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Employing the perturbative treatment of gravitational clustering, we discuss possible effects of

primordial non-Gaussianity on the matter power spectrum. As gravitational clustering develops, the

coupling between different Fourier modes of density perturbations becomes important and the primordial

non-Gaussianity which intrinsically possesses a nontrivial mode correlation can affect the late-time

evolution of the power spectrum. We quantitatively estimate the non-Gaussian effect on the power

spectrum from the perturbation theory. The potential impact on the cosmological parameter estimation

using the power spectrum are investigated based on the Fisher-matrix formalism. In addition, on the basis

of the local biasing prescription, non-Gaussian effects on the galaxy power spectrum are considered,

showing that the scale-dependent biasing arises from a local-type primordial non-Gaussianity. On the

other hand, an equilateral-type non-Gaussianity does not induce such scale dependence because of weaker

mode correlations between small and large Fourier modes.

DOI: 10.1103/PhysRevD.78.123534 PACS numbers: 98.80.�k, 98.65.Dx

I. INTRODUCTION

Recent observations of cosmic microwave background
(CMB) anisotropies as well as density perturbations in the
large-scale structure strongly support the basic predictions
of inflationary scenarios, in which primordial adiabatic
fluctuations were produced during the accelerated phase
of the cosmic expansion and their statistical properties are
approximately described by Gaussian statistics with a
nearly scale-invariant power spectrum (e.g., [1,2]). Some
specific inflationary models have been ruled out by obser-
vations, narrowing the constraints on the early stage of the
Universe. With precision measurements from future obser-
vations, we will detect clear signals that help us to dis-
criminate between many candidates of inflationary models.

Amongst several signals accessible in the near future,
departure from Gaussianity is an important clue to probe
the generation mechanism for primordial perturbations as
well as to discriminate between inflation models. While the
simplest slow-roll inflation with single scalar field predicts
a small departure from Gaussianity (e.g., [3–5]), models
with a nontrivial kinetic term or late-time inflaton decay
called curvaton scenario [6,7] can produce large non-
Gaussianity (e.g., [8–11]). There are also viable models
motivated by string theory that produce large non-
Gaussianity such as Dirac-Born-Infeld (DBI) inflation
[12–16,16,17] and ekyprotic scenario [18–22]. Although
tentative detections of primordial non-Gaussianity have
been reported very recently ([23,24], but see also [1,25])
and the result is broadly consistent with the standard
prediction of slow-roll inflation, these detections are at
relatively low statistical significance and more precise
measurements are necessary for a definite detection of
the non-Gaussian signals. Planned CMB surveys, namely,

the Planck mission [26], will have much greater sensitivity
and better detect non-Gaussian signals (e.g., [27]). Further,
large-scale structure data from future spectroscopic sur-
veys will uncover the mass density fluctuations up to Giga
parsec scales, which preserve the statistical properties of
primordial fluctuations (e.g., [28,29]). Since these two
measurements can probe different scales of primordial
fluctuations, they are, in principle, complementary to
each other.
In the present paper, we study the signature of primor-

dial non-Gaussianity imprinted on the large-scale struc-
ture, especially focusing on the matter power spectrum.
Naively, we expect that the signature of primordial non-
Gaussianity basically appears in the statistical properties of
higher-order quantities such as the bispectrum and trispec-
trum, and the power spectrum as a second-order statistic
remains unchanged even if large non-Gaussianity has been
produced. However, this is true only when the fluctuations
of the mass density field are tiny and well within the linear
regime. As the gravitational clustering develops, the cou-
pling between different Fourier modes becomes important
and the scale-dependent nonlinear growth appears due to
the mode-coupling effect. In the weakly nonlinear regime,
the strength of this mode-coupling sensitively depends on
the initial condition. Since the non-Gaussian density field
intrinsically possesses nontrivial mode correlations, the
evolution of the power spectrum may be altered by the
primordial non-Gaussianity, at least in the weakly non-
linear regime.
Here, employing the perturbative calculations, we study

the effect of primordial non-Gaussianity on the matter
power spectrum. The effect of non-Gaussianity on the
matter power spectrum has been previously investigated
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by Ref. [28] using perturbation theory, showing that the
magnitude of this effect is roughly at the few percent level
in the weakly nonlinear regime. In this paper, adopting the
two representative models of primordial non-Gaussianity
described in Sec. II, we quantitatively estimate the non-
Gaussian effects on the power spectrum and elucidate their
shape dependence (Sec. III). In particular, we carefully
examine the influence of primordial non-Gaussianity on
cosmological parameter estimation, paying particular at-
tention to the primordial spectral indices and the character-
istic scale of the baryon acoustic oscillations as a cosmic
standard ruler (Sec. IV). Also, we discuss the non-Gaussian
effect on the galaxy biasing (Sec. V). This issue has been
recently studied by several authors in the context of the
halo biasing prescription [30–34], and local biasing pre-
scription [33]. Here, we adopt the local biasing scheme and
consider the scale-dependent galaxy biasing arising from
the primordial non-Gaussianity.

Throughout the paper, we assume a flat Lambda cold
dark matter (CDM) model and the fiducial model parame-
ters are chosen based on the five-year WMAP results
(WMAPþ BAOþ SN ML; see Ref. [1]): �bh

2 ¼
0:02263, �ch

2 ¼ 0:1136, �K ¼ 0 (�� ¼ 0:724), ns ¼
0:961, � ¼ 0:080, �Rðk ¼ 0:002 Mpc�1Þ ¼ 2:42�
10�9, h ¼ 0:703.

II. PRIMORDIAL NON-GAUSSIANITY

According to the commonly accepted mechanisms to
generate the primordial fluctuations, non-Gaussianity
would be imprinted on the primordial curvature perturba-
tion produced during inflation. The curvature perturbation
can also be generated after inflation by a late-time decay of
light fields, and this would produce a large non-
Gaussianity in the curvature perturbation. Further, as alter-
native scenarios to inflation such as ekpyrotic models,
nearly scale-invariant curvature perturbation with large
non-Gaussianity could be generated during the collapsing
phase of the Universe.

Let us denote the primordial curvature perturbation on
the uniform density hypersurface and the Bardeen’s curva-
ture potential at superhorizon scales by �p and �H;p,

respectively. The primordial density perturbation defined
at an early time of the matter dominated epoch, �0, is
related to these variables through (e.g., [28,29,35,36])

�0ðkÞ ¼ M� ðkÞ�pðkÞ ¼ 5

3
M� ðkÞ�H;pðkÞ; (2.1)

with the function M� being

M� ðkÞ ¼ 2

5

k2TðkÞ
�m;0H

2
0

; (2.2)

where the function TðkÞ is the transfer function of matter
fluctuations normalized to unity at k ! 0. Note that the
curvature potential given in the matter dominated epoch,

�H;p, is related to the curvature perturbation �ðkÞ ¼
ð5=3Þ�H;pðkÞ.
Using the relation (2.1), n-point statistics of the primor-

dial density field are all expressed in terms of respective
correlator of the curvature potential or the curvature per-
turbation. For the power spectra, we have

P0ðkÞ ¼ M2
� ðkÞP� ðkÞ; (2.3)

with quantities P0 and P� defined by

h�0ðkÞ�0ðk0Þi ¼ ð2�Þ3�Dðkþ k0ÞP0ðkÞ;
h�pðkÞ�pðk0Þi ¼ ð2�Þ3�Dðkþ k0ÞP� ðkÞ:

(2.4)

The bispectrum as the first nontrivial quantity arising from
the non-Gaussianity becomes

B0ðk1;k2;k3Þ ¼ M� ðk1ÞM� ðk2ÞM� ðk3ÞB� ðk1; k2; k3Þ;
(2.5)

where we define

h�0ðk1Þ�0ðk2Þ�0ðk3Þi ¼ ð2�Þ3�Dðk1 þ k2 þ k3Þ
� B0ðk1; k2; k3Þ;

h�pðk1Þ�pðk2Þ�pðk3Þi ¼ ð2�Þ3�Dðk1 þ k2 þ k3Þ
� B� ðk1; k2;k3Þ:

(2.6)

Details of the functional form of B� depend on the genera-

tion mechanism of primordial non-Gaussianity. In the fol-
lowing, we will consider two representative models of non-
Gaussianity and give the explicit expressions for the pri-
mordial bispectrum B� .

A. Local model

In the local model of primordial non-Gaussianity, the
primordial fluctuation �H;p is characterized by the Taylor

expansion of the Gaussian field. Denoting the Gaussian
field by ’, it is conventionally characterized as

�H;pðxÞ ¼ ’ðxÞ þ fNLf’2ðxÞ � h’2ig þ � � � : (2.7)

The Fourier counterpart of the above equation is given by

�H;pðkÞ ¼ ’ðkÞ þ fNL
Z d3q

ð2�Þ3 f’ðqÞ’ðk� qÞ

� h’ðqÞ’ðk� qÞig þ � � � : (2.8)

Alternatively, we can expand �p as

�pðkÞ ¼ �GðkÞ þ 3

5
fNL

Z d3q

ð2�Þ3 f�GðqÞ�Gðk� qÞ

� h�GðqÞ�Gðk� qÞig þ � � � ; (2.9)

where �G is Gaussian field and we have the relation �G ¼
ð5=3Þ’. For the cases of interest here, deviation from
Gaussianity is generally small and perturbative evaluation
of the primordial bispectrum is valid. The leading-order
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result becomes

B� ðk1; k2; k3Þ ’ 6

5
fNL½P� ðk1ÞP� ðk2Þ þ P� ðk2ÞP� ðk3Þ
þ P� ðk3ÞP� ðk1Þ�: (2.10)

In the slow-roll inflation models, fNL is suppressed by the
slow-roll parameters and thus it is expected to be very
small. However, in curvaton models or ekpyrotic models,
it is possible to generate a large non-Gaussianity of the
local model with fNL �Oð102Þ.

B. Equilateral model

As another type of bispectrum configuration, we con-
sider an equilateral model. The DBI inflation is a typical
example where the bispectrum has a maximum amplitude
for equilateral configurations. This is in contrast with the
local model where the bispectrum has the largest amplitude
for squeezed configurations [37]. The bispectrum in the
equilateral model is approximated by [38]1

B� ðk1; k2; k3Þ ¼ 18

5
f
eq
NL

� �k

kCMB

��2�½�P� ðk1ÞP� ðk2Þ
� P� ðk2ÞP� ðk3Þ � P� ðk3ÞP� ðk1Þ
� 2fP� ðk1ÞP� ðk2ÞP� ðk3Þg2=3
þ fðP� ðk1ÞfP� ðk2Þg2fP� ðk3Þg3Þ1=3
þ ð5 permÞg�; (2.11)

with �k ¼ ðk1 þ k2 þ k3Þ=3. Here, we introduce the slope
index � in order to characterize the scale-dependence of
the non-Gaussianity, which generically appears in the DBI-
type inflation models. We set the characteristic scale
to kCMB ¼ 0:04 Mpc�1. Note that the bispectrum in
Eq. (2.11) is normalized in such a way that, for equilateral
configurations (k1 ¼ k2 ¼ k3 ¼ k), it coincides with the
local form given in Eq. (2.10).

III. NON-LINEAR EVOLUTION OF MATTER
POWER SPECTRUM FROM PERTURBATION

THEORY

A. Perturbation Theory

Even if the primordial fluctuations are well described by
linear theory, the nonlinearity of the gravitational dynam-
ics eventually dominates and we must correctly take into
account the nonlinear growth of matter fluctuations, which
significantly modifies the matter power spectrum. For the
scales of interest here, especially the accessible scales of
future galaxy redshift surveys, the nonlinear evolution is
rather moderate and perturbative treatment is valid. The
mass density field is described by

�ðk; zÞ ¼ �ð1Þðk; zÞ þ �ð2Þðk; zÞ þ �ð3Þðk; zÞ þ � � � : (3.1)

In the above, the function �ð1Þðk; zÞ represents the linear

fluctuation and it is given by �ð1Þðk; zÞ ¼ DðzÞ�0ðkÞ, where
DðzÞ is the linear growth rate. Neglecting the decaying
mode of linear perturbation, the solutions for higher-order
quantities are formally expressed as [39]

�ðnÞðk; zÞ ¼ ½DðzÞ�n
Z d3k1 � � � d3kn

ð2�Þ3ðn�1Þ

� �Dðk� k1 � � � � � knÞ
� FðnÞ

symðk1; � � � ;knÞ�0ðk1Þ � � ��0ðknÞ; (3.2)

with FðnÞ
sym being the symmetrized kernel for the n-th order

solution. Then, the power spectrum of the density field,
defined as

h�ðk; zÞ�ðk0; zÞi ¼ ð2�Þ3�Dðkþ k0ÞPðk; zÞ; (3.3)

can be calculated by substituting Eq. (3.2) into the above
expression. The resultant expression is summarized as

Pðk; zÞ ¼ D2ðzÞP0ðkÞ þ Pð12Þðk; zÞ
þ ½Pð22Þðk; zÞ þ Pð13Þðk; zÞ� þ � � � ; (3.4)

where the terms Pð12Þ, Pð22Þ, and Pð13Þ are the so-called one-
loop power spectra given by

Pð12Þðk; zÞ ¼ 2D3ðzÞ
Z d3q

ð2�Þ3 F
ð2Þ
symðq; k� qÞ

� B0ð�k; q; k� qÞ; (3.5)

Pð22Þðk; zÞ ¼ 2D4ðzÞ
Z d3q

ð2�Þ3 fF
ð2Þ
symðq; k� qÞg2P0ðqÞ

� P0ðjk� qjÞ þD4ðzÞ
Z d3pd3q

ð2�Þ6
� Fð2Þ

symðp; k� pÞFð2Þ
symðq;�k� qÞ

� T0ðp; k� p; q;�k� qÞ; (3.6)

Pð13Þðk; zÞ ¼ 6D4ðzÞ
Z d3q

ð2�Þ3 F
ð3Þ
symðk; q;�qÞP0ðkÞP0ðqÞ

þ 2D4ðzÞ
Z d3pd3q

ð2�Þ6
� Fð3Þ

symðp; q; k� p� qÞ
� T0ð�k;p; q; k� p� qÞ: (3.7)

These are the most general expressions for the one-loop
power spectra in the presence of primordial non-

Gaussianity. The quantity Pð12Þ is the first nontrivial cor-
rection associated with the primordial density bispectrum

B0ðk1; k2; k3Þ. While the quantities Pð22Þ and Pð13Þ repre-
sent the first leading-order corrections in the case of
Gaussian initial conditions, additional contributions origi-

1The expression given here is slightly generalized in the sense
that we do not necessarily assume a power-law form of the
power spectrum, P� ðkÞ.
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nating from the primordial density trispectrum,
T0ðk1; k3;k3;k4Þ, also arise. Thus, in general, we need
the explicit functional form of the primordial trispectrum
as well as primordial bispectrum in order to compute the
one-loop power spectra. However, in most general cases,
the primordial trispectrum is of the order ofM4

�P
3
0, which is

negligibly smaller than the bispectrum, B0 �M3
�P

2
0. Since

the terms including P3
0 may be regarded as the two-loop

order, we can safely neglect the trispectrum contribution.

With this treatment, the terms Pð22Þ and Pð13Þ reduce to
nothing but the standard one-loop spectra, and they are
explicitly given by (e.g., [40–43])

Pð22Þðk; zÞ ¼ D4ðzÞ k3

ð2�Þ2
Z 1

0
dxx2P0ðkxÞ

�
Z þ1

�1
d�P0ðk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2�x

q
Þ 1
2

�
�
3xþ 7�� 10�2x

7xð1þ x2 � 2�xÞ
�
2
; (3.8)

Pð13Þðk; zÞ ¼ D4ðzÞ k3

ð2�Þ2 P0ðkÞ
Z 1

0
dxx2P0ðkxÞ 1

252x2

�
�
12

x2
� 158þ 100x2 � 42x4

þ 3

x3
ðx2 � 1Þ3ð7x2 þ 2Þ ln

��������
xþ 1

x� 1

��������
�
: (3.9)

Also, the nontrivial contribution from the primordial bis-
pectrum is expressed in terms of the bispectrum of the
curvature perturbation as

Pð12Þðk; zÞ ¼ D3ðzÞ k3

ð2�Þ2
Z 1

0
dxx2

Z þ1

�1
d�

3xþ 7�� 10�2x

7xð1þ x2 � 2�xÞM� ðkÞM� ðkxÞM� ðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2�x

q
Þ

� B� ðk; kx; k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2 � 2�x

q
Þ: (3.10)

B. Results

Based on the expressions given above, we now calculate
the matter power spectrum, focusing on the scales
relevant for future galaxy surveys. Figure 1 plots the ratios
of power spectra to the smooth reference spectrum,

PðkÞ=Pno-wiggleðkÞ, given at z ¼ 1. The reference spectrum

Pno-wiggleðkÞ is the linear power spectra computed from the

no-wiggle approximation of the transfer function given by
Ref. [44]. The left panel shows the results for the local
model, and the right panel plots the results for the equi-

FIG. 1 (color online). Ratio of the power spectrum to the smoothed reference spectrum for the local model (left panel) and the
equilateral model with � ¼ 0 (right panel), for z ¼ 1. The smooth spectra are obtained from the no-wiggle approximation of the linear
transfer function according to Ref. [44]. The lines from top to bottom, respectively, indicate fNL ¼ 300 (solid line), fNL ¼ 100 (long-
dashed line), fNL ¼ 0 (dotted line), fNL ¼ �100 (short-dashed line), and fNL ¼ �300 (dot-dashed line).
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FIG. 2 (color online). Ratios of power spectrum, Pðk; fNL � 0Þ=Pðk; fNL ¼ 0Þ, for z ¼ 3 (left panel), 2 (middle panel), and 1 (right
panel). From top to bottom panels, the results for the local, equilateral with � ¼ 0, 0.3, and �0:3 are shown, respectively. In each
panel, we plot the cases with non-Gaussian parameter fNL ¼ þ300 (solid line), þ100 (long-dashed line), �100 (short-dashed line),
and �300 (dot-dashed line). The vertical arrows labeled by k1% and k3% indicate the maximum wave number below which the
perturbation theory predictions are reliable with a precision of 1% and 3% level, respectively, according to the criteria (3.11) [45]. As
references, the error bars limited by the cosmic variance are plotted in the right panel, assuming the survey volume of Vs ¼
4ðh�1 GpcÞ3 (thin solid line) and Vs ¼ 102ðh�1 GpcÞ3 (thick solid line).
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lateral model with index � ¼ 0. The overall behavior at
higher k is basically dominated by the corrections coming

from the standard one-loop power spectra, Pð22Þ and Pð13Þ,
but small variation of the power spectrum amplitudes
manifests at higher k. This is the contribution of primordial

non-Gaussianity, Pð12Þ, originating from the primordial
bispectrum. Depending on the sign of fNL, the primordial
non-Gaussianity enhances or suppresses the nonlinear
growth of the power spectrum and the deviation from the
Gaussian result (fNL ¼ 0) becomes more significant as
jfNLj increases. Although the effect of primordial non-
Gaussianity seems rather mild within the current con-
strained values of �9 & flocalNL & 111 and �151 & feqNL &
253 (95% C.L.) [1], we do not immediately exclude the
possibility of significant impact on the cosmological pa-
rameter estimation. We will discuss this issue in the next
section.

Next we will focus on the shape of the power spectrum.
In Fig. 2, the ratios of the power spectra to those in the
Gaussian case (fNL ¼ 0), i.e., Pðk; fNL � 0Þ=Pðk; fNL ¼
0Þ, are plotted for various redshifts and values of fNL. Note
that in computing the ratio, both the numerator and de-
nominator are calculated from perturbation theory. In
Figs. 1 and 2, the vertical arrows labeled by k1% and k3%
indicate the maximum wave number below which the
precision level of perturbation theory prediction is ex-
pected to be better than 1% and 3%, respectively.
According to recent numerical experiments, the maximum
wave number is empirically determined through [45]

k2
Z k

0

dq

6�2
D2ðzÞP0ðqÞ ¼ C; (3.11)

where C ¼ 0:18 (0.3) for k1% (k3%). Solving the above
equation with respect to k, we obtain k1% and k3% as
functions of redshift. Note that the maximum wave num-
bers given above have been derived by comparison be-
tween N-body simulations and theoretical predictions,
and the resultant convergence range is narrower than those
previously proposed (e.g., [29,46]). In this sense, Eq. (3.11)
may be regarded as a conservative criterion.

Bearing the limitation of perturbation theory in mind, we
see that the deviation of the power spectrum from the
Gaussian case also depends on the redshift and scales as
well as the model of primordial non-Gaussianity.
Monotonic change of the power spectrum amplitude is
broadly consistent with recent N-body simulations in the
case of the local model [47], although the fractional change
is typically & 2–3%, as expected from Fig. 1. Note, how-
ever, that the level of this changes roughly corresponds to
the sensitivity achievable with future redshift surveys. As
references, we plot the error bars in each right panel, which
represent the expected 1-� errors, �PðkÞ, limited by the

cosmic-variance, i.e., �PðkÞ=PðkÞ ¼ ð2=NkÞ1=2 with Nk

being the number of Fourier modes within a given bin at
k. Here, we specifically consider the two representative

cases of Vs ¼ 4ðh�1 GpcÞ3 (thin) and Vs ¼ 102ðh�1 GpcÞ3
(thick), corresponding to the future surveys dedicated for
the measurement of baryon acoustic oscillations (BAOs)
from the ground and space, respectively. Naively compar-
ing the error bars to the amplitudes of the non-Gaussian
effects, ground-based BAO surveys with a typical volume
of V � fewh�3 Gpc3 will find it difficult to detect the
signature of primordial non-Gaussianity only from the
power spectrum. However, idealistic surveys with huge
volumes seem to show the potential for a definite detection
of non-Gaussian effects even with the currently con-
strained values of fNL.

IV. IMPACT ON COSMOLOGICAL PARAMETER
ESTIMATION

A. Fisher-matrix analysis

Apart from primordial non-Gaussianity, there are several
parameters that affect the shape of the power spectrum.
Among these, the primordial spectral index ns and running
index � � dns=d lnk monotonically change the power
spectrum, which resembles the effect of primordial non-
Gaussianity at some wave numbers. A natural question
arises whether the primordial non-Gaussianity is indeed
detectable or not considering the degeneracies and how the
non-negligible effect of non-Gaussianity adversely affects
the estimations of primordial spectral index and the run-
ning of the index. On the other hand, for the scales acces-
sible to the future surveys, a measurement of the
characteristic scale of BAOs is an important clue to probe
the late-time acceleration of the Universe (e.g., [48–50]),
and a percent-level determination of the acoustic scale is
required for the determination of the dark energy equation
of state [51,52]. In this respect, even the small effect of
primordial non-Gaussianity may affect the determination
of the BAO scale.
Here, we apply the Fisher-matrix method to address

these issues and explore the potential impact on cosmo-
logical parameter estimation as well as the determination
of the BAO scale. For this purpose, we consider a rather
simplified setup, namely, that our observable is the real-
space power spectrum free from the redshift-space distor-
tion. Under the assumption of linear galaxy biasing, the
observed power spectrum may be written as (e.g., [46])

Pobsðk; zÞ ¼
�

DVðzÞ
DV;trueðzÞ

�
3
b21Pmass

�
DV;trueðzÞ
DVðzÞ k; z

�
; (4.1)

where the power spectrum Pmass is computed from pertur-
bation theory. Here, b1 is the linear biasing parameter, and
DVðzÞ represents the cosmological distance averaged over

three-dimensional space, DVðzÞ � ½D2
AðzÞ=HðzÞ�1=3. The

subscript ‘‘true’’ denotes the quantities estimated from
the true cosmological model.
Following Refs. [53,54], the Fisher matrix for the galaxy

power spectrum is given by
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Fij ¼ Vs

ð2�Þ2
Z kmax

kmin

dkk2
@ lnPðk; zÞ

@	i

@ lnPðk; zÞ
@	j

�
�

ngalPðk; zÞ
ngalPðk; zÞ þ 1

�
2
; (4.2)

where 	i represents one from a set of parameters. The
quantity Vs is the survey volume and ngal is the number

density of galaxies. The range of integration ½kmin; kmax�
should be determined through the survey properties, and, in
particular, the minimum wave number is limited to

2�=V1=3
s . Note that the choice of kmin may be crucial for

the power spectrum measurement on large scales k &
0:01h Mpc�1, where the scale-dependent effect of galaxy
biasing becomes prominent through the nontrivial mode
coupling from primordial non-Gaussianity [30–34]. Here,
we fix kmin ¼ 0:01h Mpc�1 and allow kmax to vary. The
effect of scale-dependent biasing will be discussed in next
section.

In the Fisher-matrix analysis presented below, we in-
clude the five parameters given by 	i ¼ fns; �;DV=DV;true;

fNL; b1g. The fiducial values of these parameters are set to
ns ¼ 0:961, � ¼ 0, DV=DV;true ¼ 1, and fNL ¼ 0. We

then consider a space-based BAO survey as an idealisti-
cally gigantic galaxy survey along the lines of SPACE and
ADEPT ([55–57]; see also Ref. [29]). We adopt the survey
parameters of a space-based BAO experiment as follows:
z ¼ 1:5, Vs ¼ 100 ðh�1Gpc3Þ, b1 ¼ 3:25, and ngal ¼
3:25� 10�4ðh�1 Mpc�3Þ (e.g., [29]). Below, we mainly
focus on the local model of primordial non-Gaussianity.
The results for the equilateral model are qualitatively the
same as in the local model and are briefly summarized in
Table I.

B. Results

Figure 3 shows the marginalized 1-� (68% C.L.) errors
on the spectral index ns (left panel), the running of the
index � (middle panel), and the distance scale DV=DV;true

(right panel) as function of cutoff scale, kmax. Here, the
solid lines represent the results assuming no prior infor-
mation to these parameters (prior 1, solid line). The short-
and long-dashed lines correspond to the results taking

FIG. 3 (color online). Predicted 1-� (68% C.L.) errors on the spectral index ns (left panel), running of the index � (middle panel),
and distance scale DV=DV;true (right panel) as function of maximum wave number kmax, assuming the survey parameters of z ¼ 1:5,
Vs ¼ 100h�3 Gpc3, b1 ¼ 3:25, and ngal ¼ 10�4h3 Gpc�3, as an illustrative example of space-based BAO missions. Here, we

specifically treat the local model of primordial non-Gaussianity. The solid (prior 1), short-dashed (prior 2), and long-dashed (prior
3) lines represent the results under the different priors (see text for details). Thick lines show the one-dimensional errors marginalized
over the four parameters (i.e., ns, �, DV=DV;true, fNL), and thin lines represents the error excluding the non-Gaussian parameter fNL.

TABLE I. Marginalized one-dimensional errors (68% C.L.) on ns, �, DV=DV;true, and non-Gaussian parameters fNL and � from the
Fisher-matrix analysis adopting the survey parameters of a space-based BAO experiment.

Fiducial model �ns �� �ðDV=DV;trueÞ �fNL ��a

Local (fNL ¼ 0) 0.0075 0.0019 0.0026 335 —

Local (fNL ¼ þ100) 0.0075 0.0019 0.0026 338 —

Equilateral (fNL ¼ þ250, � ¼ �0:3) 0.0072 0.0019 0.0025 596 0.48 (0.37)

Equilateral (fNL ¼ þ250, � ¼ 0) 0.0086 0.0020 0.0025 1306 0.48 (0.45)

Equilateral (fNL ¼ þ250, � ¼ þ0:3) 0.0082 0.0018 0.0025 2774 0.49 (0.49)

Equilateral (fNL ¼ �150, � ¼ �0:3) 0.0071 0.0019 0.0025 498 0.49 (0.43)

Equilateral (fNL ¼ �150, � ¼ 0) 0.0085 0.0020 0.0025 1230 0.49 (0.48)

Equilateral (fNL ¼ �150, � ¼ þ0:3) 0.0082 0.0018 0.0025 2753 0.50 (0.50)

aParentheses represent the marginalized 1-� error when further adopting the Gaussian prior of �fNL ¼ 75.
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account of the priors on ns and �, which are expected to
come from the upcoming Planck CMB experiment :�ns ¼
0:01 (prior 2, short-dashed line); �ns ¼ 0:01 and �� ¼
0:002 (prior 3, long-dashed line). We assume Gaussian
priors for these cases.

Figure 3 indicates that the CMB priors play an important
role for the determination of the primordial indices and
distance scales. This has been repeatedly pointed out in the
literature, but we emphasize that it is indeed crucial when
we include the non-Gaussian parameter fNL in the analysis
of cosmological parameter estimation. To clarify the influ-
ences, we exclude fNL from the Fisher-matrix analysis and
evaluate the marginalized errors again. The results are
plotted in thin lines. Comparing thick with thin lines, we
see that the inclusion of the extra parameter fNL signifi-
cantly worsen the constraints on the primordial index and
its running. With strong priors on ns and� (prior 3), tighter
constraints comparable to those ignoring primordial non-
Gaussianity would be obtained. By contrast, the determi-
nation of distance scale DV=DV;true is insensitive to pri-

mordial non-Gaussianity if we choose the cutoff wave
number kmax around k1%, labeled by the vertical arrows.
This is partly because the distance scale is mainly deter-
mined through the BAOs at linear scales, where the effect
of primordial non-Gaussianity becomes negligible at z ’
1:5. It is interesting to note that all the curves depicted
in Fig. 3 become almost constant at k * k1% ’
0:155h Mpc�1. Since this scale is slightly larger than the

one inferred from the mean separation of galaxies (n1=3gal ’
0:07h Mpc�1), the constancy of the predicted errors im-
plies that the shot-noise contribution becomes significant at
k * k1%.

In Fig. 4, we next plot the two-dimensional constraints
on the non-Gaussian parameter fNL and one of the free
parameters ns, �, and DV=DV;true, marginalizing over the

other remaining parameters. In this plot, the cutoff scale is

fixed to kmax ¼ k1%, and the 1-� (68% C.L.) contours are
shown for the three different priors. As expected from
Fig. 3, the primordial index ns and its running � without
CMB priors (prior 1) exhibit a strong degeneracy with the
fNL parameter, while the degeneracy between fNL and
distance scale is very weak. The uncertainty in the fNL
parameter is therefore very large in this case. The errors
can be reduced significantly when the strong constraints on
ns and � are obtained (prior 3). However, the uncertainty
in fNL is still �fNL � 500, which is quite a bit larger than
other observational techniques using the bispectrum or
cluster abundance [28,29,36]. The uncertainty may be
reduced if we increase the cutoff scale kmax, although it
is generally difficult to accurately predict the power spec-
trum at these scales, including the higher-order corrections.
Hence, it is difficult to detect the non-Gaussian signals
even from an idealistic large-volume survey.
Table I summarizes the results of the one-dimensional

marginalized errors for various cases with different fiducial
values, including the case of the equilateral model. Here, in
addition to the priors on ns and� (prior 3), we further put a
Gaussian prior on � with �� ¼ 0:5, the reason for which
comes from the fact that � is the slow-roll parameter and
should be restricted to � � 1. Because of the additional
parameter, the resultant errors on fNL significantly increase
for the equilateral model, especially with � > 0. By con-
trast, the errors on ns, � and distance scale are hardly
affected.
Finally, as a representative example for a more near-term

project, we consider the case of a ground-based BAO
survey. The survey parameters we adopt are z ¼ 1, Vs ¼
4ðh�1 Gpc3Þ, b1 ¼ 2, and ngal ¼ 10�3ðh�1 Mpc�3Þ
([55,58]; see also [29]). Figure 5 shows the expected one-
dimensional error on DV=DV;true (left panel) and the two-

dimensional errors on fNL and DV=DV;true (right panel).

Compared to the large volume of a space-based BAO

FIG. 4 (color online). Two-dimensional joint 68% C.L. constraints on fNL and ns (left panel), � (middle panel), and DV=DV;true

(right panel), assuming the local model of primordial non-Gaussianity. In deriving the constraints, we fix the maximum wave number
to kmax ¼ k1% ’ 0:155h Mpc�1 and adopt the survey parameters of a space-based BAO mission. The different lines indicate the results
from imposing different prior information on ns and �: no priors (solid line); �ns ¼ 0:01 (short-dashed line); �ns ¼ 0:01, �� ¼
0:002 (long-dashed line).
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experiment, the statistical errors of the measurement of the
power spectrum are somewhat larger and thereby the pre-
cision of the distance-scale estimation is rather degraded.
Nevertheless, the results are hardly affected by the primor-
dial non-Gaussianity.

In conclusion, the presence of primordial non-
Gaussianity potentially affects the estimation of the pri-
mordial index and the running, and the CMB-based priors
on these parameters would be crucial, but the distance-
scale measurement is relatively insensitive to it for the
appropriate choice of kmax. In the end, the primordial
non-Gaussianity is hardly detectable from galaxy redshift
surveys even with idealistically large survey volume.

V. ON THE LOCAL BIASING PRESCRIPTION FOR
THE GALAXY POWER SPECTRUM

So far, we have mainly dealt with the matter power
spectrum and the galaxy power spectrum has been only
considered under the simplified assumption of linear gal-
axy biasing. In reality, the statistical relation between
galaxy and mass is generally complicated due to the non-
linear nature of galaxy formation processes, and the linear
biasing prescription would not hold even at large scales
accessible to the future galaxy surveys.

Although the extension of the linear biasing prescription
to include nonlinear effects is rather nontrivial, a straight-
forward and frequently used prescription for galaxy bias-
ing, coupled to perturbation theory, is the local biasing
[59], in which the galaxy density field �gal at a given

position x is described as the local function of mass density
field at the same position, i.e., �galðxÞ ¼ f½�ðxÞ�. On large

scales of our interest, this can be expressed as the Taylor
series expansion:

�galðxjRÞ ¼ f½�ðxjRÞ�

¼ b1�ðxjRÞ þ b2
2
f½�ðxjRÞ�2 � h½�ðxjRÞ�2ig

þ b3
3!

f½�ðxjRÞ�3 � h½�ðxjRÞ�3ig þ � � � ;
(5.1)

where the quantities �galðxjRÞ and �ðxjRÞ are the galaxy

and mass density fields smoothed over the radius R cen-
tered at the position x. In the above expression, the coef-
ficients b2 and b3 describe the nonlinearity of galaxy
biasing, which are incorporated into the galaxy power
spectrum PgalðkÞ, through the perturbative calculation of

the matter power spectrum ([60–62]; see also [63,64] for
different parametrization schemes). Although the relation
(5.1) is just a phenomenological prescription, it has been
recently applied to the characterization of the BAOs, and
the model of galaxy power spectra has been tested against
numerical simulations of halo/galaxy clustering in the case
of Gaussian initial condition [62,65].
When we consider primordial non-Gaussianity, several

nontrivial corrections to the galaxy power spectrum PgalðkÞ
appears, which can further alter the shape of the power
spectrum on large scales. This has been first pointed out by
McDonald [33]. Here, we rephrase his finding and advo-
cate its observational importance, together with potential
problems.
Let us focus on the scales larger than the characteristic

scale of BAOs, above which the higher-order perturbations

FIG. 5 (color online). Expected 1-� (68% C.L.) error on the distance scale as a function of maximum wave number (left panel) and
two-dimensional joint 68% C.L. constraints on fNL of the local model and DV=DV;true fixing the maximum wave number to kmax ¼
k1% ’ 0:131h Mpc�1 (right panel). Here, we specifically adopt the survey parameters of z ¼ 1, Vs ¼ 4h�3 Gpc3, b1 ¼ 2:0, and ngal ¼
10�3h3 Mpc�3, as a representative example of ground-based BAO surveys. The meaning of the lines are the same as in Figs. 3 and 4.
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can be safely neglected. Collecting the relevant terms in the
expansion (5.1), the power spectrum of the galaxy density
fields smoothed over the radius R may be expressed as

Pgalðk; zjRÞ ¼ b21fD2ðzÞP0ðkÞ þ Pð12Þðk; zÞgW2ðkRÞ
þ b1b2Fðk; z; fNLjRÞ þ � � � ; (5.2)

up to the third-order in mass density field, i.e.,Oð�3
0Þ. Here,

WðxÞ is the filter function defined in Fourier space. In
Eq. (5.2), there are two types of non-Gaussian contribu-

tions. One is the term Pð12Þðk; zÞ coming from the matter
power spectrum, and the other is the function Fðk; z; fNLÞ
arising from the nonlinear mapping of the galaxy biasing.
The explicit expression of the function F is

Fðk; z; fNLjRÞ ¼ D3ðzÞ
Z d3q

ð2�Þ3 M� ðkÞM� ðqÞM� ðjk� qjÞ
�WðkRÞWðqRÞWðjk� qjRÞ
� B� ð�k; q; k� qÞ: (5.3)

The functional form of F is clearly different from the
perturbative corrections of the matter power spectrum,

Pð12Þ [Eq. (3.5) or (3.8)]. Hence, the presence of this term
potentially leads to the scale-dependent galaxy biasing,
relative to the matter power spectrum.

Before continuing, we note that the quantity Pgalðk; zjRÞ
manifestly depends on the smoothing radius R. In the usual
sense, Pgalðk; zjRÞ would not be directly related to the

power spectrum derived from the unfiltered observations.
It has been put forward in Ref. [62] that the unfiltered
galaxy power spectrum Pgalðk; zÞ can be recovered through
the simple operation:

Pgalðk; zÞ ¼
Pgalðk; zjRÞ
W2ðkRÞ : (5.4)

While the above definition still includes the smoothing
radius, we regard Eq. (5.4) as a direct observable and
evaluate it with the appropriate smoothing radius to see
what happens. Below, we will separately treat the galaxy
power spectra for the local and equilateral models of
primordial non-Gaussianity.

A. Local model

Figure 6 plots the ratio of the biasing factor,
bðk; zÞ=bGðk; zÞ, plotted against the wave number, in the
case of local model. Here, the biasing factor bðk; zÞ is
defined by

bðk; zÞ �
�
Pgalðk; zÞ
Pmassðk; zÞ

�
1=2

: (5.5)

The function bGðk; zÞ is similarly defined as above, but
with fNL ¼ 0. For illustrative purposes, we specifically set
the biasing coefficients to b1 ¼ 2 and b2 ¼ 0:5, and the
results for z ¼ 1 are shown for different values of the non-

Gaussian parameter fNL. Three different panels show the
dependence of the smoothing radius, adopting Gaussian
smoothing, WðxÞ ¼ expð�x2=2Þ, with radii R ¼
1h�1 Mpc (left panel), 5h�1 Mpc (middle panel), and
10h�1 Mpc (right panel).
Clearly, the ratios of the biasing factor exhibit a strong

scale dependence, especially at k & 0:01h Mpc�1. Note
that the function F logarithmically diverges unless we
introduce a large smoothing radius R. Accordingly, the
strength of the scale dependence sensitively depends on
R as well as fNL. The origin of this scale dependence can
be deduced from a simple manipulation as follows.
Substituting the bispectrum of the local model (2.10) into
the expression (5.2), we take the limit k ! 0. The correc-

tion Pð12ÞðkÞ becomes negligibly small, and the term in-
cluding the function F is the only dominant contribution to
the galaxy power spectrum. We have

Fðk; z; fNLjRÞ ’ 12

5
fNLD

3ðzÞP0ðkÞWðkRÞ�2ðRÞ
M� ðkÞ ;

�2ðRÞ ¼
Z d3q

ð2�Þ3 W
2ðqRÞP0ðqÞ; (5.6)

where we used the fact that the function M� ðkÞ defined in

Eq. (2.2) asymptotically behaves like M� / k2ðk0Þ in the

limit of k ! 0 (k ! 1). Here, the quantity�ðRÞ represents
the rms amplitude of the linear density fluctuation �0.
Then, from (5.4) and (5.5), we obtain

bðk; zÞ ’ b1

�
1þ 12

5
fNL

b2
b1

DðzÞ �2ðRÞ
M� ðkÞWðkRÞ

�
1=2

: (5.7)

The expression (5.7) contains a term inversely proportional
to M� ðkÞ, which leads to the strong scale dependence at

k ! 0. Now, we recognize the fact that the scale depen-
dence of the biasing factor depends not only on R and fNL,

FIG. 6 (color online). Ratio of biasing factor, bðk; zÞ=bGðk; zÞ
given at z ¼ 1, in the case of the local model. Gaussian smooth-
ing is adopted in order to compute the biased power spectra. R ¼
1h�1 Mpc (left panel); R ¼ 5h�1Mpc (middle panel); R ¼
10h�1 Mpc (right panel).
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but also on the ratio of biasing coefficients, b2=b1, and
redshift z.

It is interesting to note that similar kinds of behavior can
be found in the halo biasing prescription [30–32,34]. While
the halo biasing describes the clustering properties of
virialized objects based on the Press-Schechter theory,
the origin of the scale dependence is qualitatively the
same as that of the local biasing mentioned above. In this
sense, the scale-dependent biasing may be a unique char-
acter of the local model of primordial non-Gaussianity and
it would be an important observable of the large-scale
structure.

Note, however, that the scale-dependent biasing factor in
the local biasing seems problematic because of the loga-
rithmic divergence at R ! 0, which originates from the
rms amplitude �ðRÞ in the case of a CDM power spectrum.
Further, the biasing factor bðk; zÞ can be ill defined for the
negative fNL or b2 and it eventually becomes complex at
k ! 0. McDonald [33] proposed a renormalization treat-
ment to remove these difficulties by adding a nonlocal
counterterm to the relation (5.1). Although the addition
of a counterterm might be a possible solution, uniqueness
of this treatment seems unclear, and thus the physical
reason for the nonlocal counterterm is unclear. In fact, as
shown in next subsection, the scale dependence of the
biasing factor turns out to be model dependent, and the
logarithmic divergence disappears when we consider the
equilateral model of primordial non-Gaussianity.

B. Equilateral model

In Fig. 7, we plot the ratio of the biasing factor,
bðk; zÞ=bGðk; zÞ, in the equilateral model. Here, instead of
showing the dependence of the smoothing radius, we ne-
glect the effect of smoothing (i.e., R ! 0) and just examine
the effect of scale-dependent non-Gaussianity by changing
� to 0 (left panel), �0:3 (middle panel), and 0.3 (right
panel).

In marked contrast to the local model, it turns out that
the biasing factors bðk; zÞ in the equilateral model are
almost constant on large scales, and the linear deterministic
biasing, PgalðkÞ ¼ b21PmassðkÞ, is an excellent approxima-

tion to the galaxy power spectrum on large scales. These
features are irrespective of the values of �, and can be
deduced from the asymptotic behavior of the function F. In
the k ! 0 limit, we have

Fðk; z; fNLjR ¼ 0Þ ’ 18

5
fNLD

3ðzÞM� ðkÞ
Z d3q

ð2�Þ3

�
�
2q=3

kCMB

��2�fM� ðqÞg2

� ½2fP� ðkÞP5
� ðqÞg1=3 � fP� ðqÞg2�:

(5.8)

Recalling the power-law nature of the primordial spectrum
P� ðqÞ / qns�4, the integral in the above equation con-

verges if ns � 1 and j�j & 0:3. As a result, the function
F scales as Fðk; z; fNLjR ¼ 0Þ / M� ðkÞ / k2 and the non-

Gaussian contribution becomes negligibly smaller than the
linear biasing term, b21Pmassðk; zÞ.
Therefore, as long as the equilateral model of primordial

non-Gaussianity is concerned, it is hard to constrain fNL
through the scale-dependent biasing factor. Although this
conclusion comes from the assumption of the local biasing
prescription, this would generally hold for other biasing
schemes, including the halo biasing prescription. On the
other hand, a big difference in the scale-dependent biasing
factor between the local and equilateral models implies
that the galaxy biasing is very sensitive to the shape of the
primordial bispectrum. An essential reason for having a
scale-dependent biasing only for the local-type primordial
non-Gaussianity is that the amplitude of the primordial
bispectrum with squeezed configuration, i.e.,
B� ð�k; q; k� qÞ with jkj � jqj, is greater than that of

the equilateral case [see Eq. (5.3)]. The local-type primor-
dial non-Gaussianity has fairly strong mode correlations
between small and large Fourier modes, and thereby the
biasing, as a small-scale phenomenon, affects the power
spectrum on very large scales. This generic feature might
be very helpful to discriminate between the types of pri-
mordial non-Gaussianity. The detection of scale-dependent
biasing may have interesting implications for the infla-
tionary model, according to the single-field consistency
relation [66]. The consistency relation states that as long
as the inflation dynamics is driven by a single scalar field,
the primordial bispectrum in squeezed configuration be-
comes very small, irrespective of the type of non-
Gaussianity. Thus, single-field inflation generically pre-
dicts scale-independent biasing on large scales.
Therefore, if the presence of scale-dependent biasing on
large scales is observationally verified, this strongly dis-

FIG. 7 (color online). Ratio of biasing factor, bðk; zÞ=bGðk; zÞ,
given at z ¼ 1 in the case of the equilateral model. In this plot,
we do not consider Gaussian smoothing. � ¼ 0 (left panel); � ¼
0:3 (middle panel); � ¼ �0:3 (right panel).
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proves the consistency relation, and the inflation dynamics
may not be simply characterized by the single scalar field.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have comprehensively studied the
effect of primordial non-Gaussianity on the power spec-
trum of a large-scale structure. Using perturbation theory,
we calculate the leading-order non-Gaussian corrections to
the matter power spectrum through the nonlinear mode
coupling of the gravitational evolution. In the weakly non-
linear regime, the signature of primordial non-Gaussianity
in the matter power spectrum can be characterized by the
primordial bispectrum. Adopting two representative mod-
els of the bispectrum (local and equilateral), we quantita-
tively estimate the non-Gaussian signals on the matter
power spectrum. The primordial non-Gaussianity system-
atically enhances or suppresses the nonlinear growth of the
power spectrum amplitude at the & 1–2% level.

We then explore the potential impact on the cosmologi-
cal parameter estimations from future dedicated surveys
for BAO measurement. Under the assumption of scale-
independent linear biasing, the Fisher-matrix analysis re-
veals that while it is hard to detect the primordial non-
Gaussianity to the level of current constraints, the inclusion
of the non-Gaussian parameter fNL significantly degrades
the constraints on the primordial spectral index ns and the
running of the index �. In this respect, the CMB prior
information for ns and � as well as the non-Gaussian
parameter is very crucial. On the other hand, determination
of the distance scale DAðzÞ is rather insensitive to the
presence or absence of primordial non-Gaussianity, and
thus the characteristic scale of BAOs is a robust standard
ruler.

We have also considered the effects of primordial non-
Gaussianity on the galaxy biasing. In the framework of
local galaxy biasing, in which the number density of
galaxies is described by a local function of the mass
density field, we found that the nonlinear mapping of

galaxy biasing can modulate the power spectrum and this
sensitively depends on the shape of non-Gaussianity. In the
local model of primordial non-Gaussianity, mode correla-
tions between large scales and small scales are fairly
strong, and the non-Gaussian correction induces the strong
scale-dependent biasing on large scales, while the scale-
independent linear biasing is preserved to a good accuracy
in the equilateral model. These remarkable properties may
be very helpful in discriminating between the types of
primordial non-Gaussianity, especially in connection with
the single-field consistency relation. However, the biasing
factor in the local model exhibits an apparent divergence,
suggesting that the local biasing prescription may be in-
compatible with the local model of primordial non-
Gaussianity. Indeed, the local biasing scheme is just a
phenomenological parametrization and the validity of
this prescription itself has not yet been tested enough in
the presence of non-Gaussianity. Further study using simu-
lations is necessary for quantitative prediction of the non-
Gaussian signature on galaxy biasing.
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[59] J. N. Fry and E. Gaztañaga, Astrophys. J. 413, 447 (1993).
[60] A. Heavens, L. Verde, and S. Matarrese, Mon. Not. R.

Astron. Soc. 301, 797 (1998).
[61] P. McDonald, Phys. Rev. D 74, 103512 (2006).
[62] R. E. Smith, R. Scoccimarro, and R.K. Sheth, Phys. Rev.

D 75, 063512 (2007).
[63] T. Matsubara, Phys. Rev. D 78, 083519 (2008); 78, 109901

(E) (2008).
[64] A. Taruya, Astrophys. J. 537, 37 (2000).
[65] D. Jeong and E. Komatsu, arXiv:0805.2632.
[66] P. Creminelli and M. Zaldarriaga, J. Cosmol. Astropart.

Phys. 10 (2004) 006.

SIGNATURE OF PRIMORDIAL NON-GAUSSIANITY ON . . . PHYSICAL REVIEW D 78, 123534 (2008)

123534-13


