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In s-wave superconductors the Cooper pair wave function is isotropic in momentum space. This property
may also be expected for Cooper pairs entering a normal metal from a superconductor due to the proximity
effect. We show, however, that such a deduction is incorrect and the pairing function in a normal metal is
surprisingly anisotropic because of quasiparticle interference. We calculate angle-resolved quasiparticle density
of states in NS bilayers which reflects such anisotropic shape of the pairing function. We also propose a
magnetotunneling spectroscopy experiment which could confirm our predictions.
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It is well known that Cooper pairs consisting of two elec-
trons are characterized by electric charge 2e, macroscopic
phase, internal spin, and by time and orbital structures.1 The
charge 2e manifests itself in various experiments, like Sha-
piro steps, flux quantization and excess current due to the
Andreev reflection. The macroscopic phase generates the Jo-
sephson current.1 The internal spin structure is classified into
spin-triplet and spin-singlet states. Further, based on a sym-
metry with respect to the internal time, superconducting state
can belong to the even-frequency or the odd-frequency sym-
metry class.2 The orbital degree of freedom is described by
an angular momentum quantum number l.3,4 The well estab-
lished properties listed above hold in bulk superconductors.
The presence of perturbations like spin-flip or interface scat-
tering may change the symmetry of Cooper pairs. For in-
stance, an unusual odd-frequency property of Cooper pairs in
proximity structures was predicted in recent studies.5,6 The
shape of Cooper pair wave function in nonuniform systems
like superconducting junctions is not necessarily the same as
that in the bulk state. Despite the extensive study of the
proximity effect in several past decades, rather little attention
has been paid to the problem of Cooper pair shape in non-
uniform superconducting systems.7,8 This issue is quite im-
portant in view of current interest in the physics of supercon-
ducting nanostructures.

The aim of the present Rapid Communication is to clarify
the consequences of breakdown of translational symmetry in
superconductors on the Cooper pair shape. For this purpose,
we study the proximity effect in quasi-two-dimensional nor-
mal metal / superconductor �N/S� junctions by solving the
Eilenberger equation. We analyze the pairing function and
the local density of states �LDOS� in N/S junctions with
spin-singlet s-wave and dxy-wave superconductors. The
shape of the Cooper pair deviates seriously from that of the
bulk with the generation of the odd-frequency component of
the pairing function due to the formation of the Andreev–
Saint-James bound states.9 To detect the complex Cooper
pair shape, we propose to use scanning tunneling spectros-
copy in rotating magnetic field. We show that the calculated
tunneling conductance exhibits complex patterns even in the
s-wave case.

Let us consider a quasi-two-dimensional N/S junction as

shown in Fig. 1 which is the simplest example of a nonuni-
form superconducting system, where the S region is semi-
infinite and the normal metal has finite length L. We consider
a perfect N/S interface with perfect transmissivity, while it
can be shown that characteristic behavior of Cooper pairs
remains qualitatively unchanged even in the presence of a
potential barrier at the N/S interface.

The quasiclassical Green’s functions10 in a normal metal
�N� and a superconductor �S� are parameterized as

ĝ�
�i� = f1�

�i� �̂1 + f2�
�i� �̂2 + g�

�i��̂3, �ĝ�
�i��2 = 1̂, �1�

where a superscript i�=N ,S� refers to N and S, �̂ j �j=1–3�
are the Pauli matrices, and 1̂ is a unit matrix. The subscript +
�−� denotes a moving direction of a quasiparticle in the x

direction,10 and �̄+�x� ��̄−�x�� is the pair potential for a left

�right� going quasiparticle. In a normal metal, �̄��x� is set to
zero because the pairing interaction is absent there. The
Green’s functions can be expressed in terms of the Ricatti
parameters,11

f1�
�i� = � �i���

�i��x� + ��
�i��x��/�1 + ��

�i��x���
�i��x�� , �2�

f2�
�i� = i���

�i��x� − ��
�i��x��/�1 + ��

�i��x���
�i��x�� , �3�
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FIG. 1. A schematic of a N/S junction. A normal metal �−L
	x	0� is attached to a superconductor �0	x	
�. To detect the
deformation of a Cooper pair, we propose a STS experiment in the
presence of magnetic field �H� whose direction is perpendicular to
the z axis and oriented by � from the x axis.
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g�
�i� = �1 − ��

�i��x���
�i��x��/�1 + ��

�i��x���
�i��x�� , �4�

with �i=1 for i=S and �i=−1 for i=N. The parameters
��

�i��x� and ��
�i��x� obey the Eilenberger equation of the Ricatti

type,11

ivFx�x��
�i��x� = − �̄��x��1 + ���

�i��x��2� + 2�̄�i��
�i��x� ,

ivFx�x��
�i��x� = − �̄��x��1 + ���

�i��x��2� − 2�̄�i��
�i��x� ,

with �̄=�+ i
0, where � is the energy of a quasiparticle mea-
sured from the Fermi level and 
0 is the level broadening due
to impurity scattering. vFx is the x-component of Fermi ve-
locity. In the clean limit, we consider 
0��0. Boundary con-
dition at x=−L is given by ��

�N��−L�=−��
�N��−L�. Boundary

condition at the N/S interface becomes ��
�S��0�=−��

�N��0� and

��
�N��0�=−��

�S��0�. The pair potential �̄��x� is expressed by

�̄��x�=��x��������x�, where a form factor ����� is given
by �����=1 for s-wave symmetry and �sin 2� for dxy-wave
one with � being an incident angle of a quasiparticle mea-
sured from the x direction. Bulk pair potential is ��
�=�0,
and we determine the spatial dependence ��x� in a self-
consistent way.

For x�L0, the angular structure of f2�
�S� follows that of the

pair potential, whereas f1�
�S� is zero with L0=vF /TC being a

coherence length in N and TC being the transition tempera-
ture. The pairing function f1�

�i� is generated by inhomogeneity
in a system and thus has a finite value only near the interface
and in a normal metal. Recent studies6 have shown that f1�

�i�

has an odd-frequency symmetry since functions f1�
�i� and f2�

�i�

have opposite parities. The induced odd-frequency compo-
nent has the odd �even� parity, respectively. Pairing function
f1 is defined in the angular domain of −� /2��	3� /2. We
denote f1��� by f1+��� in the angle range −� /2��	� /2
and f1���= f1−��−�� for � /2��	3� /2. The angular struc-
ture of functions f2 and g is defined in the same manner.
LDOS is given by the relation �L���=Real�g����. In what
follows, we fix temperature T=0.05TC, the length of the nor-
mal region L=5L0, and 
0=0.01�0.

In Figs. 2 and 3 we show polar plots of f1, f2, and �L
in s-wave and dxy-wave junctions for various choices of �
and x. Dashed, solid and dotted lines represent, respectively,
the results for x=
 �superconductor�, x=0 �interface�, and
x=−L /2 �normal metal�. The odd-frequency component is
always absent for x=
. Since �L is independent of x in N,
the resulting value of �L at x=0 is equal to that at x=−L /2.

First, we focus on the s-wave case �Fig. 2�. As shown in
Fig. 2�a�, at �=0 and x=
 ,0 the even-frequency component
f2 has a circular shape reflecting the s-wave symmetry. How-
ever, at x=−L /2, the shape is no longer a simple circular one
but has a form of a doubly distorted circle. The shape of f2 in
a superconductor always has the circular shape indepen-
dently of � as shown with dashed lines in Figs. 2�a�, 2�d�,
and 2�g�. At �=0.1�0 in Fig. 2�d�, f2 at the interface �solid
line� slightly deviates from the circular shape, while the
shape in N drastically changes. The tendency is more re-
markable at �=0.5�0 as shown in Fig. 2�g�. The butterflylike
pattern of f2 at the interface �solid line in Fig. 2�g�� is com-

pletely different from the original circular shape in a super-
conductor. At �=0, function f1 at the interface becomes el-
lipsoidal as shown by the solid line in Fig. 2�b�. The shape of
f1 at x=0 and x=−L /2 exhibits the butterflylike pattern �Fig.
2�e��. For �=0.5�0, the line shape of f1 has many spikes as
shown in Fig. 2�h�. Such anisotropic property of f1 and f2
affects the LDOS as shown in Figs. 2�c�, 2�f�, and 2�i�. In
particular, LDOS at the interface for �=0.5�0 �solid line in
�i�� strongly deviates from the circular shape. At the inter-
face, the shape of �L in Fig. 2�c� is quite similar to that of f1
shown in Fig. 2�b�.

These profiles can be qualitatively understood as follows.
At x=0, the relations f1�

�N�= ���1−�2� /�, and g�
�N�= �1

+�2�2� /� are satisfied with �=1−�2�2, �=��
�S��0� and �

=exp�2i�L / �vF cos ���. For ���0, the relations ��1 / i and
f1�� ig� are satisfied. Thus shape of function f1 is similar to
that of �L. This argument is valid even for �=0.1�0 in Figs.
2�e� and 2�f�, and for �=0.5�0 in Figs. 2�h� and 2�i�. The
oscillating behavior in f1, f2, and �L is more remarkable at
�=0.5�0. Although we do not present calculated results of f1
and f2 at x=−L /2 for �=0.5�0, the butterflylike pattern with
many spikes in the pairing functions can be seen also in a
normal metal. The directions of the spin projections in LDOS
are characterized by small value of �, which has close rela-
tion to the formation of the Andreev–Saint-James bound
states.9,12 For �� �� /2, � oscillates rapidly with small
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FIG. 2. �Color online� The results for s-wave symmetry. The
shape of the even-frequency pair amplitude ��a�,�d�,�g��, the odd-
frequency one ��b�,�e�,�h��, and the angle-resolved local density of
states ��c�, �f�, �i��. Solid lines: x=0 �at N/S interface�, dotted lines:
x=−L /2 �in a normal metal� and dashed lines: x=
 �in a supercon-
ductor�. �=0 for �a�, �b� and �c�, �=0.1�0 for �d�, �e� and �f�, and
�=0.5�0 for �g�, �h� and �i�. The angle � is measured from the x
axis.
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variation of �, which explains the fine structures in LDOS
around �= �� /2. The quasiparticle interference effect is a
source of Andreev–Saint-James bound state formation in a
normal metal. As a result, the circular shape of Cooper pairs
in s-wave superconductor is modified into the butterflylike
pattern in a normal metal.

Next, we discuss the results for dxy-wave junctions shown
in Fig. 3. In a superconductor �x=
�, functions f2 and g are

given by �0 sin 2� /��2−�0
2 sin2 2� and � /��2−�0

2 sin2 2�,
respectively. As shown by dashed lines in Figs. 3�d�, 3�f�,
3�g�, and 3�i�, the amplitudes of f2 and g become large along
the directions �= �sin−1�� /�0�� /2. At �=0 and x=0, forma-
tion of a mid-gap Andreev resonant state13 significantly en-
hances the amplitudes of f1 and �L compared to that of f2 as
shown by solid lines in Figs. 3�a�–3�c�. For �=0 and �
=0.1�0, the shapes of f1 and �L at the N/S interface are
similar to those in s-wave superconductor junctions �solid
lines in Figs. 3�b�, 3�c�, 3�e�, and 3�f��. At �=0.5�0, similar
to the s-wave case, functions f1 and f2 in N have complex
line shapes with many spikes.

Here, we propose an experimental setup to measure the
complex Cooper pair shape, based on magnetotunneling
spectroscopy, i.e., scanning tunneling spectroscopy �STS� in
the presence of magnetic field. As shown in Fig. 1, magnetic
field is applied parallel to the N/S plane. Tunneling current at
a fixed bias voltage is measured as a function of the angle �
between the x axis and the direction of magnetic field. The
vector potential in this configuration is given by �Ax ,Ay�=
−�H exp�−z /���sin � , cos ��.14 We assume that thickness of
a quasi-two-dimensional superconductor is sufficiently small
compared to a magnetic field penetration depth �. Magnetic
field shifts the quasiparticle energy � to �−H�0 sin��−�� /

B0, where B0=h / �2e�2��� and �=�vF /��0. Here, to evalu-
ate the order of magnitude of B0, we explicitly write the
Plank constant. For typical values of ����100 nm, the
magnitude of B0 is of the order of 0.02 Tesla. Local density
of states measured in the considered magnetotunneling STS
configuration is given by15 �S���=	−�/2

3�/2�L�� ,��d�. At suffi-
ciently low temperatures the applied bias voltage V satisfies
the relation eV=�. �S��� is a periodic function of � and we
denote its maximum value as �M. In the following, we focus
on the normalized value ���� defined by ����=�S��� /�M.

In Fig. 4, �=���� is plotted as a function of �. In the
s-wave case, ���� in bulk is always unity due to the isotropic
nature of the s-wave pairing as shown by curve B. On the
other hand, � at the N/S interface has an oscillatory depen-
dence due to the deviation of the Cooper pair shape from the
circular one. It is remarkable that the line shape of curve A
changes drastically with the increase in � as seen from Figs.
4�a�–4�c�. This sensitivity to � variation reflects the complex
shape of �L shown in Fig. 2.

For dxy-wave case, the line shape of � in the bulk has
periodic oscillations with the period 0.5�. The amplitude of
the oscillations is reduced with the increase in � as shown by
the curves B in Figs. 4�d�–4�f�. On the other hand, the line
shapes of the curves A change drastically with the increase in
�. This sensitivity originates from the complex patterns of �L
shown in Fig. 3. Although we do not discuss in detail, the
line shape of � at the N/S interface is also sensitive to a
magnetic field H for a fixed �.

As seen from the above results, by changing the magni-
tude of the applied magnetic field H, the bias voltage V, and
the rotation angle �, it is possible to clarify the remarkable
deformation of Cooper pairs. Therefore, magnetotunneling
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FIG. 3. �Color online� The results for dxy-wave symmetry. The
notations are the same as in Fig. 2.
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FIG. 4. �Color online� Normalized local density of states ob-
tained in magnetotunneling spectroscopy as a function of the orien-
tation angle of magnetic field � in a spin-singlet s-wave junction
��a�, �b�, and �c�� and in a spin-singlet dxy-wave one ��d�, �e�, and
�f��. �=0 for �a� and �d�, �=0.1�0 for �b� and �e�, and �=0.5�0 for
�c� and �f�. A: x=0 �at N/S interface� for H=0.1B0, and B: x=
 �in
a superconductor� for H=0.1B0.
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spectroscopy provides the way to detect bulk symmetry of
the pair potential.

We have not explicitly discussed the influence of impurity
scattering in N, but one can show that the oscillatory behav-
ior of � can be detected if the following two conditions are
fulfilled: l�L and l�L0, where l is the mean free path in N.
To satisfy these conditions, normal metals with high mobility
are desirable. Superconducting junctions with 2D-electron
gas realized in InAs �Ref. 16� or graphene17 are possible
candidates due to high electronic mobility in both types of
materials. Furthermore, large magnitude of TC or �0 helps to
satisfy the second condition. From this viewpoint, junctions
with high TC cuprates extensively studied by now18 are
promising candidates. Surface roughness could also lead to a
broadening of the oscillatory behavior of �. This effect is
controlled by an effective scattering length within the surface

layer �see Refs. 8 and 19�. Both bulk and surface scattering
lead to mixing of quasiparticle trajectories at different
angles, while the general angular shape of the Cooper pair
does not change and can be determined at realistic experi-
mental conditions.

In summary, we have studied the Cooper pair shape in
normal-metal/superconductor �N/S� junctions by using the
quasiclassical Green’s function formalism. The quasiparticle
interference leads to striking deformations in the shape of a
Cooper pair wave function in a normal metal. We also show
that the anisotropic shape of Cooper pairs could be resolved
by scanning tunneling spectroscopy experiments in magnetic
field. The Cooper pair deformation is a common feature of
nonuniform superconducting systems in the clean limit. This
provides a key concept to explore unknown quantum inter-
ference phenomena in superconducting nanostructures.
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