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Recent experimental results indicate the possible realization of a bulk odd-frequency superconducting state
in the compounds CeCu2Si2 and CeRhIn5. Motivated by this, we present a study of the quantum transport
properties of a normal metal/odd-frequency superconductor junction in a search for probes to unveil the
odd-frequency symmetry. From the Eliashberg equations, we perform a quasiclassical approximation to ac-
count for the transport formalism of an odd-frequency superconductor with the Keldysh formalism. Specifi-
cally, we consider the tunneling charge conductance and the tunneling thermal conductance. We qualitatively
find distinct behavior in the odd-frequency case compared to the conventional even-frequency case in both the
electrical and thermal current. This serves as a useful tool to identify the possible existence of a bulk odd-
frequency superconducting state.

DOI: 10.1103/PhysRevB.77.174505 PACS number�s�: 74.45.�c, 74.20.Rp, 74.50.�r

I. INTRODUCTION

The symmetries of the superconducting order parameter
with respect to orbital, time, and spin space are governed by
the Pauli principle. A wave function describing two elec-
tronic states must be totally antisymmetric under the ex-
change of the particle coordinates. This leads to a finite num-
ber of allowed combinations for the symmetries of the wave
function. In a wide variety of superconductors ranging from
those described with Bardeen–Cooper–Schrieffer and/or
Eliashberg theory via spin-triplet superconductivity in 3He to
strong-coupling superconductivity in high-Tc cuprates, the
wave function of Cooper pairs is even in the frequency do-
main. For such even-frequency pairing, the wave function
may be even or odd in space depending on whether the Coo-
per pairs form spin singlets or triplets. However, more exotic
types of pairings than what is found in this wide range of
materials are, in principle, permitted.

Recently, it was predicted that in a ferromagnet/
superconductor structure, a so-called odd-frequency pairing
could take place.1 Thus, the Cooper-pair wave function is
symmetric under the exchange of spatial and spin coordi-
nates but antisymmetric under the exchange of time coor-
dinates. This state was proposed to exist by Berezinskii2

a few decades earlier in the context of liquid 3He, and
a strong experimental evidence for odd-frequency pairing
now exists.3 The study of such pairing in ferromagnet/
conventional superconductor junctions has been addressed
by a number of authors over the past few years.4 Further-
more, it was very recently predicted5–7 that due to a spatial
variation of the pair potential near a normal/superconductor
�N/S� junction, the odd-frequency pairing state can be in-
duced even in a conventional ballistic N/S system without
spin-triplet ordering. The generation of different symmetry
components and their effect on electrical transport in a
normal/superconductor interface has also been studied in the
diffusive limit8 in the context of the proximity effect in un-
conventional superconductors.9,10

An issue that arises in the context of the odd-frequency
pairing state is if it can be realized in a bulk superconductor,

i.e., without a proximity effect. There have been several
theoretical proposals for this in strongly correlated systems
up until now.11,12 To explore an odd-frequency pairing state
in the heavy-fermion superconductors is an interesting
topic, and an assessment of the experimental properties
of CeCu2Si2 and CeRhIn5 concluded that an odd fre-
quency pairing may be realized in these heavy-fermion
compounds.13

However, only a very limited amount of studies have ad-
dressed the issue of identifying the odd-frequency pairing
state in a bulk superconductor so far.11,14,15 Hence, further
clear-cut predictions are needed.

In this paper, we present the quantum transport properties
of a normal metal/odd-frequency superconductor junction in
the clean limit. We calculate the electrical and thermal con-
ductances within the Blonder–Tinkham–Klapwijk �BTK�
framework16 by taking into account the anisotropy of the pair
potential.17 Our starting point is the Eliashberg equations that
take into account the frequency dependence of the pair po-
tential. This constitutes a wide range of experimental predic-
tions, which are routinely used to characterize superconduct-
ing states.18–21 Our main result is that the odd-frequency
symmetry affects the charge �thermal� transport in an essen-
tial manner at low energies �temperatures�. This provides a
useful tool in identifying this highly unusual superconduct-
ing state.

To elucidate the physics in a transparent manner, we em-
ploy a simple two-dimensional calculation in the clean limit.
We approximate the superconducting gap with a step func-
tion in space, which, in the isotropic even-parity s-wave
case, should be an excellent approximation for low-
transmission barriers. Since the low-transmission case is
probably the most realistic scenario experimentally, we re-
strict our attention to this. In the anisotropic even-parity and
odd-parity cases �corresponding, e.g., to the high-Tc super-
conductors and Sr2RuO4�, the gap may undergo a severe
depletion near the barrier even for low-transmission inter-
faces due to the formation of zero-energy states.22 The
method used in this paper may still capture qualitative fea-
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tures of the transport properties even in those cases, just as in
the case of the d-wave superconductors.17 Our results are, in
fact, consistent with recent findings5 including a self-
consistent solution of the spatial variation of the supercon-
ducting gap near the interface.

We will use boldface notation for three vectors, . . .ˆ for 4
�4 matrices, and . . . for 2�2 matrices. Pauli matrices in
particle-hole�spin �Nambu� space are denoted as �̂i, while
Pauli matrices in spin space are written as �� i.

II. THEORETICAL FORMULATION

A. Equations for odd-frequency superconductivity

The frequency dependence of the superconducting order
parameter may be naturally taken into account in the ap-
proach developed by Eliashberg,23 where details of the
electron-boson interaction are seriously taken. This contrasts
with the usual weak-coupling picture where the pairing in-
teraction is taken to be constant. For our purposes, the fol-
lowing Hamiltonian is an appropriate starting point:

Ĥ = �
�
� dr���r�†Hf�r����r� +� drb†�r�Hb�r�b�r�

+ �
�
� � drdr�V�r − r����

†�r����r��b�r� + b†�r�� , �1�

where Hf is the Hamiltonian for free fermions, which we
assume may be written as Hf�r�=− 1

2m ��−ieA�2−�, while Hb
is the Hamiltonian for free bosons. Above, � denotes the spin
index, while � and b are fermion and boson operators, re-
spectively. Introducing the Fourier transformation b�r�
= 1

N�qbqe−iq·r, where Bq=bq+b−q
† , we obtain the Heisenberg

equations of motion,

i�t���r,t� = Hf�r����r,t� + �
q

��r,t,q����r� ,

i�t��
†�r,t� = − Hf

��r���
†�r,t� − �

q
��r,t,q���

†�r� , �2�

where ��r , t ,q��VqBq�t�e−iq·r and Vq is the Fourier trans-
form of V�r−r��. Note that V is not the effective pairing
potential between electrons. Having obtained the time de-
rivatives of the fermion operators, we may now calculate the
equation of motion for Green’s functions. This procedure is
standard and covered, e.g., in Refs. 24–27. Explicitly taking
into account the effect of the electron-boson interactions in
the Hamiltonian naturally includes a frequency dependence
of the effective electron-electron interaction,23 which is ob-
tained by integrating out the bosonic degrees of freedom in
the partition function. The effective electron-electron interac-
tion mediated by a boson excitation may, in general, be writ-
ten as

V�q,	� =
2�Vq�2
q

	2 − 
q
2 , �3�

where q=k−k� and 	=
−
� are the momentum and en-
ergy transfers, respectively, of the interaction process.

Above, 
q is the frequency of the boson propagator. Note
that the pairing potential in Eq. �3� is even in 	, i.e.,
V�q ,	�=V�q ,−	�. The self-consistency equation for the or-
der parameter quite generally has the following structure:11

��k,
� 	 �
k�
�

V�k − k�,
 − 
����k�,
��
�k�

2 + 
�2 , �4�

which may be rewritten as

��k,− 
� 	 �
k�
�

V�k − k�,
 − 
����k�,− 
��
�k�

2 + 
�2 �5�

by exploiting V�q ,	�=V�q ,−	�. The above equations show
that both ��k ,
�=��k ,−
� and ��k ,
�=−��k ,−
� are
possible solutions of the gap equation. Therefore, although
the pairing interaction is even in frequency, the gap �, in
principle, may both be even and odd in frequency. In fact, in
general, it is a superposition of even- and odd-frequency
components.11,28 However, assuming that the energy transfer
is small compared to the term containing the momenta in Eq.
�3�, �	�� �
q�, one obtains a part of the pairing potential
which is linear in 
 and 
� and one that is quadratic in the
same quantities.11 The former part is the necessary ingredient
to obtain a superconducting order parameter that is odd in
frequency. It is also possible to adopt a purely phenomeno-
logical approach to an odd-frequency superconductor by as-
suming the frequency dependence of the gap a priori.29

Let us now consider the structure of Green’s function ma-
trix for an odd-frequency superconductor. It is instructive to
briefly mention the result for an ordinary BCS supercon-
ductor, which has an even frequency-singlet-even �ESE� par-
ity symmetry. In the BCS case, one obtains


i
�

�t1
�̂3 − ̂ − �̂�r1��ĜR�1,2� = ��1 − 2�1̌ . �6�

Assuming a homogeneous and isotropic system where
Green’s function only depends on the relative coordinates t

= t1− t2 and r=r1−r2 and where �̂�r1�= �̂ is a constant, one

may Fourier transform Eq. �6� according to ĜR�p ,��
=��dre−iprdtei�tĜR�r , t�, where � and p is the quasiparticle
energy measured from the Fermi level and the momentum,
respectively. We then obtain

���̂3 − ̂p − �̂�ĜR�p,�� = 1̂, �7�

which, upon matrix inversion, yields the well-known BCS
solution. The quasiclassical Green’s functions ǧ�pF ,r ;� , t� is

obtained from the Gor’kov Green’s functions Ǧ�p ,r ;� , t� by
integrating out the dependence on kinetic energy, assuming

that Ǧ is strongly peaked at the Fermi level,

ǧ�pF,r;�,t� =
i

�
� dpǦ�p,r;�,t� . �8�

The above assumption is typically applicable to supercon-
ducting systems where the characteristic length scale of the
perturbations present, namely, superconducting coherence
length, is much larger than the Fermi wavelength. The cor-
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responding characteristic energies of such phenomena must
be much smaller than the Fermi energy �F. The quasiclassi-
cal Green’s functions may be divided into advanced �A�, re-
tarded �R�, and Keldysh �K� components, each of which has
a 4�4 matrix structure in the combined particle-hole and
spin spaces. One has

ǧ = 
ĝR ĝK

0 ĝA � , �9�

where the elements of ǧ�pF ,r ;� , t� read

ĝR,A = 
 g�
R,A f�

R,A

− f�̃
R,A − g�̃

R,A�, ĝK = 
g�
K f�

K

f�̃
K g�̃

K� . �10�

The quantities g� and f� are 2�2 spin matrices, with the struc-
ture

g� = 
g↑↑ g↑↓

g↓↑ g↓↓
� . �11�

Due to internal symmetry relations between these Green’s
functions, all of these quantities are not independent. In par-
ticular, the tilde operation is defined as

f̃�pF,r;�,t� = f�− pF,r;− �,t��. �12�

For a bulk s-wave superconductor, the retarded part may be
expressed in terms of the normal and anomalous Green’s
functions g and f as follows:

ĝR = 
 g1� fi�2ei�

fi�2e−i� − g1�
� , �13�

Here, � is the globally broken U�1� phase associated with
the spontaneous symmetry breaking of the superconducting
state. In the odd-frequency case, however, one finally arrives
at

���̂3 − ̂p − �̂����ĜR�p,�� = 1̂, �14�

where now �̂��� is the odd-frequency gap matrix. Note that
Eq. �14� is equivalent to the well-known Eliashberg equation.
The structure of the Green’s function for an odd-frequency
superconductor may be different from Eq. �13� depending on
the spin symmetry. For instance, the bulk Green’s function
matrix for an odd-frequency spin-triplet even-parity super-
conductor has the following structure:

ĝR = 
 g1� f�1ei�

− f�1e−i� − g1�
� . �15�

Performing a quasiclassical approximation on Eq. �14� yields
the Eilenberger equation, which reduces to the Usadel equa-
tion in the dirty limit. Note that for both even- and odd-
frequency superconducting order parameters, the pairing in-
teraction itself is always even in the frequency coordinate.

A quite general formalism for treating quantum transport
in the nonuniform superconducting systems, e.g., normal/
superconductor heterostructures, was developed by Tanaka
et al.30 For instance, the conductance spectra of a normal/
superconductor junction may be obtained along the lines of

Refs. 30 and 31 by numerically solving the Usadel equation
using Nazarov’s generalized boundary conditions.10 Interest-
ingly, taking the limit Rd→0 and �→0 in this formalism,
where Rd represents the resistance of the normal metal region
and � is a measure of the proximity effect, leads to the well-
known expression for the conductance obtained in the BTK
formalism.16 This may be specifically seen for the electrical
conductance by consulting Eqs. �15� and �16� in Ref. 30, and
for the thermal conductance in Eq. �19� of Ref. 31. There-
fore, since the above treatment of the Eliashberg equation
shows that the odd-frequency dependence of the gap may be
taken into account simply by substituting �→����, quantum
transport for an odd-frequency superconductor can be treated
in the BTK formalism by performing the same substitution.
However, the derivation of the Bogolioubov–de Gennes
equation for odd-frequency superconductivity is challenging
since it is not obvious how to take into account the strong
retardation effects of the pairing potential.

B. Transport formalism

We adopt the Keldysh formalism by using Nazarov’s gen-
eralized boundary conditions10 to obtain the electrical and
thermal conductance for odd-frequency superconductors. We
assume, without loss of generality, that the gap ��� ,�� has
an opposite-spin pairing symmetry in both the singlet and
triplet cases. To encompass accessible experimental tech-
niques, we will focus on two experimentally accessible quan-
tities that encode how the odd-frequency pairing symmetry is
manifested in transport properties: namely, the normalized
charge conductance G�eV� for T=0 and the thermal conduc-
tance ��T�. The procedure for obtaining these quantities is
treated in detail in Refs. 30–32. In the limit of zero resistance
in the normal part and vanishing proximity effect, one finds

G =
1

GN
�

−�/2

�/2

d� cos ��+�eV,�� ,

� = �
−�/2

�/2 �
−�

�

d�d�
�2�2�−�eV,��

4�0 cosh2�����cos ��−1 , �16�

where GN is the normal-state conductance and we have de-
fined

����,�� = 1 + � 4	−	̃+e−i�+

	+	−�4 − Z�
2 � + Z�

2 	̃+	̃−ei��−−�+�
2

−  2�	+	−�2 + Z�� − Z�	̃+	̃−ei��−−�+��

	+	−�4 − Z�
2 � + Z�

2 	̃+	̃−ei��−−�+�
− 12

.

�17�

Above, we have introduced �+=�, �−=�−�, and 	�

=��1+sign��� /g�� /2, where sign���→−sign��� for 	→	̃.
The phase of the superconducting gap is contained in the
factor ei�� =ei�����= f� / �f��. The quantities g� and f� are
the asymptotic values of the normal and anomalous Green’s
functions of the odd-frequency superconductor in a gauge
where the superconducting order parameter is real: g�
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=� /��2− ���� ,����2 and f�=��� ,��� /����� ,����2−�2.
We have introduced Z�=−iZ /cos �, where Z denotes the
strength of the scattering potential near the barrier. In what
follows, we fix Z=3, which corresponds to a typical low-
transparency barrier, which is experimentally realistic. Note
that in the expression for �, we have considered the linear
response regime for a small temperature gradient in the sys-
tem and introduced �=1 /T, where T is the temperature of
the reservoirs.

III. RESULTS AND DISCUSSION

Depending on the symmetries with respect to the sign
inversion of frequency and momentum corresponding to �
→ �−�� and �→�+�, the gap may be classified, as seen in
Table I. In each case, we will model the gap ��� ,� ,T�, as
illustrated in Table I. In the angular dependence of the odd-
parity gaps, � denotes the misorientation angle between the
antinodes and the interface normal �see Fig. 1�. The motiva-
tion for modeling the frequency dependence of the supercon-
ducting gap, as we have done in Table I, is that it features the
low-energy behavior, of the proximity-induced odd-
frequency gap in dirty ferromagnet/superconductor
structures33 and that it exhibits a similar energy dependence
to the gap seen in strongly correlated electron systems con-
sidered in Ref. 13.

Recently, it was demonstrated that the odd-frequency
pairing is quite generally induced near the normal/
superconductor interface by a fully self-consistent calcula-
tion of the superconducting correlations.5 In an even-
frequency-triplet-odd parity �ETO� superconductor with �
=0 corresponding to the perfect formation of zero-energy
states, an odd-frequency-triplet-even parity �OTE� pairing is

induced near the surface. Thus, the formation of zero-energy
states may be reinterpreted as a manifestation of the odd-
frequency superconductivity near the interface. The odd-
frequency symmetry may permit the existence of gapless
single-particle excitations at the Fermi level. On the other
hand, when the nodal direction is parallel to the interface
normal ��=� /2�, only the even-frequency states exist at the
interface.

In a similar manner, the odd-frequency-singlet-odd parity
�OSO� pairing state can be induced near the interface of a
clean normal/superconductor junction when the supercon-
ductor has an ESE symmetry. One may also apply this dis-
cussion to bulk odd-frequency superconducting states. In this
scenario, the ETO �ESE� pairing can be induced at the inter-
face for an OTE �OSO� bulk superconductor.5 This should
have clear observable consequences for the quantum trans-
port properties of a normal/odd-frequency superconductor
junction. We now proceed to investigate this in further detail.

Consider first the left column of Fig. 2 where we have
plotted G as a function of bias voltage for the even-parity
symmetries. In the even-frequency case, the usual singularity
at eV=A0�0 is present. In the odd-frequency case, we see a
qualitatively different behavior of the conductance. First of
all, G at low bias voltage is greatly enhanced compared to
the even-frequency case for A0�1, and the formation of a
zero-bias conductance peak is clearly seen at A0=1. For A0
�1, the conductance is similar to the even-frequency case
for a reduced value of the gap. This may be understood as

Odd frequency-singlet-odd parity

Odd frequency-triplet-even parityEven frequency-singlet-even parity

Even frequency-triplet-odd parity

α α

ky

kx

∆

ε kx

ky ky

kx kx

∆ ∆

∆

ε

ε

ky

ε

(ESE) (OTE)

(ETO)(OSO)

FIG. 1. �Color online� Overview of the different symmetry
states will be considered in the superconducting part of the clean
two-dimensional normal/superconductor junction.

TABLE I. Overview of the specific gap forms will be considered
in this paper. We model the temperature dependence of A�T� with
A�T�=A0 tanh�1.74�Tc /T−1� and Tc=�0 /1.76.

Symmetry Specific gap form ��� ,� ,T�

ESE A�T��0

OTE A�T�� / �1+ �� /�0�2�
OSO A�T�� cos��−�� / �1+ �� /�0�2�
ETO A�T��0 cos��−�� / �1+ �� /�0�2�
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FIG. 2. �Color online� Plot of
G for isotropic, even-parity super-
conductors, and odd-parity super-
conductors for both even- and
odd-frequency pairing.
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follows. For A0�1, the inequality ������ is satisfied for all
� with our choice of gaps �Table I�. This corresponds to
gapless superconductivity. For A0�1, the gap becomes
larger than � below a certain �finite� value of �, which is
similar to the BCS gap.

The middle and right columns of Fig. 2 shows G as a
function of bias voltage for the odd-parity symmetries. In the
OSO case, a gaplike structure is seen at �=0. This is because
ESE pairing is induced near the interface due to the sign
change of the pair potential.5 This ESE pairing is responsible
for the gaplike structure of the conductance spectra, which is
similar to the ESE case in Fig. 2. In contrast, OSO pairing
remains near the interface at �=� /2. Thus, a zero-bias con-
ductance peak is seen. On the other hand, in the ETO case at
�=0, a zero-bias conductance peak appears due to the in-
duced OTE pairing near the interface,5 which is similar to the
OTE case in Fig. 2. At �=� /2, ETO pairing survives near
the interface, and hence, the even frequency character of the
pair amplitude results in a V-like shape of the spectra. Inter-
estingly, OSO and ETO cases have the opposite tendency
although their � dependencies are the same. Furthermore,
the sign change of the gap produces a qualitative difference
in the spectra between OTE and OSO with �=0 junctions.
Thus, G is phase sensitive not only in the even-frequency
superconductor junctions17 but also in odd-frequency super-
conductor junctions.

Next, we investigate the thermal conductance �, as shown
in Fig. 3. The left column corresponds to the even, parity
case, where the usual exponential dependence on T is recov-
ered for the ESE case.34 In the OTE case, � mimics the ESE
case for A0�1 as it does for the charge conductance. Other-
wise, power-law dependence with exponent of �1 is ob-
served due to the node of the gap at zero energy. Thus, the
nodes in the frequency domain of an isotropic odd-frequency
superconductor cause � to behave as it does in an anisotropic
even-frequency superconductor. In the middle and right col-
umns of Fig. 3, we give � in the odd-parity case. The well-
known result of the exponential dependence for �=0 is re-
covered in the ETO case. The OSO case again displays
power-law behavior that is similar to the OTE case for A0
�1. However, the exponential dependence again occurs for

A0�1 in the OSO case with �=0. When �=� /2, there is an
exclusively power-law dependence with exponent of �1.
While the OTE case only has nodes in energy, the OSO case
has both nodes in energy and in k space, but this does not
appear to influence the exponent of the power-law depen-
dence.

IV. SUMMARY

In summary, we have studied quantum transport in a nor-
mal metal/superconductor junction, by considering how a
bulk odd-frequency symmetry in the superconductor is mani-
fested in the electrical and thermal conductances of the junc-
tion. The odd-frequency symmetry is found to qualitatively
display distinct behavior from the even-frequency case. This
reflects the fact that the electrical conductance is sensitive to
the presence of odd-frequency pairing at the interface,
whereas the low temperature behavior of the thermal conduc-
tance reflects the node of the gap in the frequency domain.
Moreover, one may distinguish the even- and odd-parity
cases for an odd-frequency symmetry �OTE and OSO, re-
spectively� by means of their different characteristic tunnel-
ing spectra. Our predictions should be useful for a wide
range of experimental techniques and are thus a helpful tool
in identifying the possible existence of the bulk odd-
frequency superconductors with CeCu2Si2 and CeRhIn5,
which currently present themselves as the most promising
candidates.

ACKNOWLEDGMENTS

J.L. and A.S. were supported by the Research Council of
Norway under Grants No. 158518/431, No. 158547/431
�NANOMAT�, and No. 167498/V30 �STORFORSK�. T.Y.
acknowledges support by JSPS. T.Y and Y.T were supported
by Grant-in-Aid for Scientific Research �Grant No.
17071007� from the Ministry of Education, Culture, Sports,
Science and Technology of Japan. The authors acknowledge
A. Balatsky for helpful comments. Y.T. would like to thank
K. Miyake, H. Kohno, and Y. Fuseya for their valuable dis-
cussions. J.L. acknowledges K. Yada for clarifying com-
ments on the odd-frequency pairing potential.

0 0.5 1
0

0.5

1

T
he

rm
al

co
nd

uc
ta

nc
e

κ

0 0.5 1
0

0.5

1
0.5

0

0.5

1

0 0.5 1
0

0.5

T/Tc

0.5
0

0.5

1

0 0.5 1
0

0.5

0 0.05 0.1
0

0.05

0.1

0 0.05 0.1
0

0.05

0.1

0 0.05 0.1
0

0.05

0.1

A0 = 0.8
A0 = 1.0
A0 = 1.2

ESE

OTE

α = 0
OSO

ETO

α = π/2

α = π/2

α = 0

OSO

ETO

FIG. 3. �Color online� Plot of
� for isotropic, even-parity super-
conductors, and odd-parity super-
conductors for both even- and
odd-frequency pairings. A power-
law dependence with an exponent
of �1 is observed for both of the
odd-frequency symmetries �see
insets�.

QUANTUM TRANSPORT IN A NORMAL METAL/ODD-… PHYSICAL REVIEW B 77, 174505 �2008�

174505-5



1 F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Phys. Rev. Lett.
86, 4096 �2001�; A. F. Volkov, F. S. Bergeret, and K. B. Efetov,
ibid. 90, 117006 �2003�.

2 V. L. Berezinskii, JETP Lett. 20, 287 �1974�.
3 R. S. Keizer, S. T. B. Goennenwein, T. M. Klapwijk, G. Miao, G.

Xiao, and A. Gupta, Nature �London� 439, 825 �2006�; I. Sos-
nin, H. Cho, V. T. Petrashov, and A. F. Volkov, Phys. Rev. Lett.
96, 157002 �2006�.

4 V. Braude and Yu. V. Nazarov, Phys. Rev. Lett. 98, 077003
�2007�; Y. Asano, Y. Tanaka, and A. A. Golubov, ibid. 98,
107002 �2007�.

5 Y. Tanaka, A. A. Golubov, S. Kashiwaya, and M. Ueda, Phys.
Rev. Lett. 99, 037005 �2007�.

6 M. Eschrig, T. Lofwander, Th. Champel, J. C. Cuevas, and G.
Schon, J. Low Temp. Phys. 147, 457 �2007�.

7 Y. Tanaka, Y. Tanuma, and A. A. Golubov, Phys. Rev. B 76,
054522 �2007�.

8 Y. Asano, Y. Tanaka, A. A. Golubov, and S. Kashiwaya, Phys.
Rev. Lett. 99, 067005 �2007�.

9 Y. Tanaka, Y. V. Nazarov, A. A. Golubov, and S. Kashiwaya,
Phys. Rev. B 69, 144519 �2004�; Y. Tanaka and S. Kashiwaya,
ibid. 70, 012507 �2004�; Y. Tanaka, S. Kashiwaya, and T.
Yokoyama, ibid. 71, 094513 �2005�.

10 Y. Tanaka, Yu. V. Nazarov, and S. Kashiwaya, Phys. Rev. Lett.
90, 167003 �2003�.

11 A. Balatsky and E. Abrahams, Phys. Rev. B 45, 13125 �1992�;
E. Abrahams, A. Balatsky, D. J. Scalapino, and J. R. Schrieffer,
ibid. 52, 1271 �1995�.

12 P. Coleman, E. Miranda, and A. Tsvelik, Phys. Rev. B 49, 8955
�1994�; P. Coleman, A. Georges, and A. M. Tsvelik, J. Phys.:
Condens. Matter 9, 345 �1997�.

13 Y. Fuseya, H. Kohno, and K. Miyake, J. Phys. Soc. Jpn. 72,
2914 �2003�; G. Q. Zheng, N. Yamaguchi, H. Kan, Y. Kitaoka, J.
L. Sarrao, P. G. Pagliuso, N. O. Moreno, and J. D. Thompson,
Phys. Rev. B 70, 014511 �2004�; S. Kawasaki, T. Mito, Y. Ka-
wasaki, G.-q. Zheng, Y. Kitaoka, D. Aoki, Y. Haga, and Y.
Onuki, Phys. Rev. Lett. 91, 137001 �2003�.

14 Y. Tanaka and A. A. Golubov, Phys. Rev. Lett. 98, 037003
�2007�; Ya. V. Fominov, JETP Lett. 86, 732 �2007� �Pis’ma v

ZhETF 86, 842 �2007��.
15 J. Linder, T. Yokoyama, and A. Sudbø, arXiv:0712.0134, Phys.

Rev. �to be published�.
16 G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B

25, 4515 �1982�.
17 Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 �1995�;

Y. Tanuma, Y. Tanaka, and S. Kashiwaya, Phys. Rev. B 64,
214519 �2001�.

18 Y. Kasahara, Y. Nakajima, K. Izawa, Y. Matsuda, K. Behnia, H.
Shishido, R. Settai, and Y. Onuki, Phys. Rev. B 72, 214515
�2005�.

19 G. Seyfarth, J. P. Brison, M.-A. Méasson, J. Flouquet, K. Izawa,
Y. Matsuda, H. Sugawara, and H. Sato, Phys. Rev. Lett. 95,
107004 �2005�.

20 J. Y. T. Wei, N.-C. Yeh, D. F. Garrigus, and M. Strasik, Phys.
Rev. Lett. 81, 2542 �1998�.

21 E. V. Bezuglyi and V. Vinokur, Phys. Rev. Lett. 91, 137002
�2003�.

22 L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B 23, 5788
�1981�; J. Hara and K. Nagai, Prog. Theor. Phys. 74, 1237
�1986�; C.-R. Hu, Phys. Rev. Lett. 72, 1526 �1994�.

23 G. M. Eliashberg, Zh. Eksp. Teor. Fiz. 38, 966 �1960�.
24 J. W. Serene and D. Rainer, Phys. Rep. 101, 221 �1983�.
25 N. Kopnin, Theory of Nonequilibrium Superconductivity �Oxford

University Press, New York, 2001�.
26 J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 �1986�.
27 A. M. Zagoskin, Quantum Theory of Many-Body Systems

�Springer, 1998�.
28 M. Vojta and E. Dagotto, Phys. Rev. B 59, R713 �1999�.
29 J. E. Bunder and K. B. Efetov, Phys. Rev. B 70, 134522 �2004�.
30 Y. Tanaka, A. A. Golubov, and S. Kashiwaya, Phys. Rev. B 68,

054513 �2003�.
31 T. Yokoyama, Y. Tanaka, A. A. Golubov, and Y. Asano, Phys.

Rev. B 72, 214513 �2005�.
32 T. Yokoyama, Y. Tanaka, A. A. Golubov, J. Inoue, and Y. Asano,

Phys. Rev. B 71, 094506 �2005�.
33 Ya. V. Fominov, A. F. Volkov, and K. B. Efetov, Phys. Rev. B

75, 104509 �2007�.
34 A. F. Andreev, Sov. Phys. JETP 19, 1228 �1964�.

LINDER et al. PHYSICAL REVIEW B 77, 174505 �2008�

174505-6


