, nmax, in
Eq. �19�, where nmax is the maximum integer that satisfies

nmax �
�D

2�T
. �20�

The condition in the bulk is ����=�0. Since the pair

potential �̄�x� is a real number, the resulting f1± is an imagi-
nary number and f2± is a real one.

Before performing actual numerical calculations, we now
discuss general properties of the pair amplitude. In the fol-
lowing, we explicitly write f1±

�i� = f1±
�i���n ,��, f2±

�i� = f2±
�i���n ,��,

F±
�i�=F±

�i��x ,�n ,��, and D±
�i�=D±

�i��x ,�n ,��. For the limit x
=�, we obtain

f1±
�S���n,�� = 0, f2±

�S���n,�� =
�0�±���

��n
2 + �0

2�±
2��±�

. �21�

Note that f1±
�i���n ,�� becomes finite due to the spatial varia-

tion of the pair potential and it does not exist in the bulk.
From Eqs. �4� and �5�, we can show that D±

�i��x ,−�n ,��
=1/D±

�i��x ,�n ,�� and F±
�i��x ,−�n ,��=1/F±

�i��x ,�n ,��. After
simple manipulation, we obtain

f1±
�i���n,�� = − f1±

�i��− �n,��, f2±
�i���n,�� = f2±

�i��− �n,�� ,

�22�

for any x. It is remarkable that the functions f1±
�i���n ,�� and

f2±
�i���n ,�� correspond to odd-frequency and even-frequency

components of the pair amplitude, respectively.8,17 The func-
tion f1±

�1���n ,�� describes the odd-frequency component of the
pair amplitude penetrating from the superconductor.

Next, we discuss the parity of these pair amplitudes. The
even-parity �odd-parity� pair amplitude should satisfy the
relation f j±

�i���n ,��= f j

�i� ��n ,−�� �f j±

�i���n ,��=−f j

�i� ��n ,−���,

with j=1,2. For an even-parity �odd-parity� superconductor,
�±�−��=�
��� ��±�−��=−�
����. Then, we can show that
for the even-parity case

D±
�i��x,�n,− �� = D


�i��x,�n,��, F±
�i��x,�n,− �� = F


�i��x,�n,��
�23�

and for the odd-parity case

D±
�i��x,�n,− �� = − D


�i��x,�n,�� ,
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F±
�i��x,�n,− �� = − F


�i��x,�n,�� ,

respectively.
The resulting f1±

�i���n ,�� and f2±
�i���n ,�� satisfy

f1±
�i���n,�� = − f1


�i� ��n,− �� ,

f2±
�i���n,�� = f2


�i� ��n,− �� �24�

for an even-parity superconductor and

f1±
�i���n,�� = f1


�i� ��n,− �� ,

f2±
�i���n,�� = − f2


�i� ��n,− �� �25�

for an odd-parity superconductor.17 Note that the parity of
the odd-frequency component f1±

�i���n ,�� is always different
from that in the bulk superconductor. It should be also noted
that, as seen from Eq. �13�, the odd-frequency component
f1±

�i���n ,�� is purely an imaginary quantity.
The underlying physics behind this formal property is the

following. Due to the breakdown of translational invariance

near the N/S interface, the pair potential �̄�x� acquires a
spatial dependence which leads to the coupling between
even-parity and odd-parity states. Since the bulk pair poten-
tial has an even-frequency symmetry, the Fermi-Dirac statis-
tics requires that the order parameter component induced
near the interface should be odd in frequency. The phase of
the induced pair amplitude undergoes a � /2 shift from that
in the bulk S, thus removing the internal phase shift between
the even- and odd-frequency components and making the
interface-induced state compatible with time-reversal invari-
ance. As a result, the function f1±

�i���n ,�� becomes a purely
imaginary number.17

Let us now focus on the values of the pair amplitudes at
the edge of the N region �at x=−L�. We concentrate on two
extreme cases with �I� �+���=�−��� and �II� �+���=
−�−���. In case I, the MARS is absent since there is no sign
change of the pair potential experienced by the quasiparticle
at the interface. Then the relation D+

�N��x�=D−
�N��x� holds. On

the other hand, in case II, the MARS is generated near the
interface due to the sign change of the pair potential and the
relation D+

�N��x�=−D−
�N��x� is satisfied.14 At the edge x=−L, it

is easy to show that F±
�N��−L�=−D±

�N��−L� for the former case
and F±

�N��−L�=D±
�N��−L� for the latter. As a result, f1±

�N��−L�
=0 for case I and f2±

�N��−L�=0 for case II. Thus we can con-
clude that in the absence of the MARS only the even-
frequency pairing component exists at x=−L, and in the pres-
ence of the MARS only the odd-frequency one.

The generation of the odd-frequency component f1±
�N�S�� is

a very general feature. In the extreme limit with R=1, f1±
�N�

becomes zero due to the absence of the proximity effect. In
this case, f1±

�S� at the S side of the interface becomes

f1±
�S� = ± i

− D±
�S��0� + D


�S��0�
1 + D+

�S��0�D−
�S��0�

. �26�

Only when D+
�S��0�=D−

�S� is satisfied does f1±
�S� vanish. It

should also be noted that the generation of f1±
�N�S�� is robust

against the detailed features of the spatial dependence of the
pair potential. Although we have determined the spatial de-
pendence of the pair potential self-consistently, the genera-
tion of f1±

�N�S�� can be shown even if we ignore the spatial

dependence of �̄±�x�. In such a case, D±
�S��0� is given as

D±
�S��0� =

�0�±��±�

�n + ��n
2 + �0

2�±
2��±�

. �27�

In order to understand the angular dependence of the pair

amplitude in more detail, we define f̂1
�i� and f̂2

�i� for −� /2

���3� /2 with f̂1�2�
�i� = f1�2�+

�i� ��� for −� /2���� /2 and

f̂1�2�
�i� = f1�2�−

�i� ��−�� for � /2���3� /2. We decompose f̂1�2�
�i�

into various angular momentum components as follows:

f̂1�2�
�i� = �

m

Sm
�1�2�� sin�m�� + �

m

Cm
�1�2�� cos�m�� , �28�

with m=2l+1 for the odd-parity case and m=2l for the even-
parity case with integer l�0, where l is the quantum number
of the angular momentum. Here, Cm

�1�2�� and Sm
�1�2�� are defined

for all x. It is straightforward to show that the only nonzero
components are �1� C2l

�2� and C2l+1
�1� for even-parity supercon-

ductor without sign change at the interface, i.e., s-wave or
dx2−y2-wave, �2� S2l+2

�2� and S2l+1
�1� for dxy-wave, �3� C2l+1

�2� and
C2l

�1� for px-wave, and �4� S2l+1
�2� and S2l+2

�1� for py-wave junc-
tions, respectively. The allowed angular momenta for odd-
frequency components are 2l+1, 2l+1, 2l, and 2l+2 corre-
sponding to each of the above four cases.

In order to get better insight into the spectral property of
the odd-frequency pair amplitude, we perform an analytical
continuation from the Matsubara frequency �n to the quasi-
particle energy � measured from the chemical potential. The
retarded Green’s function corresponding to Eq. �1� is defined
as ĝ±

�i�R= f1±
�i�R�̂1+ f2±

�i�R�̂2+g±
�i�R�̂3. One can show that f1±

�i�R�−��
=−�f1±

�i�R����*, f2±
�i�R�−��= �f2±

�i�R����*, and g±
�i�R�−��= �g±

�i�R����*.
The LDOS ���� at the N/S interface at x=0 normalized to its
value in the normal state is given by

���� = �
−�/2

�/2

d� Re	g+
�i�R��� + g−

�i�R���
2�


 . �29�

In the following, we self-consistently calculate the spatial
dependence of the pair potential and the pair amplitude in the
Matsubara representation. After that we calculate the spectral
properties of pair amplitudes and the LDOS. For actual cal-
culations, we choose spin-singlet s-wave, spin-triplet
px-wave, and spin-singlet dxy-wave states in a supercon-
ductor and fix the temperature T=0.05TC. The cutoff fre-
quency �D is set to be �D /2�TC=1. The length of the nor-
mal region L is measured in units of L0=vF /2�TC.

III. RESULTS

A. s-wave pair potential

First we focus on the s-wave superconductor junctions as
shown in Fig. 1. By changing the length L of the N region
and the transparency at the interface, we calculate the spatial
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dependence of the pair potential and the pair amplitudes in
the Matsubara frequency representation. We only concentrate
on the lowest angular momentum of the even-frequency pair
amplitude C0

�2�. As regards the odd-frequency pair ampli-
tudes, we focus on the C1

�1�, C3
�1�, and C5

�1� components, which
all have odd parity and depend on � as cos �, cos 3�, and
cos 5�, respectively, corresponding to the px-wave, f1-wave,
and h1-wave components shown in Fig. 1. In all cases, the
even-frequency component is constant in the S region far
away from the interface and the corresponding odd-
frequency components are absent. The s-wave pair potential
is suppressed for a full-transparency junction �Z=0�, while it
is almost constant for a low-transparency one �Z=5�. It does
not penetrate into the N region due to the absence of the
attractive interaction in the N metal. On the other hand, in all

considered cases, the spatial variation of the even-frequency
s-wave pair amplitude is rather weak in the S region, while
in the N region it is strong for Z=0 and is reduced for Z
=5 since the proximity effect is weaker in the latter case. The
odd-frequency component always vanishes at x=−L and
does not have a jump at the N/S interface even for nonzero Z.
Its amplitude is strongly enhanced near the N/S interface
especially for full-transparency junctions. Note that not only
the px wave but also the f1 wave and h1 wave have suffi-
ciently large magnitudes as shown in Figs. 1�a� and 1�c�.
With the decrease of the transparency of the N/S interface,
the odd-frequency components are suppressed as shown in
Figs. 1�b� and 1�d�.

In order to understand the proximity effect in more detail,
we look at the resulting LDOS and the spectral properties of
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FIG. 1. �Color online� Spatial dependence of the normalized pair potential, even-frequency pair amplitude, and odd-frequency compo-
nents of the pair amplitude for s-wave superconductor junctions. Here, we choose =vF /�0 in the S region �x�0� and =L0=vF /2�TC in
the N region. The pair amplitudes C0

�2�, C1
�1�, C3

�1�, and C5
�1� are denoted as even s-wave, odd px-wave, odd f1-wave, and odd h1-wave pair

amplitudes. �a� Z=0, L=L0, �b� Z=5, L=L0, �c� Z=0, L=5L0, and �d� Z=5, L=5L0, respectively.
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pair amplitudes in real energy �. We focus on the even-
frequency s-wave component of the pair amplitude C0

�1� and
on odd-frequency px-wave pair amplitude C1

�1� on the S side
of the N/S interface and on the edge of the N region. As
follows from Eq. �14�, the LDOS is independent of the co-
ordinate x in the N region. For Z=0 and L=L0, the LDOS
has a V-shaped structure. There is no jump of the value of the
LDOS at the N/S interface. The even-frequency pair ampli-
tude at the N/S boundary on the S side is shown in Fig. 2�b�.
Its real part is an even function of � while its imaginary part
is an odd function of �. The corresponding odd-frequency
one is plotted in Fig. 2�c�. In contrast to the even-frequency
component �Fig. 2�b��, the real �imaginary� part of the pair
amplitude is an odd �even� function of �. The pair amplitude
is enhanced around �� ±0.6�0 where the LDOS has a peak.
At the N/S boundary �x=−L�, only the even-frequency com-
ponent exists. The line shape of the pair amplitude shown in
Fig. 2�d� is similar to that in Fig. 2�b�.

In Fig. 3, the corresponding plots for L=L0 and Z=5 are
shown. The LDOS on the S side of the N/S interface has a
U-shaped DOS similar to the bulk DOS. On the other hand,

in the N region, the LDOS has a different value due to the
discontinuity at the N/S interface. The LDOS in N also ex-
hibits a minigap structure which scales with the interface
transparency, in accordance with the well-known McMillan
model of proximity effect in conventional superconducting
N/S junctions.25 The magnitude of the real part of the even-
frequency component on the S side of the N/S interface ex-
ceeds the magnitude of the imaginary part as seen from Fig.
3�b� for �����0. The magnitude of the odd-frequency part is
small as compared to that of the even-frequency one. As seen
from Fig. 3�c�, the real part of the odd-frequency component
has a minigap structure and the imaginary part has a dip and
peak structure, in contrast to the case of the even-frequency
one �see Fig. 3�b��. At the N/S boundary �x=−L�, only the
even-frequency component exists. The real part of the even-
frequency component at x=−L has a peak around �=0 �see
Fig. 3�d��. The width of this peak is of the same order as the
dip of the LDOS. As compared to the corresponding case of
Z=0, the proximity effect in the N region is essential only at
low energy �.

It is also interesting to consider the case of large width of
the N region. Here, we concentrate on the situation with a
full-transparency N/S interface �Z=0� and L=5L0. In this
case the LDOSs in the N region and at the N/S interface
coincide with each other as seen from Fig. 4. The LDOS has
multiple peaks due to the existence of the multiple subgap
structures due to electron-hole interference effects in the
N region.26 The amplitudes of the corresponding even-

FIG. 2. �Color online� Energy dependence of the LDOS and the
pair amplitudes in s-wave junctions with L=L0 and Z=0. �a� The
LDOS normalized by its value in the normal state. Solid line,
LDOS on the S side of the N/S interface; dotted line, LDOS in the
N region. Energy dependence of the real �solid line� and imaginary
�dotted line� part of �b� even-frequency s-wave pair amplitude on
the S side of the N/S interface, �c� odd-frequency px-wave pair
amplitude on the S side of the N/S interface, and �d� even-frequency
s-wave pair amplitude at the edge of the N region.

FIG. 3. �Color online� Same as Fig. 2, but with L=L0 and
Z=5.
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frequency and odd-frequency components are enhanced at
energies � corresponding to the LDOS peak positions, while
the ratio of these components depends on energy and loca-
tion in the N region. To clarify this point much more clearly,
we concentrate on the ratio of the odd- and even-frequency
components in the N region. According to Eq. �13�, the ratio
of the magnitude of the odd-frequency component f1+

�N��� ,��
to the even-frequency one f2+

�N��� ,�� is

�f1+
�N���,���

�f2+
�N���,���

=
�1/t − t�
�1/t + t�

= �tan	 2�

vFx
�L + x�
� . �30�

At the edge of the N region, x=−L, the odd-frequency com-
ponent vanishes at all energies. On the other hand, a very
interesting situation occurs at the N/S interface, x=0, as will
be shown below. In Fig. 5, we plot this ratio for �=0 and
x=0. It is remarkable that at some energies the amplitude of
the odd-frequency pair exceeds that of the even-frequency
one.

Let us clarify the relation between the positions of the
bound states and the above ratio of the odd-to-even pair am-
plitude. In the limit L�L0 the bound states are determined
by a simple relation for Z=0,26

�n =
�vFx

2L
�n + 1/2�, n = 0,1,2, . . . . �31�

A very dramatic situation occurs at the N/S interface, x=0:
combining the above two equations, we obtain that at the

LDOS peak positions �=�n the ratio of the odd-to-even pair
amplitude diverges,

�f1+
�N���,���

�f2+
�N���,���

= �tan��/2 + �n�� = � . �32�

That means that at the subgap peak energies the odd-
frequency component dominates over the even-frequency
one at the N/S interface. This is a remarkable property of the
odd-frequency pairing, which makes it relevant to the classi-
cal McMillan-Rowell oscillations in the N/S geometry.26 To
summarize, we have shown that the odd-frequency compo-
nent is present even in the standard case of a ballistic N/S
system, and it dominates at energies when the LDOS has
subgap peaks.

B. px-wave pair potential

Next, we focus on the px-wave superconductor junctions
as shown in Fig. 6. As in the case of s-wave junctions, by
changing the length of the normal region L and the transpar-
ency at the interface, we calculate the spatial dependence of
the pair potential and the pair amplitudes in the Matsubara
frequency representation. We concentrate only on the lowest
angular momentum of the even-frequency pair amplitude
C1

�2�. As regards the odd-frequency pair amplitude, we focus
on the C0

�1�, C2
�1�, and C4

�1� components where the parity of the
odd-frequency components is even. These functions corre-
spond to s-wave, dx2−y2-wave, and g-wave components in
Fig. 6, where the � dependencies are given by 1, cos 2�, and
cos 4�, respectively. In all cases, the even-frequency compo-
nent is constant in the S region far away from the interface
and the corresponding odd-frequency components are absent.
The px-wave pair potential is reduced at the N/S interface in
all cases. For Z=5, the reduction is significant and the result-
ing magnitude of the px-wave pair potential is almost zero at
the N/S interface. It does not penetrate into the N region due
to the absence of the attractive interaction in the N metal.
The amplitude of the px-wave even-frequency pair amplitude
is reduced toward the N/S interface and monotonically de-
creases in the N region. It does not have a jump at the N/S
interface even for nonzero Z and vanishes at the edge of the

FIG. 4. �Color online� Same as Fig. 2, but with L=5L0 and Z
=0.

FIG. 5. Ratio of the pair amplitudes f1+
�N��� ,�� / f2+

�N��� ,�� on the
N side of the N/S interface in s-wave junction as a function of
energy � for �=0 and L=5L0.
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N region �x=−L�. On the other hand, the odd-frequency
component is always nonzero at x=−L and has a jump at the
N/S interface for nonzero Z �see Figs. 6�b� and 6�d��. The
amplitude of the odd-frequency component is strongly en-
hanced near the S side of the N/S interface. This enhance-
ment is much more significant for the low-transparency in-
terface with large Z �see Figs. 6�b� and 6�d��. However, for
the presently chosen Matsubara frequency �n=0.05�TC it
cannot penetrate into the N region. On the other hand, for
Z=0, the odd-frequency component significantly extends
into the N region. Note that not only the s-wave but also the
dx2−y2-wave and g-wave components have sufficiently large
magnitudes as shown in Figs. 6�a� and 6�c�. These pair am-
plitudes are almost constant in the N region.

In order to get better insight into the spectral property of
the odd-frequency pair amplitude, we calculate the LDOS

and the pair amplitudes as functions of real energy �. We
focus on the even-frequency px-wave component of the pair
amplitude C1

�2� and odd-frequency s-wave component of the
pair amplitude C0

�1� at the N/S interface on the S side and the
N boundary. In the N region, the LDOS is independent of x
as shown by Eq. �14�. For Z=0 and L=L0 �see Fig. 7�a��, the
LDOS has a zero-energy peak �ZEP� due to the formation of
the MARS. There is no jump of the LDOS at the interface
due to the full transparency. The even-frequency pair ampli-
tude at the S side of the N/S boundary is shown in Fig. 7�b�.
Neither the real nor imaginary part varies strongly around
��0.

Similar to the case of the s-wave junctions, the real part of
the even-frequency component is an even function of � while
the imaginary part is an odd function of �. The correspond-
ing odd-frequency component is plotted in Fig. 7�c�. The real
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FIG. 6. �Color online� Spatial dependence of the normalized pair potential and even-frequency and odd-frequency pair amplitudes for
px-wave superconductor junctions. Here, we choose =vF /�0 in the S region �x�0� and =L0=vF /2�TC in the N region. The pair
amplitudes C1

�2�, C0
�1�, C2

�1�, and C4
�1� are denoted as even px-wave, odd s-wave, odd dx2−y2-wave, and odd g-wave pair amplitudes. �a� Z=0,

L=L0, �b� Z=5, L=L0, �c� Z=0, L=5L0, and �d� Z=5, L=5L0, respectively.

TANAKA, TANUMA, AND GOLUBOV PHYSICAL REVIEW B 76, 054522 �2007�

054522-8



�imaginary� part of the pair amplitude is an odd �even� func-
tion of �. The amplitude of the odd-frequency pair amplitude
is enhanced around �=0 where the LDOS has a ZEP. At the
edge of the N �x=−L�, only the odd-frequency component
exists. The line shape of the pair amplitude shown in Fig.
7�d� is similar to that shown in Fig. 7�c�.

In Fig. 8, the results of the corresponding calculation with
L=L0 and Z=5 are shown. Both the LDOS at the N/S inter-
face and the edge of the N have a ZEP. In the N region, the
LDOS is almost unity due to the absence of the proximity
effect for �� � �0.24�0 �see dotted line in Fig. 8�a��. The
LDOS has a ZEP and small peak at �=0.24�0. The corre-
sponding real and imaginary parts of the even-frequency pair
amplitude at the N/S interface also have peaks at this energy
�Fig. 8�b��. The amplitude of the odd-frequency component
is enhanced as compared to the corresponding even-
frequency one as shown in Fig. 8�c�. At the edge of the N
region �x=−L�, the amplitude of the odd-frequency compo-
nent is almost zero for �� � �0.24�0. However, around zero
energy, the amplitude of the odd-frequency component is
drastically enhanced as in the case of S side of the N/S

boundary. The penetration of the odd-frequency component
occurs only at low energies.

For the longer normal region with L=5L0, the resulting
LDOS has a ZEP and a number of peaks at finite energies �
�see Fig. 9�a��. The even-frequency component of the pair
amplitude on the S side of the N/S boundary also has mul-
tiple peaks. The corresponding odd-frequency component
has many peaks with amplitudes strongly enhanced around
�=0. Around zero energy, the amplitude of the odd-
frequency component is much larger than that of the even-
frequency one �see Fig. 9�c��. At the edge of the N region,
the resulting odd-frequency component has a significant am-
plitude as shown in Fig. 9�d�. Finally, we focus on the ratio
of the odd- and even-frequency components of the pair am-
plitude, f1+

�N��� ,�� / f2+
�N��� ,��. In Fig. 10, we plot this ratio for

�=0 and x=0. Remarkably, at some energies the odd-
frequency pair amplitude exceeds that of the even-frequency
one. In contrast to the s-wave case, there is a huge peak at
�=0 corresponding to the existence of the MARS.

To summarize, we have shown that when the LDOS has a
ZEP, the resulting odd-frequency component is enhanced
around �=0, its imaginary part having a ZEP. It is evident
that the odd-frequency pairing state is indispensable in un-
derstanding the proximity effect in a px-wave superconductor
system.

C. dxy-wave pair potential

Finally we focus on the dxy-wave junctions as shown in
Fig. 11. Similar to the above two cases, by changing the

FIG. 7. �Color online� Energy dependence of the LDOS and the
pair amplitudes in px-wave junctions with L=L0 and Z=0. �a� The
LDOS normalized by its value in the normal state. Solid line,
LDOS on the S side of the N/S interface; dotted line, LDOS in the
N region. Energy dependence of the real �solid line� and the imagi-
nary �dotted line� part of �b� even-frequency px-wave pair amplitude
on the S side of the N/S interface, �c� odd-frequency s-wave pair
amplitude on the S side of the N/S interface, and �d� odd-frequency
s-wave pair amplitude at the edge of the N region.

FIG. 8. �Color online� Same as Fig. 7, but with L=L0 and
Z=5.
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length of the normal region L and the transparency at the
interface, we calculate the spatial dependence of the pair
potential and the pair amplitudes in the Matsubara frequency
representation. Here we only concentrate on the lowest an-
gular momentum of the even-frequency pair amplitude S2

�2�.
The s-wave component of the pairing amplitude is absent
due to the sign change of the pair potential with respect to
the exchange � by −�. As regards the odd-frequency pair
amplitude, we focus on the S1

�1�, S3
�1�, and S5

�1� components
where the spatial parity of the odd-frequency components is
odd. These cases correspond to the py-wave, f2-wave, and
h2-wave components in Fig. 11, where the � dependence is
given by sin �, sin 3�, and sin 5�, respectively. In all cases,
the even-frequency component is constant in the S region far
away from the interface and the corresponding odd-
frequency components are absent. The dxy-wave pair poten-
tial is suppressed at the N/S interface in all cases. For Z=5,
the reduction is significant and it is almost zero at the N/S
interface. The even-frequency dxy-wave pair amplitude is re-
duced toward the N/S interface and monotonically decreases
in the N region similar to the case of the px-wave one �see
Figs. 6�a� and 11�a��. It does not have a jump at the N/S
interface even for nonzero Z and vanishes at the edge of N
region �x=−L�. On the other hand, the odd-frequency com-
ponent is always nonzero at x=−L and has a jump at the N/S
interface. The amplitude of the odd-frequency component is
strongly enhanced near the S side of the N/S interface. This
enhancement is much more significant for the low-
transparency interface with large magnitude of Z �see Figs.

11�b� and 11�d��. On the other hand, for Z=0, the odd-
frequency components significantly penetrate into the N re-
gion. Note that not only the py-wave but also f2-wave and
h2-wave components have sufficiently large magnitudes as
shown in Figs. 11�a� and 11�c�. The above pair amplitudes
are almost constant in the N region.

In order to get better insight into the spectral property of
the odd-frequency pair amplitude, we calculate the LDOS
and the pair amplitudes as functions of real energy �. We
focus on the even-frequency dxy-wave component of the pair
amplitude S2

�2� and odd-frequency py-wave component of the
pair amplitude S1

�1� at the S side of the N/S interface and at
the edge of the N region, x=−L. The resulting LDOS has a
ZEP due to the formation of the MARS. As in the previously
considered cases of s-wave and px-wave junctions, the
LDOS is independent of x as follows from Eq. �14�. Here,
we choose Z=0 and L=L0 �see Fig. 12�a��. Similar to the
px-wave case, the even-frequency pair amplitude at the N/S
boundary on the S side is shown in Fig. 12�b�. Neither the
real nor imaginary part varies strongly around ��0. The real
part of the even-frequency component is an even function of
� while its imaginary part is an odd function of �. The cor-
responding odd-frequency component is plotted in Fig.
12�c�. In contrast to the even-frequency component �Fig.
12�b��, the real �imaginary� part of the pair amplitude is an
odd �even� function of �. The amplitude of the pair ampli-
tude is enhanced around ��0 where the LDOS has a ZEP.
At the N/S boundary �x=−L�, only the odd-frequency com-
ponent exists. The line shape of the pair amplitude, as shown
in Fig. 12�d�, is qualitatively similar to that in Fig. 12�c�.
This qualitative behavior of the line shapes is very similar to
that for the corresponding px-wave case.

Similar to the px-wave junction case, when the LDOS has
a ZEP, the resulting odd-frequency component is enhanced
around �=0. It is evident that the odd-frequency pairing state
is indispensable in understanding the proximity effect in a
dxy-wave superconductor system.

In the following, we comment on the differences be-
tween odd-frequency pair amplitudes in dxy-wave and
px-wavejunctions. In both cases, the magnitude of the odd-
frequency component is enhanced at the interface and in the
normal region. However, the odd-frequency odd-parity state

FIG. 10. Ratio of the pair amplitudes f1+
�N��� ,�� / f2+

�N��� ,�� as a
function of � for L=5L0 at the N side of the N/S interface for
px-wave junctions for �=0.

FIG. 9. �Color online� Same as Fig. 8, but with L=5L0 and Z
=0.

TANAKA, TANUMA, AND GOLUBOV PHYSICAL REVIEW B 76, 054522 �2007�

054522-10



is generated for the dxy-wave case, while the odd-frequency
even-parity state is generated for the px-wave case. The
s-wave isotropic component which is robust against the im-
purity scattering12 appears only in the latter case. Then the
dxy-wave pair amplitude cannot penetrate into diffusive nor-
mal metal while the px-wave one can. Thus we can naturally
understand the presence of the proximity effect with the
MARS in px-wave junctions12,13 and its absence in dxy-wave
junctions.12,27

It is instructive to relate the LDOS anomalies in dxy-wave
and px-wave junctions to the magnitude of the odd-
frequencypairing component. According to Eq. �13�, in dxy-
and px-wave junctions the ratio of the magnitude of the odd-
frequency component f1+

�N��� ,�� to the even-frequency one
f2+

�N��� ,�� is

�f1+
�N���,���

�f2+
�N���,���

=
�1/t + t�
�1/t − t�

= �cotan	 2�

vFx
�L + x�
� . �33�

It follows from the above expression that at the edge of
the N region, x=−L, the odd-frequency component domi-
nates at all energies. On the other hand, at the N/S interface,
x=0, the odd-frequency component dominates at energies �
=�n corresponding to the LDOS peak positions.

�n =
�vFxn

2L
, n = 0,1,2, . . . , �34�

for Z=0 and L�L0. For n=0 Eq. �34� describes the midgap
Andreev bound state and higher n correspond to the subgap
resonances for large N region thickness. Therefore, we can
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FIG. 11. �Color online� Spatial dependence of the normalized pair potential and even-frequency and odd-frequency pair amplitudes for
dxy-wave superconductor junctions. Here, we choose =vF /�0 in the S region �x�0� and =L0=vF /2�TC in the N region. The pair
amplitudes S2

�2�, S1
�1�, S3

�1�, and S5
�1� are denoted as even dxy-wave, odd py-wave, odd f2-wave, and odd h2-wave pair amplitudes. �a� Z=0,

L=L0, �b� Z=5, L=L0, �c� Z=0, L=5L0, and �d� Z=5, L=5L0, respectively.
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conclude that in dxy-wave and px-wave junctions the odd-
frequency component dominates over the even-frequency
one at the N/S interface at the energies corresponding to the
LDOS peak positions, including the prominent zero-energy
peak. Moreover, the odd-frequency component always domi-
nates at the edge of the N region, x=−L, where the breaking
of translational invariance is strongest due to a sign change
of the pair amplitude at that point.

IV. CONCLUSIONS

In summary, using the quasiclassical Green’s function
formalism, we have shown that the odd-frequency pairing
state is ubiquitously generated in the normal-metal/
superconductor ballistic junction system, where the length of
the normal region is finite. It is shown that the even-parity
�odd-parity� pair potential in the superconductor induces an
odd-frequency pairing component with spin-singlet odd par-
ity �spin-triplet even parity�. As regards the symmetry of the
superconductor, we have chosen typical three cases: spin-
singlet s wave, spin-triplet px wave, and spin-singlet dxy

wave. In the latter two cases, a midgap Andreev resonant
state appears at the N/S interface. Even for conventional
s-wave junctions, the amplitude of the odd-frequency pairing
state is enhanced at the N/S interface with full transparency.
By analyzing the spectral properties of the pair amplitudes,
we found that the magnitude of the resulting odd-frequency
component at the interface can exceed that of the even-
frequency one. For the case of px-wave and dxy-wave junc-
tions, the magnitude of the odd-frequency component at the
S side of the N/S interface is significantly enhanced. The
magnitude of the induced odd-frequency component is en-
hanced in the presence of the midgap Andreev resonant state
due to the sign change of the anisotropic pair potential at the
interface. The LDOS has a zero-energy peak both at the in-
terface and in the N region. At the edge of the N region, only
the odd-frequency component is nonzero.

The underlying physics behind these phenomena is re-
lated to the breakdown of translational invariance near the

N/S interface where the pair potential �̄±�x� acquires a spa-
tial dependence. As a result, an odd-frequency component is
quite generally induced near the interface. The breakdown of
translational invariance is the strongest when the pair poten-
tial changes sign upon reflection as in the case of px-wave
and dxy-wave junctions, then the magnitude of the odd-
frequency component is the largest. Moreover, the phase of
the interface-induced odd-frequency component has a � /2
shift from that in the bulk of S. Therefore, as shown above,
the odd-frequency component f1±

�i���n ,�� becomes a purely
imaginary number and the peak structure in the LDOS natu-
rally follows from the normalization condition.

We have also shown that in the N/S junctions with s-wave
superconductors the classical McMillan-Rowell oscilla-
tions26 can also be reinterpreted in terms of odd-frequency
pairing. As follows from Eq. �32�, at the energies corre-
sponding to the subgap peaks in the N/S junction, the odd-
frequency component dominates over the even-frequency
one. This is a remarkable application of the odd-frequency
pairing concept when one can reinterpret the well-known
resonance structure.

In the present study, we clarified the details of the prox-
imity effect of the odd-frequency pairing state induced at the
N/S boundary. We reinterpreted the appearance of the MARS
in terms of the enhanced odd-frequency pair amplitude.
Though we explicitly studied N/S junctions only, the odd-
frequency pairing state is also expected near impurities and
within Abrikosov vortex cores, where the amplitude of the
pair potential is reduced. The present result indicates the
ubiquitous presence of odd-frequency pairing states because
most real superconductors are not uniform. That means that
the odd-frequency pairing is not at all a rare situation as was
previously assumed. Thus we believe that the odd-frequency
pairing may become an important concept in understanding
the physics of nonuniform superconducting systems.

In the present paper, the proximity effect is studied in the
ballistic limit. In the present case, the enhanced odd-
frequency pair amplitude appears in the N region for both
px-wave and dxy-wave junctions. It is very interesting to
study in the intermediate regime28 since the parities of these
states are different. In the diffusive limit, the proximity effect

FIG. 12. �Color online� Energy dependence of the LDOS and
the pair amplitudes in dxy-wave junctions with L=L0 and Z=0. �a�
The LDOS normalized by its value in the normal state. Solid line,
LDOS on the S side of the N/S interface; dotted line, LDOS in the
N region. Energy dependence of the real �solid line� and the imagi-
nary �dotted line� part of �b� even-frequency dxy-wave pair ampli-
tude on the S side of the N/S interface, �c� odd-frequency py-wave
pair amplitude on the S side of the N/S interface, and �d� odd-
frequency py-wave pair amplitude at the edge of the N region.
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survives only for the former case. There are several interest-
ing phase-coherent effects relevant to MARS.29,30 These pre-
existing phenomena can be reinterpreted in terms of the odd-
frequency pairing state.
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