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We calculate the Z boson propagator correction, as described by the S parameter, in technicolor theories
with extended technicolor interactions included. Our method is to solve the Bethe-Salpeter equation for
the requisite current-current correlation functions. Our results suggest that the inclusion of extended
technicolor interactions has a relatively small effect on S.
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I. INTRODUCTION

The origin of electroweak symmetry breaking (EWSB)
is an outstanding unsolved question in particle physics. An
interesting possibility is that electroweak symmetry break-
ing is driven by an asymptotically free, vectorial non-
Abelian gauge interaction, technicolor (TC) [1], with a
coupling that becomes strong at the electroweak scale.
The EWSB is produced by the formation of bilinear con-
densates of technifermions. To communicate this symme-
try breaking to the standard-model fermions (which are
technisinglet), one embeds technicolor in a larger, ex-
tended technicolor (ETC) theory [2]. In order to account
for the generational structure of the standard-model (SM)
fermion masses, the ETC gauge symmetry is envisioned to
break sequentially in stages at the respective mass scales
�j, j � 1, 2, 3, corresponding to these generations, finally
yielding the technicolor gauge symmetry as an exact, un-
broken subgroup. Because these scales enter as inverse
powers in the resultant expressions for quark and lepton
masses, the highest ETC symmetry-breaking scale, �1,
corresponds to the first generation, and so forth for the
others. The scales �j and the corresponding masses of the
ETC gauge bosons must be large in order to satisfy con-
straints from flavor-changing neutral current processes. In
current, reasonably ultraviolet-complete, ETC models,
these ETC breaking scales are �1 � 103 TeV, �2 �
50–100 TeV, and �3 � few TeV [3–6]. Modern techni-
color theories feature a large but slowly running (‘‘walk-
ing’’) technicolor gauge coupling, gTC [7–19]. While some
early studies of walking assumed an ultraviolet (UV) fixed
point in models with U(1) gauge symmetry, modern walk-
ing technicolor theories are based on the fact that walking
can result naturally from the presence of an approximate
infrared (IR) fixed point in the TC renormalization-group
equations of the non-Abelian technicolor gauge theory.
This occurs at a value � � �� [where � � g2

TC=�4��]
which is close to, but slightly larger than, the minimal
value �cr for which the technifermion condensates form.
An important property of a technicolor theory with walk-
ing behavior is that the anomalous dimension of the bi-
linear technifermion operator is � �  ’ 1, so that the

momentum-dependent dynamical technifermion mass
��p� falls off as p�1 rather than p�2 for an extended range
of Euclidean momenta p. This produces the requisite
strong enhancement of SM fermion masses, relative to
the values that they would have in a quantum chromody-
namics (QCD)-like (nonwalking) theory, which is needed
in order to fit experiment. In the pure technicolor theory,
the chiral symmetry breaking occurs if �C2�R� exceeds a
number of order unity, where C2�R� denotes the quadratic
Casimir invariant for the technifermions, which transform
according to the representation R of the TC gauge group.

Technicolor theories are severely constrained by the
corrections that they induce in precision electroweak quan-
tities, in particular, corrections to the Z and W boson
propagators, conveniently represented by the S, T �
��=�em�mZ�, and U [20] or equivalent [21] parameters,
where � � m2

W=�m
2
Zcos2�W� and �� is the deviation of �

from unity due to new physics beyond the standard model.
Experimentally allowed regions in these parameters are
given in Ref. [22]. Since the SU�2�L � U�1�Y gauge cou-
plings are small at the TeV scale, the condensates of T3 �
1=2 and T3 � �1=2 technifermions can naturally be ap-
proximately equal, so that technicolor contributions to ��
are small (e.g., [23]). Further contributions to ��may arise
from ETC effects, as discussed below. From the point of
view of low-energy effective field theory, since the techni-
color sector arises as the low-energy residue of the ETC
theory, a reasonable first approximation for calculating S is
to consider the technicolor theory by itself, without any
higher-dimension operators arising from ETC interactions.
Calculations of this type have been performed in QCD-like
and walking technicolor theories [20,24–34] (see also
[35,36]). In particular, it has been found that technicolor
contributions to S may be suppressed in a TC theory with
walking behavior [25–35].

The question then arises as to what influence the ex-
change of strongly coupled massive ETC gauge bosons,
and the resultant effective local four-fermion current-
current interaction in the technicolor theory, have on the
technicolor correction to the Z boson propagator, as de-
scribed by the S parameter. Since the ETC gauge coupling
is strong at the TeV mass scale, the exchange of the lightest
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massive ETC vector bosons generates four-fermion opera-
tors that could, a priori, have a significant effect on the
chiral symmetry breaking in the technicolor theory and on
the approximate IR fixed point.

Accordingly, in this paper we study the effects of ETC-
induced four-fermion operators on S. As a first step, we
map out the chiral phase boundary via the solution of a
Schwinger-Dyson equation for the technifermion propaga-
tor, including both massless technigluon exchange and the
leading massive ETC gauge boson exchange. In the context
of a walking technicolor model, we then solve a Bethe-
Salpeter equation for the requisite derivative of the current-
current correlation function that yields S [cf. Equation (4.7)
below].

The effects of various types of four-fermion operators on
dynamical chiral symmetry breaking have been studied in
many contexts in the past. In a pioneering work, Nambu
and Jona-Lasinio (NJL) showed that a four-fermion opera-
tor with a sufficiently strong coupling can induce dynami-
cal chiral symmetry breaking [37]. An early approach to
nonperturbative generation of fermion masses starting with
a massless fermion in electrodynamics (QED) was
Ref. [38]. Using large-N methods, Ref. [39] showed that
a certain four-fermion operator in a �1� 1�-dimensional
model produced dynamical chiral symmetry breaking. In
QCD with Nf � 2 massless quark flavors, the effective
instanton-induced operator is a four-fermion operator [40],
and this was shown to contribute importantly to the for-
mation of a bilinear quark condensate and associated dy-
namical chiral symmetry breaking [41]. There have also
been studies of the chiral phase transition in both Abelian
and non-Abelian gauge theories with various types of four-
fermion operators [42–58]. We note that the four-fermion
operators that we consider are ETC-induced and differ
from four-fermion operators directly involving top quark
condensates, such as appear in topcolor models.

The paper is organized as follows. Section II is devoted
to a review of some pertinent material on technicolor and
extended technicolor theories. In Sec. III we discuss the
calculation of the dynamical technifermion mass via the
solution of the Schwinger-Dyson equation and the map-
ping of the chiral phase boundary. Section IV contains the
equations expressing S in terms of current-current correla-
tion functions. In Sec. V we discuss our solution of the
Bethe-Salpeter equation and our results for S. Section VI
contains our conclusions. In an Appendix we comment on
the similarities and differences between the ETC-induced
four-fermion interaction that we study and the four-
fermion interaction used in the Nambu-Jona Lasino model
and its gauged extensions.

II. SOME PROPERTIES OF TECHNICOLOR AND
EXTENDED TECHNICOLOR THEORIES

In this section we discuss some properties of the techni-
color and extended technicolor theories that will be used in

our present study. We begin with the pure technicolor
sector and then include ETC. The technicolor theory is a
vectorial, asymptotically free gauge theory with a gauge
group that we take to be SU�NTC�, with gauge coupling
gTC. We choose NTC � 2, as in recent TC/ETC model
building [3–6], for several reasons, including the fact
that this choice (i) minimizes technicolor contributions to
the S parameter as compared with larger values of NTC,
(ii) can naturally produce a walking technicolor theory in a
one-family model, and (iii) makes possible a mechanism to
explain light neutrino masses [4]. To discuss the features of
this theory, we shall revert to general NTC for some for-
mulas. The theory contains Nf massless Dirac technifer-
mions, and we assume that these transform according to
the fundamental representation of SU�NTC� [59]. The re-
normalization group (RG) equation for the running techni-
color gauge coupling squared, ���� 	 �TC���, is

 � � �
d����
d�

� �
����2

2�

�
b0 �

b1

4�
���� �O�����2�

�
;

(2.1)

where � is the momentum scale, and b0 and b1 are known
coefficients. The two terms listed are scheme independent.
The next two higher-order terms have also been calculated
but are scheme dependent; their inclusion does not signifi-
cantly affect our results. Since the technicolor theory is
asymptotically free, b0 > 0. For sufficiently largeNf, b1 <
0, so that the technicolor beta function has a second zero
(approximate infrared fixed point of the renormalization
group) at a certain ��, given, to this order, by �� �
�4�b0=b1. As the number of technifermions, Nf, in-
creases, �� decreases. In a walking technicolor theory,
one arranges so that �� is slightly greater than the critical
value, �cr, for the formation of the bilinear technifermion
condensate. As Nf increases toward Nf;cr, �� decreases
toward �cr [60]. In the one-gluon exchange approximation,
the Schwinger-Dyson equation for the inverse propagator
of a technifermion transforming according to the represen-
tation R of the technicolor gauge group yields a nonzero
solution for the dynamically generated fermion mass
(which is an order parameter for spontaneous chiral sym-
metry breaking) if � 
 �cr, where �cr is given by

 

3�crC2�R�
�

� 1: (2.2)

For the case at hand, where the technifermion transforms
according to the fundamental representation of SU�NTC�,
this is C2�fund� 	 C2F � �N

2
TC � 1�=�2NTC�, so that, with

NTC � 2, �cr ’ 1:4. To estimate Nf;cr, one solves the equa-
tion �� � �cr, yielding the result [14,19] Nf;cr �

2NTC�50N2
TC � 33�=�5�5N2

TC � 3��. For NTC � 2 this
gives Nf;cr ’ 7:9. This estimate is clearly rough, in view
of the strongly coupled nature of the physics. Moreover,
the coupling �� is only an approximate IR fixed point of
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the renormalization group, since the technifermions gain
dynamical masses � and are integrated out in the effective
field theory for energies below �, where the technicolor
beta function consequently has the form for a pure gauge
theory. Effects of higher-order gluon exchanges have been
studied in [12]. From earlier studies in QCD, it is known
that instantons (which are not directly included in the
above-mentioned Schwinger-Dyson equation) contribute
to the formation of a bilinear fermion condensate in a
vectorial gauge theory [41]. The effect of instantons on
the (zero-temperature) chiral transition in a vectorial gauge
theory as a function of Nf has been studied in
Refs. [17,18]. In principle, lattice gauge simulations should
provide a way to determine Nf;cr, but the groups that have
studied this have not reached a consensus [61]. Thus, we
shall use the valueNf;cr ’ 8 forNTC � 2 but note that there
is some uncertainty in the determination of this number, as
is expected in view of the strongly coupled nature of the
physics.

We shall focus on technicolor models in which the
technifermions comprise one family with respect to the
standard-model gauge group, GSM � SU�3�c � SU�2�L �
U�1�Y (e.g., [43]). In such a one-family technicolor model,
the technifermions transform as

 QL: �NTC; 3; 2�1=3;L UR: �NTC; 3; 1�4=3;R

DR: �NTC; 3; 1��2=3;R LL: �NTC; 1; 2��1;L

NR: �NTC; 1; 1�0;R ER: �NTC; 1; 1��2;R;

(2.3)

where the numbers in the parentheses refer to the repre-
sentations of SU�NTC� � SU�3�c � SU�2�L and the sub-
scripts refer to weak hypercharge, Y. Hence, with
Nw � 2, this type of model contains Nf � Nw�Nc � 1� �
8 technifermions. Given the above-mentioned fact that
NTC � 2) Nf;cr ’ 8, it follows that, to within the accu-
racy of the two-loop beta function analysis, this technicolor
model can naturally exhibit walking behavior. Since there
are

 ND � �Nc � 1� (2.4)

SU�2�L doublets for each technicolor index, the total num-
ber of electroweak doublets, ND;tot, of technifermions is

 ND;tot � ND dim�R� � �Nc � 1�NTC � 8; (2.5)

where R denotes the technifermion representation of
SU�NTC�, with R � fund here.

We next discuss the embedding of this technicolor the-
ory in extended technicolor. Although much of our analysis
of chiral symmetry breaking and the S parameter is rather
general, it will be useful to have a specific class of ETC
models in mind as a theoretical framework. A natural
formulation of ETC gauges the fermion generational index
and combines it with the technicolor gauge index, so that,
for an SU�NETC� gauge group, one has

 NETC � Ngen � NTC � 3� NTC: (2.6)

With NTC � 2, this then leads to SU(5) for the ETC gauge
group. The SM fermions and corresponding technifer-
mions transform according to the representations

 QL: �5; 3; 2�1=3;L; uR: �5; 3; 1�4=3;R;

dR: �5; 3; 1��2=3;R

(2.7)

and

 LL: �5; 1; 2��1;L; eR: �5; 1; 1��2;R; (2.8)

where the subscripts denote Y. For example, writing out the
components of eR, one has eR 	 �e

1; e2; e3; e4; e5�R 	
�e;�; �; E4; E5�R, where the last two entries are the charged
technileptons. There are also SM-singlet, ETC-nonsinglet
fields in various representations of SU�5�ETC such that the
overall ETC theory is a chiral gauge theory. The right-
handed, SM-singlet, neutrino fields and corresponding
technineutrinos arise as certain components of these SM-
singlet, ETC representations, as discussed in Refs. [3–6].
In this type of ETC theory, because the SM fermions and
the technifermions in each of the ETC multiplets (2.7) and
(2.8) transform in the same way under the SM gauge group
GSM, it follows that the ETC gauge bosons are SM singlets,
and �GSM; GETC� � 0. It may be noted that one could also
consider a technicolor theory with a single electroweak
doublet of technifermions, so that ND;tot � NTC. Although
this model, by itself, does not exhibit walking behavior,
this can be achieved by adding the requisite number of SM-
singlet technifermions, as, e.g., in [62]. To avoid electro-
weak gauge anomalies, the technifermion electroweak
doublet must have weak hypercharge Y � 0, and conse-
quently, the ETC gauge bosons that transform SM fermi-
ons to these technifermions carry hypercharge and charge
(and, for some, also color), so that �GSM; GETC� � 0.
Consequently, an analysis of electroweak corrections in
this type of theory is more complicated than the analysis
in a model based on one-family technicolor, and we do not
pursue this here.

The overall ETC theory is constructed to be asymptoti-
cally free, so that as the energy scale decreases from large
values, the ETC gauge coupling grows, and produces
various bilinear condensates. Since the ETC theory is
chiral, these condensates generically break the ETC gauge
symmetry, and this can be arranged to occur in stages.
Explicit, reasonably ultraviolet-complete ETC models of
this type were studied in Refs. [3–6]. The ETC gauge
bosons may be denoted Vij, where 1  i, j  5. It is
convenient to use the notation Vdj, j � 1, 2, 3 for the
ETC gauge bosons corresponding to the diagonal Cartan
generators Tdj. For the sake of generality, we display the
Tdj for arbitrary NTC. With the canonical normalization
Tr�TiTj� � �1=2�	ij and in our basis with ETC indices
ordered as i � 1, 2, 3 for generations and i � � �
4; 5; . . . ; NETC for technicolor, these Cartan generators are
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 Td1 � 
1 diag���NTC � 2�; 1; 1; f1g�; (2.9)

 Td2 � 
2 diag�0;��NTC � 1�; 1; f1g�; (2.10)

and

 Td3 � 
3 diag�0; 0;�NTC; f1g�; (2.11)

where f1g denotes a string of NTC 1’s,

 
1 � �2�NTC � 2��NTC � 3���1=2; (2.12)

 
2 � �2�NTC � 1��NTC � 2���1=2; (2.13)

and, most importantly for our purposes,

 
3 � �2NTC�NTC � 1���1=2: (2.14)

In particular, 
3 � 1=�2
���
3
p
� for NTC � 2.

At the scale �1 ’ 103 TeV, the SU�5�ETC gauge sym-
metry is envisioned to break to SU�4�ETC, with the nine
ETC gauge bosons in the coset SU�5�ETC=SU�4�ETC, V1

j ,
Vj1 � �V

1
j �
y, 2  j  5, and Vd1, picking up masses M1 ’

�1. Similarly, at the scale �2 ’ 50–100 TeV, SU�4�ETC

breaks to SU�3�ETC, with the seven ETC gauge bosons in
the coset SU�4�ETC=SU�3�ETC, V2

j , Vj2 � �V
2
j �
y, 3  j  5,

and Vd2, picking up masses M2 ’ �2. Finally, at the scale
�3 ’ few TeV, SU�3�ETC breaks to the residual exact tech-
nicolor gauge group SU�2�TC, and the five ETC gauge
bosons in the coset SU�3�ETC=SU�2�TC, V3

j , Vj3 � �V
2
j �
y,

j � 4, 5, and Vd3 gain masses M3 ’ �3. Henceforth, we
shall denote technicolor indices as � � 4, 5 to distinguish
them from generational indices i � 1, 2, 3. In principle,
other strongly coupled gauge symmetries such as topcolor
might also be present, but we will not consider these here.

The most important ETC contributions to the techni-
color sector arise from the exchange of the lowest-lying
massive ETC gauge bosons, namely, those with mass M3.
Exchanges of more massive ETC gauge bosons make
contributions that are strongly suppressed by factors
M2

3=M
2
j � 1, where j � 1, 2. In the technicolor theory,

as a low-energy effective field theory, the exchange of
massive ETC gauge bosons produce local four-fermion
operators of the current-current form. There are two types
of corrections to the propagator of a technifermion due to
the emission and reabsorption of virtual ETC gauge bosons
of mass M3, namely, those involving (i) Vd3 and (ii) V�3 .
Thus a one-loop technifermion propagator correction in-
volving the exchange (i) has the same technifermion on the
internal fermion line, while that involving the exchange (ii)
has the corresponding third-generation SM fermion on the
internal line. In a viable ETC model, the exchange (ii) must
make a smaller contribution to the dynamical mass �F of a
technifermion F than the exchange (i) because it violates
custodial symmetry. This is a consequence of the fact that
the emission and reabsorption of a virtual V�3 yields a one-
loop diagram in which a U techniquark transforms to a

virtual t quark and back, while a D techniquark transforms
to a b quark and back. This correction to the dynamical
mass � of the techniquark therefore introduces a depen-
dence on mt for U and mb for D, so �U would, in general,
differ significantly from �D, violating custodial symmetry
in the technicolor sector.

Such violations must be small. Global fits to data yield
allowed regions in �S; T� depending on a reference value of
the SM Higgs mass,mH;ref . The comparison of these with a
technicolor theory is complicated by the fact that techni-
color has no fundamental Higgs field. Sometimes one
formally uses mH;ref � 1 TeV for a rough estimate, since
the standard model with mH � 1 TeV has strong longitu-
dinal vector boson scattering, as does technicolor.
However, this may involve some double counting when
one also includes contributions to S from technifermions,
whose interactions and bound states (e.g., technivector
mesons) are responsible for the strong scattering in the
W�L W

�
L and other longitudinal vector-vector channels in a

technicolor framework. The current allowed region in
�S; T� disfavors values of S * 0:1 and T * 0:4 [22].

Because violations of custodial symmetry in the techni-
color sector must be small for the theory to be viable, we
shall focus on the corrections of type (i). This constraint
also implies that j�U ��Dj=��U ��D� � 1, so we shall
drop the subscripts on �U and �D. Indeed, since all SM
interactions are small at the scale of technicolor mass
generation, it is expected that the dynamical masses for
all of the technifermions, �U, �D, �N , and �E, are ap-
proximately equal, and we shall therefore simply denote
them as �.

In the ETC framework that we use, the Vd3 exchange
yields an effective local operator in the technicolor theory
of the form

 L Vd3
� �


2
3g

2
ETC

M2
3

X
 

�X
�

� ��� 
�
��X

�0

� �0�
� �

0

�
;

(2.15)

where
P
 is over the technifermions  in the theory, andP

� is over the technicolor indices. As is evident from
Eqs. (2.14) and (2.15), the dimensionless coefficient

3g

2
ETC is not independent of the technicolor theory and

its coupling, gTC, since these arise from the sequential
breaking of the ETC theory. However, from an abstract
field-theoretic point of view, it is of interest to investigate
the (zero-temperature) chiral transition of an asymptoti-
cally free vectorial gauge theory in the presence of a four-
fermion operator with a coupling that can be varied inde-
pendently of the gauge coupling. In this context, one could
map out the chiral phase boundary as a function of these
two, a priori independent, dimensionless couplings. If,
indeed, one really posited a four-fermion operator as a
fundamental interaction in the theory, it would change
the renormalization-group behavior of the couplings.
However, in the physical ETC context, in which this
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four-fermion operator is the low-energy remnant of the
ETC theory, its effects on the technicolor gauge coupling
can be considered to have already been taken into account
at the higher scale where the ETC gauge degrees of free-
dom are dynamical, since the technicolor sector emerges as
the low-energy effective field theory from this larger ETC
theory.

By formally varying M3 from zero to its physical non-
zero value, and noting that the sign of the resultant con-
tribution to the fermion propagator does not change, one
infers that the effect of the ETC interaction is to enhance
the spontaneous chiral symmetry breaking. Indeed, the
NJL model showed that a four-fermion operator can induce
dynamical chiral symmetry breaking by itself if its cou-
pling strength is sufficiently great [37]. Note that ETC-
induced four-fermion operator (2.15) is a product of two
vector currents and is different from the four-fermion
operator that appears in the gauged NJL model, namely,
a sum of the form VV � AA, where V and A denote vector
and axial-vector currents.

III. SCHWINGER-DYSON EQUATION AND
MAPPING OF PHASE BOUNDARY

The first step in our analysis is the calculation of the
dynamical technifermion mass and the mapping of the
associated chiral phase boundary in the theory. Some early
studies using Schwinger-Dyson equations and related
methods to study nonperturbative fermion mass generation
in Abelian and non-Abelian gauge theories are
Refs. [38,63]. Past work on the (zero-temperature) chiral
transition for Abelian and non-Abelian gauge models in
the presence of four-fermion operator of various types is
contained in Refs. [45–51]. Several of these studies used
models with a (nonasymptotically free) U(1) gauge sym-
metry. In these studies it was assumed that the theory had a
UV fixed point at��0�cr . This contrasts with modern TC/ETC
models, in which the TC sector arises as the low-energy
limit of an ETC theory, and both are based on asymptoti-
cally free, non-Abelian gauge symmetries, with ��0�cr being
an approximate IR fixed point of the TC theory.

Our method is to use the Schwinger-Dyson (SD) equa-
tion for the technifermion propagator to calculate the
dynamically induced mass �, taking into account the
exchange of both massless technigluons and the massive
Vd3 ETC vector bosons. The dynamical technifermion
mass serves as an order parameter for the chiral transition.
This mass may be defined in terms of the momentum-
dependent fermion mass evaluated at an appropriate
Euclidean reference momentum. One choice would be
� � ��pE � 0�, but we shall actually use the related
choice

 � � ��pE � ��: (3.1)

We recall that the analysis of the Schwinger-Dyson equa-
tion, by itself, does not give direct information about

whether or not the theory has confinement. Indeed, the
original NJL model provides an example of dynamical
chiral symmetry breaking via a four-fermion operator
(with sufficiently large coupling of the correct sign) with-
out confinement. In the pure gauge theory, for Nf < Nf;cr,

i.e., for �� >��0�cr , one can argue persuasively that
(although the area law behavior of the Wilson loop ceases
to hold because of string breaking) the theory exhibits
confinement, by a formal analytic continuation in Nf
from Nf � 0 [60]. This is all that we will need for our
present purposes. In the pure gauge theory, the chirally
symmetric phase is expected to be a non-Abelian decon-
fined Coulombic phase for sufficiently weak coupling. If
appropriate conditions were satisfied, there might possibly
also be an intermediate phase with confinement but no
spontaneous chiral symmetry breaking; the presence or
absence of this phase will not be important for our work
here. Since for physical reasons, viz. the necessity of a
nonvanishing technifermion condensate for electroweak
symmetry breaking, we must be in the confined phase.

The full inverse technifermion propagator can be written
as

 SF�p��1 � A�p2�p6 � B�p2�: (3.2)

The resultant SD equation has the form

 Sf�p��1 � p6 � ITC � IETC; (3.3)

where ITC and IETC are the contributions from technigluons
and Vd3 ETC vector bosons, respectively. A graphical
representation of these contributions is shown in Fig. 1.
The first graph on the right is the (massless) technigluon
exchange diagram, and the second represents the contribu-
tion of the effective local four-fermion operator resulting
from the exchange of the massive ETC gauge boson Vd3.
The dark blobs on the technifermion line signify that we
use the full technifermion propagator. The first term in
Eq. (3.3) is given by

 ITC � �C2F

Z d4q

i�2��4
g2

TC�p; q�D
TC
�
�p� q���SF�q��
;

(3.4)

where the technigluon propagator is

 DTC
�
�k� �

N�

k2 (3.5)

−1p p

FIG. 1. Pictorial representation of the Schwinger-Dyson equa-
tion for the technifermion. The first graph on the right represents
technigluon exchange, and the second represents the contribu-
tion of the effective local four-fermion operator resulting from
the exchange of the massive ETC gauge boson Vd3.
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with numerator (depending on the gauge parameter �)

 N�
 � �g�
 � �
k�k

k2 : (3.6)

Our analysis is thus an improved ladder approximation,
where the term ‘‘improved’’ refers to the fact that in
Eq. (3.4) we take account of the momentum dependence
of the running technicolor coupling, gTC. We next explain
several further approximations that will be made. In the
pure technicolor theory, ifNf were greater thanNf;cr, i.e., if
�� were less than �cr, so that this IR fixed point of the two-
loop RG equation were exact, then one could make use of
an exact solution to this equation in the entire energy
region. With b 	 b0=�2��, this solution is given by [64,65]

 ���� � ���W�e�1��=��b�� � � 1��1; (3.7)

where W�x� � F�1�x�, with F�x� � xex, is the Lambert W
function, and � is a RG-invariant scale defined by [14]

 � 	 � exp
�
�

1

b

�
1

��
ln
�
�� � ����
����

�
�

1

����

��
: (3.8)

However, since physically one must be in the phase where
�> �cr so that the technifermion condensate forms and
the electroweak symmetry is broken, the IR fixed point is
only approximate rather than exact, as noted above. Hence,
Eq. (3.7) is only applicable in an approximate manner to
our case; for momenta much less than the dynamical
fermion mass �, the fermions decouple, and in this very
low-momentum region, with the fermions integrated out,
the resultant � would increase above the value �� at the
approximate IR fixed point. But since �� � in a walking
theory, it follows that this lowest range of momenta makes
a relatively small contribution to the integrals to be eval-
uated in our calculations. Hence, over most of the integra-
tion range for these integrals where the coupling � is large,
it is approximately constant and equal to its fixed-point
value, ��. This means that one can use the approximation

 ���� � ��������; (3.9)

where � is the step function. Moreover, we shall assume
that

 gTC�p; q� � gTC��p� q�
2� � gTC�p

2
E � q

2
E�: (3.10)

Since gTC would naturally depend on the technigluon
momentum squared, �p� q�2 � p2 � q2 � 2p � q, the
functional form (3.10) amounts to dropping the scalar
product term, �2p � q. This is a particularly reasonable
approximation in the case of a walking gauge theory
because most of the contribution to the integral (3.4) comes
from a region of Euclidean momenta where � is nearly
constant. Hence, the shift upward or downward due to the
�2p � q term in the argument of � has very little effect on
the value of this coupling for the range of momenta that
make the most important contribution to the integral. The

approximations (3.9) and (3.10) are the same as in our
previous work [32,33,66,67].

Making a Euclidean rotation and performing the angular
integration in ITC then yields two equations, for A�p2

E� and
B�p2

E�. In Landau gauge, with gauge parameter � � 1, the
solution to the equation for A�p2

E� is A�p2
E� � 1, so that the

dynamical mass of the technifermion, ��p2
E� �

B�p2
E�=A�p

2
E�, takes the simple form ��p2

E� � B�p2
E�.

This simplification motivates the use of Landau gauge,
although physical results involving � are, of course, in-
variant under technicolor gauge transformations (e.g.,
[12,56]). For the integral ITC, setting x 	 p2

E and y 	 q2
E,

we obtain

 ITC �
3C2F

16�2

Z 1
0
ydy

g2
TC�x� y���y�

max�x; y��y��2�y��
: (3.11)

Note that, although the upper limit on the integration is
formally infinite, the integral is actually cut off at y ’ �2

because of Eq. (3.9). If the technigluon exchange were the
only contribution in Eq. (3.3), then this equation would
have a nonzero solution for ��p2

E� if �TC >��0�cr , where
��0�cr was given by Eq. (2.2). In our calculations, we con-
sider the full nonlinear integral Eq. (3.11). However, for
comparison with our numerical results, we recall in the
pure technicolor theory (without the ETC-induced four-
fermion interaction) if, as �� & ��0�cr , one neglects the
momentum dependence of ��y� in the denominator of
Eq. (3.11), then the solution is [14–19]

 � � const� exp
�
��

�
��
�cr
� 1

�
�1=2

�
: (3.12)

A numerical solution of the Schwinger-Dyson equation in
a non-Abelian gauge theory found a rather similar result,
� / � exp��0:82����=�cr � 1��1=2� [19]. A similar nu-
merical solution of the Schwinger-Dyson equation for a
range of values of � slightly larger than ��0�cr obtained
results which were fit with the form (3.12) [66].

We next discuss the leading ETC contribution to
Eq. (3.3), IETC. We again shall introduce some physically
motivated approximations to simplify the calculation. In
models with explicit specification of ETC dynamics (e.g.,
[3–6]), one finds that the walking regime typically extends
from the TC scale to the lowest ETC symmetry-breaking
scale, �3. Hence, as far as the technicolor theory is con-
cerned, the scale parameter � in Eq. (3.8) is of order �3. At
momentum scales � * �3, one is dealing with the full
SU�3�ETC gauge interaction [and so forth on up to
SU�5�ETC for � * �1]. Although the dynamical gauge
degrees of freedom in the coset SU�3�ETC=SU�2�TC are
frozen out for momenta � & �3, it will be convenient to
use the Landau-gauge form of the ETC gauge boson
propagator for our calculation, so that
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 IETC � �

2
3

Z d4q

i�2��4
g2

ETC�p; q�D
ETC
�
 �p� q��

�SF�q��

;

(3.13)

where

 DETC
�
 �k� �

N�

k2 �M2

3

: (3.14)

This choice maintains A�p2
E� � 1. We can then combine

the TC and ETC terms as I � ITC � IETC, with

 I � �
Z d4q

i�2��4
��p; q�

�p� q�2
N�
�

�SF�q��

; (3.15)

where

 ��p; q� � C2Fg2
TC�p; q� � 


2
3g

2
ETC�p; q�

�

�
�p� q�2

�p� q�2 �M2
3

�
: (3.16)

Since the dominant contribution to the momentum integra-
tion in I is from scales smaller than M3, the momentum-
dependent term in the denominator of the second term (3.8)
is dropped relative to M2

3. Since, as noted, the TC sector is
the low-energy effective theory arising from ETC, the
gauge couplings are closely related. As noted, in explicit
ETC models, the walking regime for the TC theory typi-
cally extends up to the scale �3 where the ETC symmetry
breaks to the TC symmetry. Thus, the approximation (3.9)
for gTC��� means that the Euclidean momentum integra-
tion in the integrals is cut off at ’ �3. Below this scale, the
gauge degrees of freedom in the coset SU�NTC �
1�=SU�NTC� are frozen out, and gETC does not run.
Combining this with the fact that the TC gauge coupling
inherits its magnitude from the ETC gauge coupling, we
will approximate gETC��� by the same form as gTC���,
given in Eq. (3.9), namely gETC��� ’ rgTC���, with the
parameter r ’ 1 introduced to account for a slight differ-
ence in magnitude between these couplings. We thus ob-
tain (with x � p2

E and y � q2
E)

 ��x� �
3

16�2

Z 1
0
ydy

��x� y���y�

max�x; y��y���y�2�
: (3.17)

[Note again that the integral is cut off at y ’ �2 because of
Eq. (3.9).] From the above, the explicit form for ��z�
(where z � x� y) is

 ��z� � g2
TC�z�

�
C2F � r2
2

3

z

M2
3

�
: (3.18)

Including the prefactor 3=�16�2�, we can write this as

 

3��z�

16�2
�
�TC�z�

4��0�cr

� �4�z�
z

M2
3

; (3.19)

where the rescaled coefficient of the ETC-induced four-
fermion coupling, �4�z�, is

 �4�z� �
3r2
2

3�TC�z�
4�

: (3.20)

With NTC � 2 and hence 
2
3 � 1=12, if �TC ’ �

�0�
cr �

�=�3C2F�, then, taking r ’ 1, the value of the
momentum-dependent �4 at the relevant scale of order a
TeV, which we shall refer to simply as �4, is

 �4 ’
1

48C2F
’ 0:03: (3.21)

Thus, the value of �4 in the type of ETC model considered
here is rather small.

In addition to ETC-induced four-fermion interactions,
certain four-fermion operators could be induced by the
nonperturbative dynamics of the technicolor theory itself.
In particular, as we discussed above, instanton effects
produce effective local multifermion operators, and, upon
contraction of technifermion fields, these yield a particular
type of four-fermion operator, which has been shown to be
important for chiral symmetry breaking in QCD [41].
These instanton-generated multifermion operators are
soft, i.e., the mass that enters as an inverse square factor
multiplying them in an effective Lagrangian is of order the
QCD chiral symmetry-breaking scale. Indeed, NJL-type
four-fermion interactions are commonly used in modern
phenomenological models of chiral symmetry breaking in
QCD at zero and finite-temperature [68]. Instanton effects
on the chiral phase transition depending on Nf have been
studied in Refs. [17,18]. In Refs. [57,58] it was suggested
that a four-fermion interaction with a strength equivalent to
our �4 ’ 1=4 could be induced by the nonperturbative
dynamics of walking technicolor itself. As with
instanton-induced multifermion operators, the mass scale
characterizing these four-fermion interactions is expected
to be ’ �. This is different from the type of ETC-induced
four-fermion operator considered here, which is hard at the
scale � (and become soft above �3). Although there are no
instantons in QED4, the importance of four-fermion opera-
tors has also been discussed in connection with a possible
UV fixed point in this theory in Ref. [42]. (This question
was relevant to the interpretation of differing results from
lattice gauge theory simulations concerning the continuum
limit of 4D U(1) lattice gauge theory [69,70].) If the
technicolor theory itself generates large four-fermion op-
erators, then the properties of the theory, even in the
absence of ETC effects, might correspond to an interval
effectively equivalent to our 1=4 & �4  1 in the phase
diagram of Fig. 7 below. Apart from this, there is also
interest, from a general field-theoretic point of view, in
investigating the range of �4 values extending up to O(1),
where the four-fermion coupling, by itself, would be suffi-
cient to break the chiral symmetry. In accordance with our
discussion above, we take M3 to be equal to the scale �
that effectively sets the upper limit of the walking regime
for the technicolor theory.
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One next discretizes the Schwinger-Dyson equation and
solves it using iterative numerical methods, as described in
Ref. [66] (which also contains references to the literature
on Schwinger-Dyson and Bethe-Salpeter equations). In
this analysis, one formally takes � and �4 to be indepen-
dent, although, as discussed above, in the actual ETC
context, they are related. In Fig. 2 we show the solution
for the dynamical technifermion mass � (divided by �) as
a function of �=��0�cr for a range of values of �4. The effect
of the local current-current interaction is clearly to enhance
the spontaneous chiral symmetry breaking, so that the
critical value of the technicolor coupling for the appear-
ance of a nonzero �, which can be denoted �cr, decreases
monotonically as �4 increases from zero. Similarly, if one
fixes the value of �=��0�cr where ��0�=� is nonzero, then
the value of ��0�=� increases monotonically as �4 in-
creases. For �4 � 0, our results are, as expected, in agree-
ment with the exponential vanishing in Eq. (3.12) as �
decreases toward its critical value, ��0�cr . As �4 increases,
this behavior changes. Although the detailed critical be-
havior as one approaches the chiral boundary is not the
focus of our present work, we comment that if one were to
make a fit of the form

 

��0�

�
/

�
�
�cr
� 1

�
��

as
�
�cr
! 1�; (3.22)

where �� is a critical exponent, analogous to the standard
notation for the critical exponent for the order parameter in
statistical mechanics, then the value of �� decreases from
its value of infinity for �4 � 0, corresponding to the essen-
tial zero in Eq. (3.12), through the value �� ’ 1 at �4 �
0:5, to the value �� ’ 0:5 at �4 � 1.

In Fig. 3 we display contour curves of equal ��0�=� as a
function of �=��0�cr and �4. The chiral phase boundary is
shown as the dashed curve. For �4 < 0:25, the critical point
�cr for the chiral phase transition is essentially independent
of �4, just as is the case in the gauged NJL model
[45,46,52]. For larger values of �4, this critical point

decreases, and, for �4 ’ 1:1, this critical point occurs at
� � 0, i.e., for �4 * 1:1, the local current-current interac-
tion is sufficient, by itself, to produce a nonzero ��0�,
without any technicolor gauge interaction. This is again
qualitatively similar to the situation for the gauged NJL
interaction.

IV. EXPRESSION FOR S IN TERMS OF CURRENT-
CURRENT CORRELATION FUNCTIONS

In this section we review the formulas that we will use to
calculate the S parameter in terms of (the derivative of) a
certain combination of current-current correlation func-
tions. As a measure of corrections to the Z propagator
arising from heavy particles and new physics (NP) in
theories beyond the standard model, S was originally de-
fined as [20]

 S �
4s2

Wc
2
W

�em�mZ�

d��NP�
ZZ �q

2�

dq2

��������q2�0
; (4.1)

where s2
W � 1� c2

W � sin2�W , evaluated at mZ. More
recent analyses of precision electroweak data define S
slightly differently, replacing the derivative at q2 � 0 by
a finite difference (in the MS scheme) [22]

 SPDG �
4s2

Wc
2
W

�em�mZ�

�
��NP�
ZZ �m

2
Z� ���NP�

ZZ �0�

m2
Z

�
: (4.2)

The difference between these definitions is small if the
heavy fermion mass � satisfies �2�=mZ�

2 � 1, as is the
case in the technicolor models considered here. To make
this quantitative, we recall that in the one-family techni-
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FIG. 2. Plot of ��0�=� as a function of �=��0�cr , for various
values of �4.
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color model, m2
W � �g

2=4�f2
TC�Nc � 1� � g2f2

TC, where g
is the SU�2�L coupling and fTC is the technicolor analogue
of the pion decay constant in QCD. This yields fTC ’
125 GeV. We next use a rough scaling relation connecting
the dynamical technifermion mass

 

�

�QCD
’
fTC

f�

�
Nc
NTC

�
1=2
: (4.3)

With f� � 92:4 MeV, �QCD ’ mN=Nc, and NTC � 2, one
thus has � ’ 520 GeV, so that �2�=mZ�

2 ’ 1:3� 102. For
our purposes it will be convenient to use the original
definition, Eq. (4.1).

Suppressing the SU�NTC� gauge index, one can write the
technifermions as a vector,  � � i; . . . ;  Nf �. One can
then define vector and axial-vector currents as

 Va��x� � � �x�Ta�� �x� Aa��x� � � �x�Ta���5 �x�;

(4.4)

where the Nf � Nf matrices Ta (a � 1; . . . ; N2
f � 1) are

the generators of SU�Nf� with the standard normalization.
In terms of these currents, the two-point current-current
correlation functions �VV and �AA are defined via the
equation

 i
Z
d4xeiq�xh0jT�Ja��x�J

b

�0��j0i

� 	ab
�q�q

q2 � g�


�
�JJ�q

2�; (4.5)

where Ja��x� � Va��x�, Aa��x�. Since SM gauge interactions
are small at the technicolor scale of several hundred GeV, it
follows that the contributions to S of each of the Nc
techniquark electroweak doublets �U

a

Da�, a � 1; . . . ; Nc and
from the technilepton electroweak doublet �NE� are essen-
tially equal. It is therefore convenient to define a reduced
quantity, Ŝ, that represents the contribution to S from each
such technifermion doublet, viz.,

 Ŝ �
S
ND

(4.6)

where ND � Nc � 1 � 4 for the one-family technicolor
theory. Then, in terms of the current-current correlation
functions defined above, S, as defined in Eq. (4.1), is given
by

 Ŝ � 4�
d

dq2 ��VV�q2� ��AA�q2��jq2�0; (4.7)

The relation (4.7) is equivalent to the expression in terms of
the integral over the vector and axial-vector spectral func-
tions for the currents (4.4) [71],

 Ŝ � 4�
Z 1

0

ds
s
��V�s� � �A�s��; (4.8)

where

 �J�s� 	
Im��JJ�s��

�s
(4.9)

for J � V, A.

V. CALCULATION OF S VIA BETHE-SALPETER
EQUATION

The method that we use to calculate S is similar to our
earlier work [32,33], except that now we use a scattering
kernel for the Bethe-Salpeter equation that includes the
exchange of not just the massless technigluons, but also the
massive ETC vector boson Vd3. We define certain Bethe-
Salpeter amplitudes �J����p; q; �� as

 	kj�T
a�
f0

f

Z d4p

�2��4
e�ip�r�J����p; q; ��

� ��
Z
d4xeiq�xh0jT� k�f�r=2� � jf0���r=2�Ja��x��j0i;

(5.1)

where J � V or A, and �f; f0�, �j; k�, and ��;�� are,
respectively, the flavor, gauge, and spinor indices. In
Fig. 4 we show symbolically the terms contributing to
the Bethe-Salpeter equation. Full propagators are used on
the internal technifermion lines and the running gauge
coupling is included.

Closing the fermion legs of the above three-point vertex
function and taking the limit r! 0, we can express the
current-current correlation function in terms of these am-
plitudes as

 �JJ�q
2� �

1

3

�
N
2

�X
�

Z d4p

i�2��4
Tr��� �G�J���J��p; q; ���;

(5.2)

where

 G�V�� � ��; G�A�� � ���5; (5.3)

and an average has been taken over the polarizations, so
that �JJ�q2� does not depend on the polarization �. We
then calculate these amplitudes and evaluate the requisite
combination to obtain Ŝ. Since we include a running
coupling in the calculation, we are again working in the
improved ladder approximation.

In Fig. 5 we show our results for Ŝ as a function of
�=��0�cr for various values of �4. As in the analysis of the
Schwinger-Dyson equation, here again one formally varies
� and �4 independently, but understands that in a given
ETC theory, they are related, via Eqs. (2.14) and (3.20). For
a given value of �4, the smallest value of �=��0�cr is close to
�cr=�

�0�
cr ; i.e., the curve starts near to the chiral boundary.

For fixed �4, Ŝ increases as a function of�=��0�cr . This is the
same trend that we found in Refs. [32,33] for the pure
gauge theory without four-fermion interaction. For �4 � 0,
the reason is clear; as� � �� increases, corresponding to a
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decrease in Nf, one is moving away from the walking
regime toward the more QCD-like regime, and the reduc-
tion in Ŝ associated with walking behavior is removed.
This increase actually becomes more abrupt as one in-
creases �4, which indicates that the departure from walking
behavior is more abrupt as one moves away from the chiral
phase boundary in the presence of a substantial four-
fermion coupling. This is in agreement with what we found
for the dynamical technifermion mass, namely, that as one
moves into the chirally broken phase from the chiral phase
boundary, the turn-on of � is more rapid (i.e., the critical
exponent �� is smaller) for larger values of �4, as the
exponential suppression inherent in the form (3.12) is
removed.

In Fig. 6 we show our results for Ŝ as a function of �4 for
a range of values of�=��0�cr . In a walking technicolor theory
a typical value of �=��0�cr with � ’ �� could be about 1.1.
In both Fig. 5 and Fig. 6, the observed feature that increas-
ing �4 at fixed � eventually increases Ŝ is understandable
because the current-current interaction facilitates the for-
mation of the technifermion condensate and associated
appearance of the dynamical mass �. This is the same
trend as the increase in Ŝ that results from increasing ��
(e.g., by decreasing the number of technifermions, Nf),
moving one from the walking regime in the direction of
more QCD-like behavior. From inspection of the curve for
this value, it is evident that Ŝ ’ 0:2 for 0  �4 & 0:25,

with Ŝ increasing for larger values of �4. Since �4 is
expected to be rather small [cf. Eq. (3.21)], we thus find
that in the type of ETC model considered here, the inclu-
sion of the ETC-induced four-fermion operator has little
effect on Ŝ [72]. In Fig. 7 we plot curves of constant Ŝ as
functions of �4 and �=��0�cr . The chiral boundary is again
represented by the dashed curve.

It is also of interest to investigate how Ŝ behaves if one
varies both �=��0�cr and �4 (formally taken to be an inde-
pendent couplings) in such a manner as to move along a
contour of a fixed value of the ratio of physical scales
��0�=�. From Fig. 3, it follows that the condition of
maintaining fixed ��0�=� means that if one increases �4,
then this should be compensated by a decrease in �. In
models such as those of Refs. [5,6], where walking behav-
ior extends up to the lowest ETC breaking scale, �3, the
ratio ��0�=� is typically of order 0.1. The requirement to
reduce S as much as possible provides motivation to con-
sider a stronger degree of walking and hence a smaller
value of ��0�=�. In Fig. 8 we present a plot of Ŝ for the
case where one keeps this ratio fixed at the value
��0�=� � 0:01. From inspection of Fig. 3, one can see
that the contour with ��0�=� � 0:01 intersects the vertical
axis at about �=��0�cr ’ 1:27 for �4 � 0, but moves very
close to the chiral boundary as �4 increases past 0.4. This is
in agreement with the fact that the turn-on of the chiral
symmetry-breaking order parameter � is more abrupt as �4

S
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resulting from the exchange of the massive ETC gauge boson Vd3. See text for further explanation.

KURACHI, SHROCK, AND YAMAWAKI PHYSICAL REVIEW D 76, 035003 (2007)

035003-10



increases and the fact that Ŝ vanishes in the chirally sym-
metric phase. Our results in Fig. 8 show that Ŝ decreases as
�4 increases, with �=��0�cr reduced so as to keep ��0�=�
constant. A plausible interpretation of this is that, to remain
on the contour of fixed ��0�=� � 0:01 as �4 increases, one
is moving closer to the chiral boundary. It is also plausible
that this decrease in Ŝ is associated with an increase in the
anomalous dimension � �  for the technifermion bilinear
�  . We recall that � �  � 1 in the walking limit of a

technicolor gauge theory (and � �  ! 2 for � � 0, �4 !

1). For the expected small value of �4, our Bethe-Salpeter

calculation yields Ŝ ’ 0:2 on this contour, so that S ’ 0:8
[using ND � 4 as in Eq. (2.4)]. We recall again the possi-
bility that the dynamics of the technicolor theory itself
could produce large four-fermion operator effects which
could reduce S; here we focus on the ETC-induced con-
tributions. The above value of S is too large to agree with
experimental limits on S, so to maintain the viability of this
type of model, it is necessary to assume that there is a
further reduction in S. We comment on this next.

Although one cannot use perturbation theory reliably to
calculate S in a strongly coupled gauge theory, the pertur-
bative formula is often employed for comparisons of differ-
ent technicolor models. The one-loop perturbative
calculation with degenerate fermions having effective
masses satisfying �2�=mZ�

2 � 1 yields the well-known
result Spert � ND;tot=�6�� where here ND;tot � NTCND, so
that

 Ŝ pert �
NTC

6�
: (5.4)

In QCD with just light quarks, and hence ND � Nf=2 � 1
and hence ND;tot;QCD � NcND � 3, this perturbative calcu-
lation would predict SQCD;pert ’ 1=�2�� ’ 0:16. To the ex-
tent that the experimental value of S in QCD is dominated
by the contributions of light-quark hadrons in Eq. (4.8)
[73], it follows that ND � 1, so that S ’ Ŝ for QCD. This
experimental value of S in QCD is S � 0:33� 0:04 [74],
so that the perturbative estimate is about a factor of 2
smaller than the actual value. An approximate calculation
of Ŝ was carried out using the ladder approximation to the
Schwinger-Dyson and Bethe-Salpeter equations for QCD
(N � 3) with Nf � 2 quarks of negligible mass [27].
Studies have also been done for the case where one ne-
glects the strange quark mass ms, i.e., N � 3, Nf � 3
[27,67]. Since for either of these values of Nf the two-
loop beta function of the QCD theory does not exhibit an
infrared fixed point, it was necessary in these calculations
to cut off the growth of the strong coupling. For typical
cutoffs, it was found that the calculations tended to yield
too large a value of Ŝ � S, namely Ŝ ’ 0:45–0:5 [27,67].
This suggests that this type of Bethe-Salpeter calculation
may overestimate S. Our studies of Ŝ showed that in a
walking theory, Ŝ is reduced, relative to its value in a QCD-
like theory [32,33], in agreement with other studies of the
effect of walking [25–30]. Combining this reduction with
a plausible correction factor to compensate for the ten-
dency of the Bethe-Salpeter calculation to overestimate Ŝ
in QCD would yield a further reduction in Ŝ. However,
even with a reduction to Ŝ ’ 0:1, inserting the factor ND �
4 yields S ’ 0:4, which is sufficiently large to be of strong
concern. In this context, it should be noted that the question
of the value of Ŝ in walking technicolor has been inves-
tigated in recent analyses using holographic methods
[35,36], and several authors have found evidence for a
sizable reduction [35], although Ref. [36] did not. An

S ( )0Σ Λ = 0.01 )(

κ4
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FIG. 8. Ŝ as a function �4 with � varying so as to maintain a
fixed value of ��0�=� � 0:01.
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FIG. 7. Contours of constant Ŝ, plotted as functions of �4 and
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important task that merits further study is to relate these
holographic methods to the sort of Schwinger-Dyson and
Bethe-Salpeter methods used in previous works for pure
walking gauge theories and here for a walking gauge
theory with additional ETC-induced four-fermion
interaction.

VI. SUMMARY

Technicolor and extended technicolor theories are very
ambitious, since they aim to explain not only electroweak
symmetry breaking and the associated masses for the W
and Z bosons, but also the spectrum of quark, charged
lepton, and neutrino masses. A successful model of this
type would thus explain longstanding puzzles such as the
value of the intergenerational lepton mass ratiome=m� and
intragenerational mass ratios such asmu=md andmt=mb. It
is thus not surprising that no fully realistic ETC model has
been constructed. However, since TC/ETC theories con-
tinue to provide an interesting theoretical framework com-
plementary to the standard-model itself and to other
approaches such as supersymmetry, it is worthwhile to
investigate their properties further. Accordingly, in this
paper, using approximate numerical solutions of the rele-
vant Schwinger-Dyson and Bethe-Salpeter equations, we
have calculated the correction to the Z boson propagator, as
described by the S parameter, in a technicolor theory,
taking account of both massless technigluon exchange
and the dominant contribution from massive ETC gauge
boson exchange. Our results suggest that, for the types of
ETC models considered here, this additional contribution
from massive ETC gauge boson exchange has a relatively
small effect on S.
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APPENDIX

It is useful to compare and contrast the ETC-induced
four-fermion operator whose effects we have analyzed here
with the four-fermion operator studied in the work of
Nambu and Jona-Lasinio [37] and to gauged NJL models.
The NJL model for a single fermion  is described by the
Lagrangian LNJL � � i@6  �Lint;NJL, where the interac-
tion term Lint;NJL is given by

 L int;NJL �
c

2�2 ��
�  �2 � � � �5 �2� �

2c

�2 �
� L R�� � R L�;

(A1)

Here, � is a mass scale introduced to make the coupling c
dimensionless. By a Fierz transformation, this is equivalent
to

 L int;NJL � �
c

4�2 ��
� �� �� � �� � � � � ���5 �

� � � ���5 ��

� �
c

�2 �
� L�� L�� � R�� R�: (A2)

We define

 �c 	
c

4�2 : (A3)

[This coupling �c is identical to the coupling G�2=�4�2� in
Ref. [45] and to � � G�2=�2�2� in Ref. [46].] This theory
is invariant under a global chiral symmetry group U�1�L �
U�1�R. An analysis of the Schwinger-Dyson equation for
the fermion, with an ultraviolet cutoff of � imposed on the
momentum integration, shows that for �c > 1, this equation
has a nonzero solution for �, signifying dynamical chiral
symmetry breaking. Associated with this is the formation
of a bilinear fermion condensate h �  i, breaking U�1�L �
U�1�R to the diagonal subgroup U�1�V . It is straightforward
to generalize the model to an N-component fermion.

There has also been interest in considering a class of
models in which  transforms as a nonsinglet under an
Abelian U(1) or non-Abelian SU�N� gauge group, so that
the kinetic term � i@6  is replaced by � iD6  , where D� is
the appropriate covariant derivative. In the Abelian case,
the Fierz transformation relating the interaction in Eq. (A1)
to that in Eq. (A2) applies in the same manner as for the
original NJL model. In the non-Abelian case, the situation
is more complicated. If the currents in the current-current
product involve the full non-Abelian SU�N� gauge gener-
ators, then a Fierz transformation operates not just on the
Dirac matrices but also on the matrices representing the
gauge generators. As noted in the text, a number of studies
of a gauged NJL model, particularly in the Abelian case,
were performed and mapped out the chiral phase boundary
for this type of model as a function of the gauge coupling g
and the NJL coupling c (generically taken to be
independent).

There are both similarities and differences between an
ETC-based model of the type considered in our text and the
non-Abelian gauged NJL model. First, the ETC interaction
yields a product of two vectorial currents, denoted sym-
bolically as VV, rather than the structure of the NJL
interaction in Eq. (A2), which is VV � AA. Second, while
the NJL model requires an ultraviolet cutoff, this is not
necessary in the present case since we actually start with a
reasonably ultraviolet-complete theory, from which the
interaction (2.15) arises as part of the effective low-energy
field theory. Third, while the general gauged NJL model
treats c and the gauge coupling as independent, this is not
the case in a TC/ETC theory, since the TC gauge group
arises as a subgroup of the ETC gauge group and hence the
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running TC gauge coupling at a given scale is determined
by the ETC gauge coupling at the higher ETC scales where
the ETC gauge degrees of freedom are still active.

In an approximation in which the � term in the denomi-
nator of the fermion propagator is neglected, thereby lin-
earizing the Schwinger-Dyson equation, it was found that,
as one increases the NJL coupling �c from zero, the critical
gauge coupling �cr remains unchanged for 0  �c  1=4
and, for �c > 1=4, the chiral phase boundary can be de-
scribed by the following functional relation for the coor-
dinates of a point ��cr; �ccr� on this boundary,

 �c cr �
1

4

�
1�

�����������������
1�

�cr

��0�cr

s �
2
; (A4)

or equivalently, �cr=�
�0�
cr � 4

������
�ccr
p
�1�

������
�ccr
p
�. As one

moves up along the phase boundary from the point
��; �c� � ���0�cr ; 0� to (0, 1), the nature of the critical singu-
larity also changes from the essential zero in Eq. (3.12) to
the algebraic singularity (3.22) �=�� � �c� 1�1=2 as �c!
1�.

In the gauged NJL model, the Schwinger-Dyson equa-
tion is, after Euclidean rotation and angular integration, in
the notation of Sec. III,

 ��x� �
�

4��0�cr

Z �2

0
ydy

��y�

max�x; y��y� ��y�2�
�

�c

�2

�
Z �2

0
ydy

��y�

�y���y�2�
: (A5)

If one were formally to replace the factor �4�x; y��
�x� y�=max�x; y� in our Eqs. (3.17), (3.18), and (3.19)
by �c, then the Schwinger-Dyson equation for the ETC
model analyzed in the present paper would be transformed
into a structure equivalent to that studied in
Refs. [45,46,52]. Since the factor �x� y�=max�x; y� takes
the value unity for y! 0 and y! 1 and takes the maxi-
mal value 2 (at x � y), one could anticipate that the
solutions for the Schwinger-Dyson equation in the present
paper should be formally similar to the results obtained in
Refs. [45,46,52] for the same input values of � and similar
values of �4 and �c.

[1] S. Weinberg, Phys. Rev. D 19, 1277 (1979); L. Susskind,
ibid. 20, 2619 (1979); see also S. Weinberg, Phys. Rev. D
13, 974 (1976).

[2] S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237
(1979); E. Eichten and K. Lane, Phys. Lett. B 90, 125
(1980).

[3] T. Appelquist and J. Terning, Phys. Rev. D 50, 2116
(1994).

[4] T. Appelquist and R. Shrock, Phys. Lett. B 548, 204
(2002); Phys. Rev. Lett. 90, 201801 (2003).

[5] T. Appelquist, M. Piai, and R. Shrock, Phys. Rev. D 69,
015002 (2004); Phys. Lett. B 593, 175 (2004); 595, 442
(2004).

[6] T. Appelquist, N. Christensen, M. Piai, and R. Shrock,
Phys. Rev. D 70, 093010 (2004).

[7] B. Holdom, Phys. Lett. B 150, 301 (1985).
[8] K. Yamawaki, M. Bando, and K. Matumoto, Phys. Rev.

Lett. 56, 1335 (1986).
[9] T. Appelquist, D. Karabali, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 57, 957 (1986).
[10] T. Appelquist and L. C. R. Wijewardhana, Phys. Rev. D

35, 774 (1987); 36, 568 (1987).
[11] M. Bando, T. Morozumi, H. So, and K. Yamawaki, Phys.

Rev. Lett. 59, 389 (1987).
[12] T. Appelquist, K. Lane, and U. Mahanta, Phys. Rev. Lett.

61, 1553 (1988).
[13] A. Cohen and H. Georgi, Nucl. Phys. B314, 7 (1989).
[14] T. Appelquist, J. Terning, and L. C. R. Wijewardhana,

Phys. Rev. Lett. 77, 1214 (1996).
[15] V. Miransky and K. Yamawaki, Phys. Rev. D 55, 5051

(1997); 56, 3768(E) (1997).
[16] R. S. Chivukula, Phys. Rev. D 55, 5238 (1997).

[17] T. Appelquist and S. Selipsky, Phys. Lett. B 400, 364
(1997).

[18] M. Velkovsky and E. Shuryak, Phys. Lett. B 437, 398
(1998).

[19] T. Appelquist, A. Ratnaweera, J. Terning, and L. C. R.
Wijewardhana, Phys. Rev. D 58, 105017 (1998).

[20] M. Peskin and T. Takeuchi, Phys. Rev. Lett. 65, 964
(1990); Phys. Rev. D 46, 381 (1992).

[21] G. Altarelli and R. Barbieri, Phys. Lett. B 253, 161 (1991);
G. Altarelli, R. Barbieri, and F. Caravaglios, Int. J. Mod.
Phys. A 13, 1031 (1998).

[22] See http://pdg.lbl.gov and http://lepewwg.web.cern.ch.
[23] P. Sikivie, L. Susskind, M. Voloshin, and V. Zakharov,

Nucl. Phys. B173, 189 (1980).
[24] B. Holdom and J. Terning, Phys. Lett. B 247, 88 (1990);

M. Golden and L. Randall, Nucl. Phys. B361, 3 (1991); H.
Georgi, Nucl. Phys. B363, 301 (1991); R. Johnson, B.-L.
Young, and D. McKay, Phys. Rev. D 43, R17 (1991); R.
Cahn and M. Suzuki, Phys. Rev. D 44, 3641 (1991).

[25] T. Appelquist and G. Triantaphyllou, Phys. Lett. B 278,
345 (1992).

[26] R. Sundrum and S. Hsu, Nucl. Phys. B391, 127 (1993).
[27] M. Harada and Y. Yoshida, Phys. Rev. D 50, 6902 (1994).
[28] T. Appelquist, N. Evans, and S. Selipsky, Phys. Lett. B

374, 145 (1996).
[29] T. Appelquist and F. Sannino, Phys. Rev. D 59, 067702

(1999).
[30] S. Ignjatovic, L. C. R. Wijewardhana, and T. Takeuchi,

Phys. Rev. D 61, 056006 (2000).
[31] N. Christensen and R. Shrock, Phys. Rev. Lett. 94, 241801

(2005).
[32] M. Harada, M. Kurachi, and K. Yamawaki, Prog. Theor.

Z BOSON PROPAGATOR CORRECTION IN . . . PHYSICAL REVIEW D 76, 035003 (2007)

035003-13



Phys. 115, 765 (2005); see also M. Kurachi, in
Proceedings of the 2004 Workshop on Dynamical
Symmetry Breaking, 2004, edited by M. Harada and K.
Yamawaki (Physics Department, Nagoya University,
Nagoya, 2004), p. 125.

[33] M. Kurachi and R. Shrock, Phys. Rev. D 74, 056003
(2006).

[34] M. Kurachi and R. Shrock, J. High Energy Phys. 12 (2006)
034.

[35] D. K. Hong and H.-U. Yee, Phys. Rev. D 74, 015011
(2006); J. Hirn and V. Sanz, Phys. Rev. Lett. 97, 121803
(2006); J. High Energy Phys. 03 (2007) 100; M. Piai,
arXiv:hep-ph/0608241.

[36] K. Agashe, C. Csáki, C. Grojean, and M. Reece,
arXiv:0704.1821.

[37] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345
(1961); 124, 246 (1961).

[38] K. Johnson, M. Baker, and R. Willey, Phys. Rev. 136,
B1111 (1964); M. Baker and K. Johnson, Phys. Rev. D 3,
2516 (1971).

[39] D. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[40] G. ’t Hooft, Phys. Rev. Lett. 37, 8 (1976); Phys. Rev. D 14,

3432 (1976).
[41] D. Caldi, Phys. Rev. Lett. 39, 121 (1977); C. Callan, R.

Dashen, and D. Gross, Phys. Rev. D 17, 2717 (1978); R.
Carlitz, Phys. Rev. D 17, 3225 (1978); R. Carlitz and
Creamer, Ann. Phys. (N.Y.) 118, 429 (1979).

[42] W. Bardeen, C. Leung, and S. Love, Phys. Rev. Lett. 56,
1230 (1986); C. Leung, S. Love, and W. Bardeen, Nucl.
Phys. B273, 649 (1986); B323, 493 (1989).

[43] E. Farhi and L. Susskind, Phys. Rep. 74, 277 (1981).
[44] Y. Nambu, in Proceedings of the XI Warsaw Symposium

on Elementary Particle Physics, edited by Z. Ajduk et al.
(World Scientific, Singapore, 1989), p. 1; , in 1988
International Workshop on Strongly Coupled Gauge
Theories, edited by M. Bando et al. (World Scientific,
Singapore, 1989), p. 3.

[45] K.-I. Kondo, H. Mino, and K. Yamawaki, Phys. Rev. D 39,
2430 (1989); K. Yamawaki, in Proceedings of the 12th
Johns Hopkins Workshop on Current Problems in Particle
Theory, 1988.

[46] T. Appelquist, M. Soldate, T. Takeuchi, and L. C. R.
Wijewardhana, in Proceedings of the 12th Johns
Hopkins Workshop on Current Problems in Particle
Theory, 1988.

[47] V. A. Miransky and K. Yamawaki, Mod. Phys. Lett. A 4,
129 (1989).

[48] V. A. Miransky, M. Tanabashi, and K. Yamawaki, Phys.
Lett. B 221, 177 (1989).

[49] T. Appelquist, M. Einhorn, T. Takeuchi, and L. C. R.
Wijewardhana, Phys. Lett. B 220, 223 (1989).

[50] V. A. Miransky, T. Nonoyama, and K. Yamawaki, Mod.
Phys. Lett. A 4, 1409 (1989).

[51] B. Holdom, Phys. Lett. B 226, 137 (1989).
[52] T. Takeuchi, Phys. Rev. D 40, 2697 (1989).
[53] T. Appelquist, T. Takeuchi, M. Einhorn, and L. C. R.

Wijewardhana, Phys. Lett. B 232, 211 (1989).
[54] W. Bardeen, C. Hill, and M. Lindner, Phys. Rev. D 41,

1647 (1990).
[55] T. Appelquist and O. Shapira, Phys. Lett. B 249, 83

(1990).

[56] T. Appelquist, U. Mahanta, D. Nash, and L. C. R.
Wijewardhana, Phys. Rev. D 43, R646 (1991).

[57] K. I. Kondo, S. Shuto, and K. Yamawaki, Mod. Phys. Lett.
A 6, 3385 (1991).

[58] K. I. Aoki, K. Morikawa, J. I. Sumi, H. Terao, and M.
Tomoyose, Prog. Theor. Phys. 102, 1151 (1999).

[59] Models with technifermions transforming according to
higher-dimensional representations of the technicolor
gauge group have been considered, e.g., in [62,75,76].
The simplest case, in which the technifermions are in the
fundamental representation, will suffice for our present
study.

[60] Here and below, when we mention nonintegral values of
Nf, it is implicitly understood that physical values of Nf
are, of course, non-negative integers, and the nonintegral
values are defined via an analytic continuation away from
these physical values.

[61] Y. Iwasaki et al., Phys. Rev. Lett. 69, 21 (1992); Phys. Rev.
D 69, 014507 (2004); P. Damgaard, U. Heller, A. Krasnitz,
and P. Olesen, Phys. Lett. B 400, 169 (1997); R.
Mawhinney, Nucl. Phys. B, Proc. Suppl. 83, 57 (2000).

[62] N. Christensen and R. Shrock, Phys. Lett. B 632, 92
(2006).

[63] J. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D
10, 2428 (1974); K. Lane, Phys. Rev. D 10, 2605 (1974);
T. Maskawa and H. Nakajima, Prog. Theor. Phys. 52, 1326
(1974); 54, 860 (1975); R. Fukuda and T. Kugo, Nucl.
Phys. B117, 250 (1974).

[64] E. Gardi and M. Karliner, Nucl. Phys. B529, 383 (1998);
E. Gardi, G. Grunberg, and M. Karliner, J. High Energy
Phys. 07 (1998) 007.

[65] R. Corless, G. Gonnet, D. Hare, D. Jeffrey, and D. Knuth,
Adv. Comput. Math. 5, 329 (1996).

[66] M. Harada, M. Kurachi, and K. Yamawaki, Phys. Rev. D
68, 076001 (2003).

[67] M. Harada, M. Kurachi, and K. Yamawaki, Phys. Rev. D
70, 033009 (2004).

[68] Some reviews include U. Vogl and W. Weise, Prog. Part.
Nucl. Phys. 27, 195 (1991); S. Klevansky, Rev. Mod. Phys.
64, 649 (1992); V. A. Miransky, Dynamical Symmetry
Breaking in Quantum Field Theories (World Scientific,
Singapore, 1993).

[69] J. Kogut, E. Dagotto, and A. Kocic, Phys. Rev. Lett. 61,
2416 (1988); 62, 1001 (1989); Phys. Rev. D 43, R1763
(1991); S. Hands, J. Kogut, and E. Dagotto, Nucl. Phys.
B333, 551 (1990).

[70] M. Göckeler, R. Horsley, E. Laermann, P. Rakow, G.
Schierholz, R. Sommer, and U. Wiese, Nucl. Phys.
B334, 527 (1990); M. Göckeler, R. Horsley, E.
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