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The nonlinear perturbation theory of gravitational instability is extended to include effects of both

biasing and redshift-space distortions, which are inevitable in predicting observable quantities in galaxy

surveys. Weakly nonlinear effects in galaxy clustering on large scales recently attracted great interest,

since the precise determination of scales of baryon acoustic oscillations is crucial to investigate the nature

of dark energy by galaxy surveys. We find that a local Lagrangian bias and redshift-space distortions are

naturally incorporated in our formalism of perturbation theory with a resummation technique via the

Lagrangian picture. Our formalism is applicable to any biasing scheme which is local in Lagrangian

space, including the halo bias as a special case. Weakly nonlinear effects on halo clustering in redshift

space are analytically given. We assume only a fundamental idea of the halo model: haloes form according

to the extended Press-Schechter theory, and the spatial distributions are locally biased in Lagrangian

space. There is no need for assuming the spherical collapse model to follow the dynamical evolution,

which is additionally assumed in standard halo prescriptions. One-loop corrections to the power spectrum

and correlation function of haloes in redshift space are explicitly derived and presented. Instead of relying

on expensive numerical simulations, our approach provides an analytic way of investigating the weakly

nonlinear effects, simultaneously including the nonlinear biasing and nonlinear redshift-space distortions.

Nonlinearity introduces a weak scale dependence in the halo bias. The scale dependence is a smooth

function in Fourier space, and the bias does not critically change the feature of baryon acoustic oscillations

in the power spectrum. The same feature in the correlation function is less affected by nonlinear effects of

biasing.
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I. INTRODUCTION

The nonlinear perturbation theory of gravitational insta-
bility has recently attracted renewed interest. As precision
measurements of the large-scale structure of the universe
become possible, theoretically accurate modeling is essen-
tial to interpret the observational data. It is recognized that
the linear perturbation theory is not satisfactory for this
purpose. The importance of nonlinear perturbation theory
resides in the era of precision cosmology.

A strong motivation for developing the perturbation
theory is to model the baryon acoustic oscillations
(BAOs) imprinted in the large-scale structure. Acoustic
waves which propagate in the baryon-photon plasma of
the early universe freeze out at the recombination epoch,
and the sound horizon at that epoch is imprinted in spatial
fluctuations of photons and baryons [1,2]. The BAOs pro-
vide a standard ruler [3] to geometrically investigate the
expansion history of the Universe [4]. The dark energy
component is efficiently constrained by galaxy surveys of
an intermediate- to high-redshift universe [5,6]. Using the
BAOs as a standard ruler, large galaxy surveys are expected
to provide a robust, promising way of constraining the
nature of dark energy [7,8]. Recent observations of BAOs
in modern galaxy surveys [9] prove the method works well.

Even though the BAO scale is quite large
�100h�1 Mpc, detailed structure of BAOs in galaxy clus-
tering is affected by gravitationally nonlinear evolution
after the recombination epoch. The BAO signature in the
power spectrum or in the correlation function is deformed
by nonlinearity in a lower redshift universe where realistic
galaxy surveys are possible [10–14].
In galaxy redshift surveys, the clustering of dark matter

is not directly observable. There are two major sources in
the difference between the clustering pattern of dark matter
and that of galaxies: galaxy biasing and redshift-space
distortions. The spatial pattern of galaxy distribution is
not necessarily the same as that of dark matter, and the
galaxies are biased tracers of mass [15,16]. The redshift of
a galaxy does not purely reflect the Hubble flow, and the
Doppler shift by a peculiar velocity is inevitably added.
Thus the spatial pattern of clustering of galaxies is dis-
torted in redshift space [17,18]. In the linear regime, the
power spectrum of biased objects PobjðkÞ is usually as-

sumed to be proportional to that of mass PmðkÞ in real
space: PobjðkÞ ¼ b2PmðkÞ, and there is a theoretical reason,
which is known as ‘‘the local bias theorem’’ [19,20].
Assuming linear dynamics, a linear bias, and a linear
velocity field, the power spectrum of biased objects in
redshift space is given by [18]

PðsÞ
g ðkÞ ¼ b2ð1þ ��2Þ2PmðkÞ; (1)*taka@a.phys.nagoya-u.ac.jp
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where b is the linear bias factor between galaxies and mass,
� ’ �0:6

m =b, and PmðkÞ is the power spectrum of mass in
real space.

The linear formula of Eq. (1) applies only when the
redshift is large enough, or when the wave number k is
small enough. However, the linear formula in redshift
space is not sufficiently accurate for typical redshift sur-
veys [21]. Extending the linear formula of Eq. (1) to
include nonlinear effects is far from trivial. A straightfor-
ward application of the nonlinear perturbation theory [22–
25] with a local biasing scheme [26] has been studied so far
[27–30]. In the local biasing scheme, the number density of
biased objects is a local function of the smoothed density
field of mass in Eulerian space. This scheme seems to work
as long as the tree-level perturbation theory is adopted [31].
However, when loop corrections are considered, there
appears a conceptual problem in the local biasing scheme.
It turns out that the one-loop corrections, even on large
scales, strongly depend on the artificial smoothing scale
[27]. In Ref. [29], a way to remove the dependence on the
smoothing scale by renormalizing bias parameters is pro-
posed. While this could be a solution to phenomenologi-
cally represent the power spectrum of biased objects [32],
it is not guaranteed that the procedure actually reflects the
physical nature of biasing, since the biasing is more or less
a nonlocal process.

It is true that the biasing is difficult to be included
exactly in an analytic framework, since the galaxy forma-
tion is a highly nonlinear process. The next best thing is to
find a good analytic model. In this respect, a plausible
model is provided by a halo approach [33–41], which is
based on the extended Press and Schechter (PS) model
[42,43]. In this approach, the galaxy biasing is described
through two steps. In the first step, the formation and
clustering of dark matter haloes are analytically modeled
by using the extended PS model. The spherical collapse
model is combined to include the gravitational evolution of
halo positions. In the second step, the distribution of dark
matter or galaxies within haloes is empirically modeled
with a number of assumptions [37–41,44], which include
complicated physics such as gas cooling, star formation,
feedback effects from supernovae, and so forth [45].

While the second step involves many parameters which
should be fitted by observations or simulations, the first
step is theoretically less uncertain because of its purely
gravitational nature. On large scales, the second step is not
important and the power spectrum of nonlinear objects is
approximately the same as that of haloes. Therefore, de-
termining the power spectrum of haloes is an important
step toward understanding the nonlinear structure forma-
tion and biasing. In the usual halo approach, the halo
clustering is modeled by linear dynamics and linear bias
factors [33,37–40]. Recently, an attempt to incorporate the
halo bias with nonlinear perturbation theory in a frame-
work of local biasing scheme has been made [30]. There

still remains conceptual arbitrariness in the latter formula-
tion, mainly because the halo bias is intrinsically nonlocal
in Eulerian space and does not fit well into the local
Eulerian biasing scheme. From the construction, the halo
bias is local in Lagrangian space [33], and is therefore
nonlocal in Eulerian space, because positions of mass and
biased objects are displaced by dynamical evolution.
In this paper, a natural approach to incorporate the halo

bias and redshift-space distortions with nonlinear pertur-
bation theory is newly developed. To account for the local-
ity of halo bias in Lagrangian space, our formulation is
based on the Lagrangian perturbation theory (LPT) [46],
instead of the standard Eulerian perturbation theory (EPT).
In the original halo approach, the spherical collapse model
is adopted to take into account the dynamical evolution in
Eulerian space. However, the dynamical evolution of hal-
oes is more naturally described in the Lagrangian picture
[47]. It is not straightforward to obtain an analytically
useful formalism which combines the LPT and the halo
approach. A main obstacle is that the observable quantities
reside in Eulerian space, while the calculations in LPT
directly give Lagrangian quantities. In paper I [48], a
new approach is developed to overcome this point, par-
tially expanding the Lagrangian variables in Eulerian
space. The resulting expression contains an infinite series
of perturbations in terms of the EPT, and this approach
offers a simplified technique of resumming cosmological
perturbations, such as done in renormalized perturbation
theory and its variants [49,50]. While our technique is not
suitable enough to describe the fully nonlinear regime
which other renormalization techniques aim at, we have
shown in paper I that our technique is accurate enough in
the quasilinear regime, and most importantly, predictions
in redshift space are straightforward. To date, our tech-
nique offers the only way of obtaining resummed power
spectra in redshift space. In this paper, we show that the
local Lagrangian bias, including the halo bias, is also
straightforward to be incorporated in the approach of
paper I, on top of the redshift-space distortions. The local
Lagrangian biasing scheme is not equivalent to the local
Eulerian biasing scheme, and the conceptual problem
about the strong dependence on smoothing scales which
appears in the local Eulerian biasing scheme described
above is not present in our Lagrangian approach.
The rest of the paper is organized as follows. In Sec. II,

our basic formalism is described. This formalism is appli-
cable not only to the halo bias but also to a local
Lagrangian bias in general. Linear and one-loop results
are presented. In this general theory, we have parameters
which are related to the Lagrangian biasing scheme. In
Sec. III, those Lagrangian bias parameters are calculated
from the fundamental concept of the halo model. Effects of
halo bias and redshift-space distortions on BAO scales are
demonstrated both in the power spectrum and in the corre-
lation function. Our conclusions are summarized in

TAKAHIKO MATSUBARA PHYSICAL REVIEW D 78, 083519 (2008)

083519-2



Sec. IV. In the Appendix , details of one-loop calculations
in our framework are outlined.

II. LOCAL LAGRANGIAN BIAS

A. Nonlinear power spectrum with a local Lagrangian
bias

In this section, we develop a method to track nonlinear
evolution of the Lagrangian bias. Our method in this
section is not restricted to the halo bias model, and is
applicable to any bias defined by a local function of linear
density field in Lagrangian space.

In the Lagrangian approach to track dynamical evolution
of cosmological density fields, a set of each trajectory of a
mass element, xðq; tÞ, where q are initial Lagrangian coor-
dinates, describes the whole property of the density field. A
displacement field �ðq; tÞ is defined by

x ðq; tÞ ¼ qþ�ðq; tÞ; (2)

and is considered as a fundamental variable of the mass
density field. Since the initial mass density field is suffi-
ciently uniform, the Eulerian mass density field �mðx; tÞ at
any given time t satisfies the continuity relation,

�mðx; tÞd3x ¼ ��md
3q; (3)

where ��m is the global mean density of mass.
On the other hand, the fluid elements in which biased

objects such as haloes reside are not uniformly distributed
in Lagrangian space. Therefore, the continuity relation
between the Eulerian density field of the biased objects,
�E
objðx; tÞ, and corresponding Lagrangian density field,

�L
objðqÞ, is given by

�E
objðx; tÞd3x ¼ �L

objðqÞd3q: (4)

The density field �L
objðqÞ represents the initial distribution

of locations where biased objects form later. Since the
formation of nonlinear structure is too complex to be
analytically described from the first principle, the initial
density field �L

objðqÞ of biased objects should be given by a

good model of nonlinear structure formation, such as the
halo model.

In this paper, we assume locality of the bias in
Lagrangian space: the Lagrangian density field �L

objðqÞ is
assumed to be a function of a smoothed linear overdensity
at the same Lagrangian position,

�RðqÞ ¼
Z

d3q0WRðjq� q0jÞ�Lðq0Þ; (5)

whereWR is a smoothing kernel of size R, and �LðqÞ is the
(unsmoothed) linear overdensity. We call such biasing
scheme a ‘‘local Lagrangian bias’’ in this paper. As we
will show in the next section, the halo bias [33] is actually a
special case of local Lagrangian bias. Another example of
the local Lagrangian bias is the peak bias with the approxi-

mation of peak-background split [16,34,51]. The locality
of bias in Lagrangian space does not mean locality in
Eulerian space, because of evolutionary effects.
Therefore our biasing scheme does not fall into the cate-
gory of the local biasing scheme in a usual context of EPT.
The local Lagrangian bias is nonlocal in Eulerian space.
Thus, we introduce a Lagrangian bias function Fð�Þ by

�L
objðqÞ ¼ ��objF½�RðqÞ�; (6)

where ��obj is the comoving mean density of the biased

objects, which is common in Lagrangian space and in
Eulerian space. This function has the following property:

hFð�RÞi ¼ 1: (7)

Equation (4) is equivalent to the following equation:

�E
objðxÞ ¼ ��obj

Z
d3qF½�RðqÞ��3

D½x� q��ðqÞ�; (8)

where �3
D is the three-dimensional Dirac’s delta function,

and we suppress the time dependence for notational sim-
plicity. Using the Fourier transform of this equation, we
obtain an expression of the power spectrum of biased
objects in Eulerian space,

PobjðkÞ ¼
Z

d3qe�ik�q
�Z d�1

2�

d�2

2�
~Fð�1Þ ~Fð�2Þ

� hei½�1�Rðq1Þþ�2�Rðq2Þ��ik�½�ðq1Þ��ðq2Þ�i � 1

�
;

(9)

where ~Fð�Þ is the Fourier transform of Fð�Þ and q ¼ q1 �
q2. The quantity in the ensemble average h� � �i in the above
equation is a function of only q because of translational
invariance. In the absence of bias, F ¼ 1 and ~Fð�Þ ¼
2��Dð�Þ, the Eq. (9) reduces to a known expression [52].
We do not assume rotational invariance for allowing our
analysis to include redshift-space clustering. Our conven-
tion of the power spectrum is given by

h ~�objðkÞ ~�objðk0Þi ¼ ð2�Þ3�3
Dðkþ k0ÞPobjðkÞ; (10)

where

~� objðkÞ ¼
Z

d3xe�ik�x
��E

objðxÞ
��obj

� 1

�
: (11)

Similarly, the linear power spectrum PLðkÞ is defined by a
similar equation to Eq. (10) and a Fourier transform of
�LðqÞ.
The expression of Eq. (9) has a form that we can apply to

the cumulant expansion theorem [53]

he�iXi ¼ exp

�X1
N¼1

ð�iÞN
N!

hXNic
�
; (12)

where hXNic denotes a cumulant of a random variable X
[25]. The corresponding factor in Eq. (9) thus reduces to

NONLINEAR PERTURBATION THEORY WITH HALO BIAS . . . PHYSICAL REVIEW D 78, 083519 (2008)

083519-3



hei½�1�Rðq1Þþ�2�Rðq2Þ��ik�½�ðq1Þ��ðq2Þ�i

¼ exp

� X
n1þn2þm1þm2�1

in1þn2þm1þm2

n1!n2!m1!m2!
�1

n1�2
n2Bn1n2

m1m2
ðk;qÞ

�
;

(13)

where the multinomial theorem is used, and

Bn1n2
m1m2

ðk; qÞ ¼ ð�1Þm1h½�Rðq1Þ�n1½�Rðq2Þ�n2½k ��ðq1Þ�m1

� ½k ��ðq2Þ�m2ic: (14)

The translational invariance and the parity symmetry imply
the following identities:

Bn1n2
m1m2

ðk; qÞ ¼ ð�1Þm1þm2Bn2n1
m2m1

ðk;�qÞ; (15)

¼ ð�1Þm1þm2Bn1n2
m1m2

ðk;�qÞ; (16)

and therefore Eq. (14) is symmetric with respect to its
indices:

Bn1n2
m1m2

ðk; qÞ ¼ Bn2n1
m2m1

ðk; qÞ: (17)

When the initial density field is random Gaussian, which is

assumed throughout this paper, the Equation (14) of m1 ¼
m2 ¼ 0 survives only when n1 þ n2 ¼ 2:

Bn1n2
00 ðk;qÞ¼

8><
>:
�RðjqjÞ; n1¼n2¼1;
�2

R; ðn1¼2;n2¼0Þor ðn1¼0;n2¼2Þ;
0; otherwise;

(18)

where �2
R ¼ �Rð0Þ, and �RðqÞ is the smoothed linear cor-

relation function of the linear density field,

�RðqÞ ¼
Z k2dk

2�2
j0ðkqÞW2ðkRÞPLðkÞ; (19)

where j0ðxÞ ¼ x�1 sinx is the spherical Bessel function of
zeroth order, and

WðkRÞ ¼ 4�
Z

x2dxj0ðkxÞWRðxÞ (20)

is the window function of the smoothing kernel. For the
equation (14) of n1 ¼ n2 ¼ 0, we have

B00
m1m2

ðk; qÞ ¼
8><
>:
A2mðkÞ; ðm1 ¼ 2m;m2 ¼ 0Þ or ðm1 ¼ 0; m2 ¼ 2mÞ;
Bm1m2

ðk; qÞ; m1 � 1 and m2 � 1;
0; otherwise;

(21)

where m is a positive integer, and

A2mðkÞ � h½k ��ð0Þ�2mic; (22)

Bm1m2
ðk; qÞ � ð�1Þm1h½k ��ðq1Þ�m1½k ��ðq2Þ�m2ic: (23)

Using the above properties and quantities, and substituting Eq. (13) into Eq. (9), we obtain an expression,

PobjðkÞ ¼ exp

�
2
X1
m¼1

ð�1Þm
ð2mÞ! A2mðkÞ

�Z
d3qe�ik�q exp

� X1
m1;m2�1

im1þm2

m1!m2!
Bm1m2

ðk; qÞ
�Z 1

�1
d�1

2�

� d�2

2�
~Fð�1Þ ~Fð�2Þe��1

2�R
2=2��2

2�R
2=2 exp

�
��1�2�RðjqjÞ

þ X1
n1þn2�1

X1
m1þm2�1

in1þn2þm1þm2

n1!n1!m1!m2!
�1

n1�2
n2Bn1n2

m1m2
ðk; qÞ

�
� ð2�Þ3�3

DðkÞ: (24)

So far the expression is formal and holds even on strongly
nonlinear scales. Gravitational nonlinear effects on the
matter distribution and on the bias are all included in the
cumulants of Eq. (14). When the objects are unbiased,
Fð�Þ ¼ 1, ~Fð�Þ ¼ 2��Dð�Þ, the second line of Eq. (24)
simply reduces to unity, and the expression is equivalent to
the one that was previously derived in Eq. (8) of paper I
[48]. In the work of paper I, we applied the LPT to evaluate
the cumulants of Eq. (14) when n1 ¼ n2 ¼ 0, and showed
that expanding only the exponential factor in the integrand
and keeping the exponential prefactor result in partial

resummation of Eulerian perturbations, which improves
the standard EPT in quasilinear regime. This is justified
by the fact that the exponential prefactor consists only of
cumulants of the displacement field at a single point, while
the remaining exponential factor consists of cumulants at
two points separated by jqj � jkj�1. The latter cumulants
are small enough in a large-scale limit, jkj ! 0. When the
exponential prefactor is expanded as well, this approach
gives equivalent results to the standard EPT. Evaluation of
the cumulants in redshift space is straightforward in the
framework of LPT.
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In the presence of Lagrangian biasing, a similar tech-
nique can be adopted. In the integrand of �1 and �2, we
expand the last exponential factor, keeping the exponential
prefactor which involves �2

R. In a large-scale limit, �2
R �

�RðjqjÞ because jqj is large, and �2
R � Bn1n2

m1m2
(m1 þm2 �

1) because jkj is small. Therefore, it is desirable to keep the
exponential prefactor in the integrand of �’s. Expanding
the last exponential factor, the integrals of �’s can be
performed as

Z 1

�1
d�

2�
~Fð�Þe��2�2

R=2ði�Þn ¼ 1ffiffiffiffiffiffiffi
2�

p
�R

Z 1

�1
d�

� e��2=2�2
R
dnF

d�n

� hFðnÞi: (25)

The right-hand side (RHS) of Eq. (25) corresponds to the
expectation value of derivatives of F. In the following, we
use notations such as hF0i, hF00i for n ¼ 1, 2, respectively,
to represent the above integral. The local Lagrangian bias

is fully characterized by a series of these parameters hFðnÞi,
which we call local Lagrangian bias parameters.

The exponential prefactor in Eq. (24) corresponds to the
characteristic function of the one-point distribution of the
displacement field. In fact, from Eqs. (12) and (22) and
parity property, A2mþ1 ¼ 0, we have

exp

�
2
X1
m¼1

ð�1Þm
ð2mÞ! A2mðkÞ

�
¼ jhe�ik��ij2: (26)

Evaluation of the above characteristic function of the RHS
requires the fully nonlinear dynamics. In this paper, the
exponent of the LHS is evaluated by adopting the pertur-
bation theory.

Before closing this subsection, we comment on the role
of smoothing radius R. In the local Lagrangian biasing
scheme with peak-background split, the number density
of biased objects is spatially modulated by the linearly
extrapolated background density field in Lagrangian space.
The large-scale clustering of biased objects should not
depend on the artificial choice of smoothing radius R to
define the background field. In fact, in the case of halo bias,

it is explicitly shown that hFðnÞi is independent on R. In our
derivation, we have used an approximation �2

R � �RðjqjÞ,
which means our equations are valid on larger scales than
the smoothing radius of the Lagrangian bias: k 	 R�1. In
particular, the smoothing kernelWðkRÞ in final expressions
of our perturbation theory is replaced by unity, for consis-
tency with our approximation in the first place.

B. Biased power spectrum from Lagrangian
perturbation theory

We evaluate the general equation (24) via the LPT as
outlined in the previous section. Details of derivations by
the one-loop perturbation theory are given in the Appendix.

In this subsection, we summarize basic assumptions made
in the derivations.
As explained above, we need to evaluate the cumulants

Bn1n2
m1m2

ðk; qÞ of Eq. (14). In LPT, the displacement field is
expanded as a perturbative series,

� ¼ �ð1Þ þ�ð2Þ þ�ð3Þ þ � � � ; (27)

where�ðnÞ is given by integrations over the nth product of
linear density contrast �L with kernels as in Eq. (A2). By
means of LPT, the cumulant of Eq. (14) reduces to an
infinite sum over cumulants of linear density contrast,
which are straightforwardly given by the linear power
spectrum. On large scales where jkj 	 j�j, contributions
from higher-order perturbations in Eq. (27) are small
enough, and one can truncate the series. In the perturbation
theory, a consistent manner of truncation is given by a loop
expansion [25] to obtain a nonlinear power spectrum. For
Gaussian initial conditions, the loop expansion is equiva-
lent to the series expansion in terms of the linear power
spectrum PLðkÞ.
The treatment of nonlinear redshift-space distortions is

simpler in LPT than that in EPT as shown in paper I [48].
The displacement field in redshift space �s is given by

� s ¼ �þ ẑ � _�

H
ẑ; (28)

where � is the displacement field in real space, a dot
denotes the derivative with respect to the cosmic time t,
ẑ is a unit vector along the line of sight, H ¼ _a=a is the
time-dependent Hubble parameter, and aðtÞ is the scale
factor. The relation between displacement fields in
Eq. (28) is exactly linear even in the nonlinear regime. In
contrast, the redshift-space distortions of Eulerian varia-
bles are given by nonlinear transformations. This is a
reason why nonlinear redshift-space distortions are easier
to handle in LPT than that in EPT.
The time dependence of each perturbative term in

Eq. (27) is approximately given by �ðnÞ / Dn, where
DðtÞ is the linear growth rate. This relation is exact in the
Einstein-de Sitter model, and approximately holds in gen-
eral cosmology [25,54]. We also apply the distant-observer
approximation in which the line of sight ẑ is fixed. The
latter approximation is commonly used in analyses of
redshift-space distortions and valid as long as the redshift
surveys are deep enough so that clustering scales of interest
is smaller than distances between the observer and galaxies
[55]. With those approximations, order-by-order linear
transformations of displacement fields become particularly

simple: �sðnÞ ¼ RðnÞ�ðnÞ, where RðnÞ is a 3� 3 matrix
whose components are given by Eq. (A7).
Keeping the one-loop LPT exact, the integrand of

Eq. (24) turns out to be a strongly oscillating function of
q. It seems extremely difficult to numerically evaluate such
integral. Instead, we further expand and truncate the ex-
ponential factors in the integrand at the one-loop level as
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explained in the previous subsection. This means that our
result is not exact at one-loop LPT, while the neglected
terms are of order O½PLðkÞ�3, which are two- or higher-
loop contributions in terms of Eulerian perturbations. Not
expanding the exponential prefactor improves the standard
EPT as shown in paper I.

C. The linear power spectrum in real space and in
redshift space

Expanding Eq. (24) and keeping only linear terms in
PLðkÞ, we obtain the biased power spectrum in linear
perturbation theory. The result in real space is simply given
by a linear term of Eq. (A69) with a substitution f ¼ 0,

PobjðkÞ ¼ ð1þ hF0iÞ2PLðkÞ: (29)

Since the mass power spectrum is given by PmðkÞ ¼ PLðkÞ
in linear theory, the linear bias factor b, which is defined by

PobjðkÞ ¼ b2PmðkÞ; (30)

is scale independent:

b ¼ 1þ hF0i; (31)

i.e., b does not depend on k in a large-scale limit. In the
original halo approach, it is derived that the Eulerian linear
bias factor is given by the Lagrangian linear bias factor
plus unity by using a spherical collapse model [33,34,36].
The result of Eq. (31), which is derived without assuming
spherical collapse, is consistent to that approach. In this
sense, the factor hF0i corresponds to a Lagrangian linear
bias factor.

It is interesting to notice that the linear bias should be
scale independent in this limit, for any nonlinear function
of F: in linear perturbation theory, scale dependence can-
not be produced by any form of local Lagrangian bias. This
result can be considered as a generalization of the ‘‘local
bias theorem’’ [19,20], which states that the linear bias
factor of local Eulerian bias for sufficiently small k is scale
independent. The constancy of the linear bias factor is now
proven even for the local Lagrangian bias, which is non-
local in Eulerian space. It is known that the additional
constant term arises from small-scale inaccuracies of the
linear power spectrum, and the general asymptotic form of
biased power spectrum is given by PobjðkÞ ¼ b2PmðkÞ þ c

in a large-scale limit [20].
The corresponding linear result in redshift space is given

by a linear term of Eq. (A69),

PðsÞ
objðkÞ ¼ ð1þ hF0i þ f�2Þ2PLðkÞ; (32)

where � ¼ ẑ � k=k is the direction cosine of the wave
vector k with respect to the line of sight ẑ, f ¼
d lnD=d lna ¼ ðHDÞ�1 _D is the logarithmic derivative of
the linear growth rate DðtÞ. This result is equivalent to the
Kaiser’s formula [18]

PðsÞ
objðkÞ ¼ b2ð1þ ��2Þ2PmðkÞ; (33)

where the linear bias factor b is given by Eq. (31) and � ¼
f=b is the redshift-space distortion parameter. Again, it is
interesting to notice that we have derived the Kaiser’s
formula in the presence of any nonlinear local bias in
Lagrangian space: the Kaiser’s formula with a scale-
independent bias is a general consequence of a large-scale
limit even in this framework.

D. One-loop corrections to the biased power spectrum

The formal expression of Eq. (24) is evaluated by apply-
ing the LPT. The derivation of one-loop corrections to the
power spectrum is detailed in the Appendix. The power
spectrum in real space with one-loop corrections is given
by putting f ¼ 0 in Eq. (A69). The result is

PobjðkÞ ¼ exp½�ðk=kNLÞ2�
�
ð1þ hF0iÞ2PLðkÞ þ 9

98
Q1ðkÞ

þ 3

7
Q2ðkÞ þ 1

2
Q3ðkÞ þ hF0i

�
6

7
Q5ðkÞ þ 2Q7ðkÞ

�

þ hF00i
�
3

7
Q8ðkÞ þQ9ðkÞ

�
þ hF0i2½Q9ðkÞ

þQ11ðkÞ� þ 2hF0ihF00iQ12ðkÞ þ 1

2
hF00i2Q13ðkÞ

þ 6

7
ð1þ hF0iÞ2½R1ðkÞ þ R2ðkÞ�

� 8

21
ð1þ hF0iÞR1ðkÞ

�
; (34)

where

kNL ¼
�

1

6�2

Z
dkPLðkÞ

��1=2
; (35)

and the functions QnðkÞ, RnðkÞ are given by Eqs. (A39)–
(A48), and are second order in PLðkÞ. When the exponen-
tial prefactor is expanded and only second order terms in
PLðkÞ are retained, we obtain an expression of EPTwithout
any resummation of higher-order perturbations. In an un-
biased case, hF0i ¼ hF00i ¼ 0, the expression reduces to the
result of the one-loop perturbation theory of mass [24,48].
The power spectrum of the biased objects in redshift

space with one-loop corrections is given in Eq. (A69):

PðsÞ
objðkÞ ¼ expf�½1þ fðfþ 2Þ�2�ðk=kNLÞ2g

�
ð1þ hF0i

þ f�2Þ2PLðkÞ þ
X
n;m

�2nfmEnmðkÞ
�
; (36)

where EnmðkÞ is given by Eqs. (A71)–(A79). When the bias
is not present, hF0i ¼ hF00i ¼ 0, this result reduces to the
one derived in paper I [48].
A cross power spectrum of differently biased objects is

similarly given. When the bias functions of these objects
are F1 and F2, the cross power spectrum is given by
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substitutions of Eqs. (A18)–(A22), after expanding
Eq. (34) or (36) in terms of hF0i and hF00i. The spherical
average of Eq. (36) can be obtained by using the following
integral:

1

2

Z 1

�1
d�e�x�2

�2n ¼ 1

2
x�n�1=2	

�
nþ 1

2
; x

�

¼ ð�1Þn
ffiffiffiffi
�

p
2

�
d

dx

�
n
�
erfðx1=2Þ
x1=2

�
;

(37)

where 	ða; xÞ is the lower incomplete gamma function, and
erf is the error function normalized by erfðþ1Þ ¼ 1. The
correlation function is obtained by numerically Fourier
transforming Eq. (36). Spherically averaged correlation
function is simply given by

�ðrÞ ¼
Z 1

0

k2dk

2�2
j0ðkrÞPðkÞ; (38)

where PðkÞ is the spherically averaged power spectrum.
As described in paper I, the origin of the exponential

prefactor exp½�ðk=kNLÞ2� is the nonlinear smearing effect
by random motions of mass elements. In redshift space, an
additional smearing effect is present along the lines of
sight. The latter effect is similar to the nonlinear fingers-
of-God effect [17]. The form of exponential prefactor
coincides with the one which has been phenomenologi-
cally introduced in previous work [12,21] to represent the
smearing effects.

The one-loop corrections in Eqs. (34) and (36) are given
by k-dependent functions, Q1ðkÞ; . . . ; Q13ðkÞ, R1ðkÞ, R2ðkÞ,
which are defined by Eqs. (A39)–(A48) in the Appendix.
All of these functions but Q13ðkÞ vanish in a large-scale
limit k ! 0. The function Q13ðkÞ contributes only when
hF00i � 0. Thus, the one-loop contributions are present
even in a large-scale limit through Q13ðkÞ when hF00i �
0. This function turns out to be a convolution of the power
spectrum,

Q13ðkÞ ¼
Z d3p

ð2�Þ3 PLðpÞPLðjk� pjÞ

¼
Z

d3xe�ik�x½�LðxÞ�2; (39)

where �LðxÞ is the linear correlation function in real space.
In configuration space, ½�LðxÞ�2 	 �LðxÞ in a large-scale
limit, x ! 1. However, in Fourier space, Q13ðkÞ has a
finite value in a large-scale limit,

Q13ðk ! 0Þ ¼
Z d3p

ð2�Þ3 ½PLðpÞ�2 ¼
Z

d3x½�LðxÞ�2; (40)

while PLðk ! 0Þ ¼ 0 for cold dark matter (CDM)-like
power spectra. Therefore, the power spectrum on very
large scales is dominated by a constant contribution origi-
nated from nonlinear clustering when the bias is present

and hF00i � 0. For related discussion within a framework of
local Eulerian bias, see Ref. [20].

E. Nonequivalence between the local Lagrangian bias
and the local Eulerian bias

In our local Lagrangian biasing scheme, bias parameters

are given by a set of parameters, fhFðnÞig. In the local
Eulerian biasing scheme, on the other hand, bias parame-
ters are given by a set of parameters fbng which are
coefficients of a Taylor expansion,

�obj ¼
X1
n¼0

bn
n!

�n; (41)

where �obj is the overdensity of objects and � is the

evolved overdensity of mass at the same Eulerian position
with some smoothing filter. One may wonder if there are
some relations between these two sets of bias parameters.
However, the two biasing schemes are not equivalent to
each other, and the two sets of bias parameters are not
expressible from one another in general. Therefore, the
expression of the biased power spectrum derived above is
essentially different from the one with local Eulerian bias
previously derived in literature. Below we clarify this
situation in detail.
An essential difference between those two schemes is

that the Eulerian bias is applied to dynamically evolved
density fields while the Lagrangian bias is applied to initial
density fields. Since the dynamical evolution is generally
nonlocal, those two local biasing schemes are not equiva-
lent to each other.
In the standard halo approach, however, the Eulerian

bias parameters fbng are derived [34,41], although the halo
bias falls into a category of local Lagrangian bias. One may
wonder if the local Lagrangian bias is actually equivalent
to the local Eulerian bias from this fact. However, the
spherical collapse model is crucially assumed in such a
derivation. Since the dynamical evolution in a spherical
collapse model is locally determined, the local Lagrangian
bias and the local Eulerian bias have one-to-one correspon-
dence in such a special case. It is only when the dynamical
evolutions are treated approximately as local processes that
both biasing schemes become equivalent to each other.
Similarly, the linear dynamical evolution is locally de-

termined, and there is a relation between linear bias pa-
rameters of two schemes, b1 ¼ 1þ hF0i. This is the reason
why the linear power spectrum of Eq. (29) or (32) is
equivalent to that with Eulerian linear bias. There are not
such relations for higher-order bias parameters in general.
Accordingly, our one-loop result cannot be obtained by

just a reparametrization or renormalization of a set of
parameters fbng in one-loop EPT with local Eulerian bias.
The power spectrum with local Eulerian bias has a strong
dependence on an artificial smoothing length, and has a
divergent result in a limit of small smoothing length for
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CDM-like power spectra [27,30]. The power spectrum
with local Lagrangian bias derived above does not have
such a strong dependence and one can safely take the limit.
Therefore the two power spectra have qualitatively differ-
ent properties and are never equivalent to each other. The
strong dependence on smoothing length with local
Eulerian bias can be removed by a renormalization scheme
of McDonald [29]. Even in this case, the resulting power
spectrum [Eq. (16) of Ref. [29]] is not reachable by simple
reparametrizations of our Eq. (34), and vice versa. For
example, McDonald’s Eq. (16) has a common factor of
b21, while the factor ð1þ hF0iÞ2 cannot be factorized out in
our Eq. (34) with any reparametrization of hF00i.

III. THE HALO BIAS IN PERTURBATION THEORY

A. The halo approach as a local Lagrangian biasing
scheme

The nonlinear power spectrum derived above depends

on the local Lagrangian bias only through hFðnÞi defined by
Eq. (25). Up to one-loop corrections, we only need two
numbers, hF0i and hF00i. For a general local Lagrangian
bias, these numbers could be considered as parameters
which should be fitted by observations. Alternatively, those
numbers can be derived once a model of bias function Fð�Þ
is specified. In this section, we take the latter approach,
considering the halo bias model.

So far the most successful biasing model in nonlinear
structure formation is provided by the halo approach [33–
41], which is based on the extended PS theory [42,43]. In
the PS formalism, the mass of halo is related to the
Lagrangian radius R of spherical cell by M ¼ 4� ��R3=3,

or R ¼ ½M=ð1:162� 1012h�1M
�mÞ�1=3h�1 Mpc, where
M
 ¼ 1:989� 1030 kg is the solar mass, and �m is the
density parameter at the present time. The variance of mass
overdensity in the cell, as a function of mass scale, which is
linearly extrapolated to the present time z ¼ 0, is given by

�2ðMÞ ¼
Z k2dk

2�2
W2ðkRÞP0ðkÞ; (42)

where WðxÞ ¼ 3ðsinx� x cosxÞ=x3 is the top-hat window
function, P0ðkÞ ¼ PLðkÞ=D2 is the linear power spectrum
extrapolated to the present time.

The critical overdensity, which is required for spherical
collapse at redshift z, and is linearly extrapolated to the
present time, is given by

�cðzÞ ¼ �cð0Þ
DðzÞ ; (43)

where DðzÞ is the linear growth rate as a function of
redshift z, normalized as Dð0Þ ¼ 1. The critical overden-

sity at the present time, �cð0Þ, is given by �cð0Þ ¼
3ð3�=2Þ2=3=5 ¼ 1:686 47 in the Einstein-de Sitter model.
In general cosmology, �c depends weakly on cosmological
parameters and redshift [56]. It is still a good approxima-

tion to use the constant value of the Einstein-de Sitter
universe in general cosmological models.
According to the PS theory, the comoving number den-

sity of haloes with mass between M and Mþ dM, identi-
fied at redshift z, is given by

nðM; zÞdM ¼ 2 ��

M
gð
Þd




; (44)

where 
 ¼ �cðzÞ=�ðMÞ, gð
Þ ¼ ð2�Þ�1=2
 expð�
2=2Þ,
and �� is the comoving mean density of mass. In literature,
a multiplicity function fð~
Þ defined by gð
Þ ¼ ~
fð~
Þ=2
and ~
 ¼ 
2 is frequently introduced. The PS mass function
is improved by Sheth and Tormen (ST) [36] to give a better
fit to that of haloes in numerical simulations of CDM-type
cosmologies. The ST mass function is also given by
Eq. (44) with a modified function,

gð
Þ ¼ AðpÞffiffiffiffiffiffiffi
2�

p
�
1þ 1

ðq
2Þp
� ffiffiffi

q
p


e�q
2=2; (45)

where AðpÞ ¼ ½1þ ��1=22�p�ð1=2� pÞ��1, and p ¼ 0:3
and q ¼ 0:707 are numerically fitted parameters. The PS
mass function is also given by Eq. (45) with p ¼ 0 and q ¼
1. Equation (45) has the following normalization:

Z 1

0
gð
Þd




¼ 1

2
; (46)

which is equivalent to
R
nðM; zÞMdM ¼ ��.

The original PS theory is extended to give the number
density of haloes of mass M1, identified at redshift z1, in a
region of Lagrangian radius R0 in which the linear over-
density extrapolated to the present time is �0:

nðM1; z1j�0; R0ÞdM1 ¼ 2 ��

M1

gð
10Þ d
10


10

; (47)

where


10 ¼ �1 � �0

ð�2
1 � �2

0Þ1=2
; (48)

�1 ¼ �cðz1Þ; �0 ¼ �ðM0Þ; �1 ¼ �ðM1Þ (49)

andM0 ¼ 4� ��R3
0=3. The haloes of massM1 are collapsed

at z1, while M0 is assumed uncollapsed at z ¼ 0, and thus
we always have �1 > �0.
The conditional number density of Eq. (47) is inter-

preted as a large-scale spatial modulation of halo densities
in Lagrangian space. The number density of haloes is a
function of the linearly extrapolated overdensity with
smoothing radius R0. Therefore, Eq. (47) corresponds to
the Lagrangian number density of biased objects in Eq. (6)
for haloes of mass between M1 and M1 þ dM1. The bias
function for the halo bias is given by

FM1
ð�0Þ ¼ nðM1; z1j�0; R0ÞdM1

nðM1; z1ÞdM1

; (50)
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where the mass scale M1 is explicitly denoted. Defining

1 ¼ �1=�1, we have

d
10=
10

d
1=
1

¼ �2
1

�2
1 � �2

0

; (51)

where 
1, 
10, �1, �0 are considered as functions of halo
mass M1. Combining Eqs. (44), (47), (50), and (51), the
halo bias function reduces to

FM1
ð�0Þ ¼ �2

1

�2
1 � �2

0

gð
10Þ
gð
1Þ : (52)

Since the RHS of Eq. (52) depends on �0 only through
�1 � �0 of 
10, we have��

@

@�0

�
n
gð
10Þ

	
¼

�
� @

@�1

�
nhgð
10Þi; (53)

where the average h� � �i is taken over distribution of �0.
Assuming the initial density field is Gaussian, the distri-
bution of �0 is also Gaussian with variance �2

0. In the case

of PS mass function, p ¼ 0 and q ¼ 1, a Gaussian integral
to give the average hgð
10Þi can be exactly performed:

hgð
10Þi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2��2

0

q Z 1

�1
d�0e

��2
0
=2�2

0gð
10Þ

¼ �2
1 � �2

0

�2
1

gð
1Þ: (54)

In a general case of ST mass function, p � 0 and q � 1,
Eq. (54) is shown in a limit �0 	 �1, which is a reason-
able approximation when M0 is much larger than M1.

From Eqs. (52)–(54), we have

hFðnÞ
M1
i ¼ ð�1Þn

gð
1Þ
�
@

@�1

�
n
gð
1Þ ¼ ð�1Þn

�n
1gð
1Þ

@ngð
1Þ
@ðln
1Þn : (55)

With this expression, the following consistency relation is
straightforwardly shown:

1

��

Z 1

0
dM1nðM1; z1ÞM1hFðnÞ

M1
i ¼

�
1; n ¼ 0;
0; n � 1:

(56)

For our purpose of one-loop corrections, we need only first
two derivatives. Dropping the subscript M and ‘‘1,’’ they
are given by

hF0i ¼ 1

�cðzÞ
�
q
2 � 1þ 2p

1þ ðq
2Þp
�
; (57)

hF00i ¼ 1

�2
cðzÞ

�
q2
4 � 4q
2 þ 1þ 4pðq
2 þ p� 1Þ

1þ ðq
2Þp
�
;

(58)

where 
 ¼ �cðzÞ=�ðMÞ. The Eulerian bias factor of
Eq. (31) with Eq. (57) agrees with that of the original
halo approach [33,34,36]. In Fig. 1, hF0i and hF00i are
plotted against mass of haloes. We adopt cosmological

parameters �m ¼ 0:28, �� ¼ 0:72, �b ¼ 0:046, h ¼
0:7, ns ¼ 0:96, and �8 ¼ 0:82, and the linear power spec-
trum P0ðkÞ is calculated from the output of the CAMB code
[57]. This set of parameters is always assumed in the
following figures throughout this paper.
When a finite range of mass ½M1;M2� of haloes is

considered, the denominator and the numerator of
Eq. (50) are altered into integrations in that range. The
above derivation is similarly applied in this case. As a
result, we have

hFðnÞi ¼ ð�1Þn
�c

nðzÞ

RM2
M1

dng
dðln
Þn

d ln�
dM

dM
MRM2

M1
gð
Þ d ln�dM

dM
M

: (59)

In a limit M2 ! M1, Eq. (55) is recovered as expected.

B. Scale dependence of the bias in quasilinear regime

Applying Eqs. (57) and (58) to our results of Eq. (34) or
Eq. (36), a power spectrum of haloes with one-loop cor-
rections, either in real space or in redshift space, can be
evaluated. To demonstrate the effects of biasing and
redshift-space distortions, we show examples of power
spectra and correlation functions in this subsection, and
briefly discuss the impact on BAO features. Since the main
purpose of the present paper is to give a new formalism in
perturbation theory, detailed investigation of BAOs with
our approach will be given elsewhere.
In Fig. 2, the normalized power spectra in real space are

plotted, and those in redshift space are shown in Fig. 3. We
adopt the same set of cosmological parameters as in Fig. 1.

FIG. 1. Local Lagrangian bias parameters hF0i, hF00i as func-
tions of halo mass. Different curves correspond to different
redshifts (z ¼ 0, 0.5, 1, 3 from bottom to top in each panel).
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Angular averages are taken for power spectra in redshift
space. In paper I, it is shown that our one-loop formula is
valid within a few percent for k < kNL=2 [48], compared to
numerical simulations. Expecting this criterion is also
effective in our generalization including bias, the corre-
sponding scales of validity, kNL=2, are shown in vertical

dotted lines in the figures. To highlight nonlinear effects,
overall amplitudes predicted from linear growth rate, linear
bias, and linear redshift-space distortions are scaled out. In
real space, the amplitude of power spectrum is proportional
to a scale-independent factor D2ðzÞb2ðzÞ, where bðzÞ is the
linear bias factor defined by Eq. (31). In redshift space,

FIG. 3 (color online). Same as Fig. 2, but in redshift space. Spherically averaged power spectra are plotted. Linear redshift-space
enhancement factor R ¼ 1þ 2�=3þ �2=5 is also scaled out.

FIG. 2 (color online). Dependencies on halo mass and redshift of nonlinear power spectrum in real space. In the top panels, each
power spectrum is divided by a smoothed, no-wiggle linear power spectrum PnwðkÞ [58], and by a squared linear bias factor b2. Values
of redshifts and halo masses are shown in each panel. Solid lines: nonlinear power spectra of haloes with different masses with
increasing order from thinner to thicker lines: dotted lines, linear theory; dashed lines, nonlinear power spectra of dark matter. In the
bottom panels, halo power spectra are divided by corresponding mass power spectra and by squared linear bias factor, presenting the
scale dependence of halo bias. Vertical short-dashed lines correspond to the scale kNL=2 to indicate the validity range k < kNL=2,
where our result is expected to be accurate within a few percent.
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Kaiser’s enhancement factor RðzÞ ¼ 1þ 2�=3þ �2=5
[18] is an additional source of the linear amplitude.

In upper panels in the figures, each power spectrum is
normalized by a smoothed, no-wiggle linear power spec-
trum PnwðkÞ of Ref. [58] to highlight baryonic features.
The linear amplification factors described above are all
scaled out. In the lower panels, power spectra of haloes
divided by those of dark matter are plotted, where ampli-
fications by linear biases and linear redshift-space distor-
tions are scaled out. Thus, curves in lower panels show the
scale dependence of bias. In the usual halo approach, the
scale dependence of the bias arises only from galaxy/dark
matter clustering within haloes, which is not considered in
this paper. The scale dependence shown in our results
purely originates in clustering of haloes themselves.
Linear theory predicts constancy of halo bias on large
scales. Nonlinear effects of dynamics, biasing, and
redshift-space distortions are responsible for the scale
dependence.

Comparing the clustering in real space and in redshift
space, the power spectra on small scales are suppressed by
nonlinear redshift-space distortions. This suppression is
due to the large-scale random motion of objects, which is
similar to a phenomenon known as a fingers-of-God effect
[17] on small scales. Generally, the scale dependence of
bias is strong for very massive and very light haloes.

Haloes of intermediate mass do not show significant devi-
ations from constant bias. The scale dependence of bias
does not show significant oscillations, and are mostly
smooth functions of scales. This is desirable for cosmo-
logical applications to use the BAO scale as a standard
ruler. Various nonlinear effects mostly modify the broad-
band shape of power spectrum, and therefore resulting
shifts of acoustic scales are correctable as numerically
demonstrated in Ref. [59].
Although the power spectrum and correlation function

are related by Fourier transforms and have mathematically
equivalent information, cosmological information that can
be extracted from them with real data is not exactly
equivalent to each other, because error properties are dif-
ferent. While the BAO scales are imprinted in multiple
wiggles in the power spectrum, there appears one single
peak in the correlation function [8]. The physical BAO
scale is just a single scale, and many wiggles in the power
spectrum are overtones of the fundamental scale of BAOs.
In Figs. 4 and 5, correlation functions are plotted. They are
calculated by Fourier transforming the power spectra of
Figs. 2 and 3. In paper I, we have shown that our method of
one-loop corrections to the clustering of dark matter, both
in real space and in redshift space, agrees very well with
numerical simulations on scales r > 70h�1 Mpc, where
BAO signatures appear. Upper panels show bare correla-

FIG. 4 (color online). Dependencies on halo mass and redshift of nonlinear correlation function in real space. Correlation functions
with a fixed redshift and with different halo masses are presented in each column. Mass of the halo varies in increasing order from
thinner to thicker solid lines. Dotted lines correspond to the prediction of linear theory and dashed lines correspond to nonlinear
correlation functions of dark matter. In the top rows, the bare values of correlation function are plotted. In the middle rows, the
correlation functions are normalized by linear bias factors and a linear growth factor. In the bottom rows, residual values in the
normalized correlation function of haloes (plotted in middle rows), relative to that of dark matter, are plotted.
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tion functions, and middle panels show normalized corre-
lation functions. The overall amplitudes of the linear
growth rate, linear bias, and linear redshift-space distor-
tions are scaled out in the normalized plots. The normal-
ized correlation functions do not significantly depend on
mass of haloes, and plotted lines are quite overlapped. In
lower panels, residual values relative to normalized corre-
lation functions of dark matter are plotted.

Nonlinear effects degrade the signature of the BAO peak
because of random displacements of haloes, and the deg-
radation is larger in redshift space because of additional
displacements along the lines of sight. Halo bias does not
significantly change the shape of the BAO peak. This
property is consistent with a recent analysis of numerical
simulations of halo clustering [14]. Effects of nonlinear
dynamics and nonlinear redshift-space distortions domi-
nate those of nonlinear halo bias. Massive haloes slightly
enhance the BAO signature by 5% or so, while less massive
haloes only change by 1%–2%. The effects are slightly
larger in redshift space.

IV. SUMMARY

In this paper, we show that the nonlinear perturbation
theory via the Lagrangian picture is naturally incorporated
with the local Lagrangian bias on top of the redshift-space
distortions. Explicit results of one-loop power spectrum
with a halo bias both in real space and in redshift space are
given. Our approach does not suffer from a conceptual

problem which appears in the EPT with local Eulerian
bias. The halo bias, as a local Lagrangian bias, is properly
treated in the Lagrangian picture of perturbations.
Simultaneous inclusion of redshift-space distortions is
also natural in the Lagrangian picture. Our approach in-
volves a partial resummation of Eulerian perturbations, and
provides a better description in the quasilinear regime than
the standard EPT.
In our general framework of local Lagrangian bias, the

bias is characterized by local Lagrangian bias parameters

hFðnÞi. We do not need a Taylor expansion of the bias
function as frequently adopted in local Eulerian biasing
scheme. Only the first two of the local Lagrangian bias
parameters are needed in our one-loop calculations. The
results in Sec. II are applicable for all biasing schemes as
long as the bias is local in Lagrangian space. The local
Lagrangian bias parameters are considered as free parame-
ters if the bias model is not specified. Because of the
nonlocal nature of gravitational evolution, the local
Lagrangian biasing scheme is not equivalent to the local
Eulerian biasing scheme.
There is a successful model of Lagrangian bias, i.e., the

halo bias. The general halo approach consists of several
pieces of assumptions. We adopt only the most fundamen-
tal concept of the halo approach, the halo bias in
Lagrangian space. The clustering of galaxies or dark matter
is dominated by halo clustering on large scales, where the
perturbation theory is safely applied. As a result, the local
Lagrangian bias parameters are calculated for halo bias
without ambiguity. The resulting power spectrum does not

FIG. 5 (color online). Same as Fig. 4, but in redshift space. Spherically averaged correlation functions are plotted. Linear redshift-
space enhancement factor R is also scaled out.

TAKAHIKO MATSUBARA PHYSICAL REVIEW D 78, 083519 (2008)

083519-12



have any free parameters once the mass or mass range of
haloes is specified.

In usual linear analysis, the halo bias is independent on
scales. However, nonlinear effects introduce the scale de-
pendence into the halo bias. Such scale dependence could
affect the determination of the BAO scales unless the effect
is properly quantified. Such effects are quantitatively cal-
culated without numerical simulations. We find that the
scale dependence of bias is a smoothly varying function.
Therefore, the BAO scales are shifted by change of the
broadband shape in the power spectrum. The correlation
function is also affected by scale dependence of nonlinear
halo bias. Compared to the power spectrum, the shape of
the BAO peak in the correlation function seems to be less
affected. Those observations are consistent with the recent
results of numerical simulations [13,14].

Our formalism is compatible with any biasing scheme
which is local in Lagrangian space. For example, the peak
bias is approximately considered as a local in Lagrangian
space in a limit of the peak-background split [16,34], when
the constraints imposed by the spatial derivatives to define
peaks can be neglected. However, the last approximation
may not be appropriate for accurately predicting the BAO
signature [60]. The exact biasing mechanism in the real
world is definitely not local both in Eulerian space and in
Lagrangian space. The success of the halo approach in-
dicates the local Lagrangian bias is a good approximation
at least on large scales. However, extending the model of
local Lagrangian bias to a nonlocal one is an option to
make the theory more accurate and general. It is straight-
forward to extend our formalism in Sec. II to include a
nonlocal bias.

Although our formalism contains a partial resummation
of higher-order Eulerian perturbations, Lagrangian pertur-
bations are truncated at the one-loop level. Recent develop-
ments of the renormalized perturbation theory and its
variants [49] show that it is possible to reorganize and
resum higher-order perturbations using the concept of
propagators. It would be interesting if one could use the
concept of propagators in Lagrangian space [61] to further
renormalize the present formalism and to describe the
deeply nonlinear regime, k > kNL=2, which is not acces-
sible by the present formalism.

We consider only the halo bias in this paper. The result-
ing power spectrum corresponds to that of halo centers, or
the two-halo term of the halo model on large scales. In the
halo approach, the nonlinear power spectrum is given by a
superposition of the one-halo term and the two-halo term,
which are given by convolutions with a model of density
profile of galaxies or dark matter. A model of density
profile is dominantly relevant to clustering on small scales.
In a context of the halo approach, our formalism improves
the description of the two-halo term, in which only the
linear dynamics is usually included because of simplicity.
It is possible to include a model of density profile of halo
model in redshift space [62].

As pointed out in paper I, our approach does not have
much power on small scales in the power spectrum, k >
kNL=2. The main source of the powerless is the exponential
damping factor, which originates from random motion of
the displacement field. A fully nonlinear description of this
factor may dramatically improve the applicability of the
present formalism for dark matter clustering. However, in
the presence of bias, the nonlinear regime is dominated by
the scale dependence of bias, which may be more appro-
priately described by halo approach with the one-halo
term, including a model of density profile or halo occupa-
tion dynamics.
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APPENDIX A: ONE-LOOP CORRECTIONS TO
THE BIASED POWER SPECTRUM VIATHE
LAGRANGIAN PERTURBATION THEORY

In this Appendix, we outline a derivation of one-loop
corrections to the power spectrum with the local
Lagrangian bias. Our goal is to evaluate the cumulants of
Eq. (14) by the perturbation theory, and obtain a perturba-
tive expansion of Eq. (24). Most of the necessary tech-
niques have been developed in paper I [48].
For the one-loop corrections, the cumulants of Eq. (14)

up to second order in PLðkÞ should be evaluated. We have
applied the LPT [46,48] to evaluate the similar cumulants
in paper I, and we can use the same method. In the LPT, the
displacement field � is expanded by a perturbative series:

� ¼ �ð1Þ þ�ð2Þ þ�ð3Þ þ � � � : (A1)

The first-order term �ð1Þ corresponds to the classic
Zel’dovich approximation [63]. The spatial derivatives of

each term @i�
ðnÞ
j have the order ofOð�LÞn, where �L is the

linear density field. In a Fourier representation,

~�ðnÞðpÞ ¼ i

n!

Z d3p1

ð2�Þ3 � � �
d3pn

ð2�Þ3 ð2�Þ
3�3

D

�Xn
j¼1

pj � p

�

�LðnÞðp1; . . . ;pnÞ�Lðp1Þ � � ��LðpnÞ; (A2)

where �LðpÞ is the Fourier transform of the linear density

field, and perturbative kernels LðnÞ are given by the LPT.
Since the dependence of these kernels on time and on
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cosmological parameters is weak, it is a good approxima-
tion to use the kernels of the Einstein-de Sitter model even
in general cosmology [54]. In real space, expressions of the

kernels LðnÞ up to third order are given by [48,64]

L ð1Þðp1Þ ¼ k

k2
; (A3)

L ð2Þðp1;p2Þ ¼ 3

7

k

k2
ð1��2

1;2Þ; (A4)

Lð3aÞðp1;p2;p3Þ ¼ 5

7

k

k2
ð1��2

1;2Þð1��2
12;3Þ

� 1

3

k

k2
ð1� 3�2

1;2 þ 2�1;2�2;3�3;1Þ
þ k� Tðp1;p2;p3Þ; (A5)

where k ¼ p1 þ � � � þ pn for each LðnÞ, �i;j ¼
pi � pj=ðpipjÞ, �ij;k ¼ ðpi þ pjÞ � pk=ðjpi þ pjjpkÞ, and

a vector T represents a transverse part whose expression
is not needed in the following application. It is useful to

symmetrize the kernel Lð3aÞ in terms of their arguments:

L ð3Þðp1;p2;p3Þ ¼ 1
3½Lð3aÞðp1;p2;p3Þ þ perm�: (A6)

As shown in paper I, the perturbative kernels in redshift
space are simply given by linear transformations by

redshift-space distortion tensors RðnÞ, whose components
are

RðnÞ
ij ¼ �ij þ nfẑiẑj; (A7)

where f ¼ d lnD=d lna ¼ ðHDÞ�1 _D is the logarithmic
derivative of linear growth rate DðtÞ by the scale factor
aðtÞ, and ẑi is a unit vector along the line of sight. In a
matrix notation, the kernels in redshift space is given by

L sðnÞ ¼ RðnÞLðnÞ: (A8)

It is useful to define the following mixed polyspectra of
linear density field and displacement field:

h~�Lðk1Þ � � � ~�LðklÞ ~�i1ðp1Þ � � � ~�imðpmÞic
¼ ð2�Þ3�3

Dðk1 þ � � � þ kl þ p1 þ � � � þ pmÞ
� ð�iÞmCi1���imðk1; . . . ; kl;p1; . . . ;pmÞ; (A9)

where ~�L and ~�i are the Fourier transforms of the linear
density field and the displacement field, respectively.
When l ¼ 0, the above polyspectra are equivalent to the
ones defined in Eq. (11) of paper I, but we adopt an
opposite sign in this paper. For lþm ¼ 2 in Eq. (A9),
we also use notations such as

CðkÞ ¼ Cðk;�kÞ; CiðkÞ ¼ Ciðk;�kÞ;
CijðkÞ ¼ Cijðk;�kÞ: (A10)

Whenm ¼ 0, the above polyspectra of Eq. (A9) is nonzero

only when l ¼ 2 for a Gaussian initial condition, which is
assumed throughout this paper. Equation (14) has the order
O½PLðkÞ�l1þl2þm1þm2�1, because of the property of cumu-
lants [25]. Therefore, we only need to consider n1 þ n2 þ
m1 þm2 � 3 up to one-loop corrections. Expanding the
exponential factors in Eq. (24), but the first prefactor, and
truncating third- or higher-order terms in PLðkÞ, we obtain

PobjðkÞ ¼ exp

�
kikj

Z d3p

ð2�Þ3 CijðpÞ
�
½a00ðkÞ þ hF0ia10ðkÞ

þ hF00ia01ðkÞ þ hF0i2a20ðkÞ þ hF0ihF00ia11ðkÞ
þ hF00i2a02ðkÞ�; (A11)

where

a00ðkÞ ¼ �kikjCijðkÞ � kikjkk
Z d3p

ð2�Þ3Cijkðk;�p;p� kÞ

þ 1

2
kikjkkkl

Z d3p

ð2�Þ3CijðpÞCklðk�pÞ; (A12)

a10ðkÞ ¼ 2kiCiðkÞ þ kikj
Z d3p

ð2�Þ3 ½Cijðk;�p;p� kÞ
� 2Cijð�p;p� k; kÞ�

� 2kikjkk
Z d3p

ð2�Þ3 CiðpÞCjkðk� pÞ; (A13)

a01ðkÞ ¼ �ki
Z d3p

ð2�Þ3 Cið�p;p� k; kÞ

þ kikj
Z d3p

ð2�Þ3 CiðpÞCjðk� pÞ; (A14)

a20ðkÞ ¼ CðkÞ þ 2ki
Z d3p

ð2�Þ3 Ciðk;�p;p� kÞ

þ kikj
Z d3p

ð2�Þ3 ½CiðpÞCjðk� pÞ
� CðpÞCijðk� pÞ�; (A15)

a11ðkÞ ¼ 2ki
Z d3p

ð2�Þ3 CðpÞCiðk� pÞ; (A16)

a02ðkÞ ¼ 1

2

Z d3p

ð2�Þ3 CðpÞCðk� pÞ: (A17)

We have neglected effects of the smoothing kernel WðkRÞ
in the above equation, for the consistency of our treatment
as discussed in the end of Sec. III A. A cross power
spectrum of differently biased objects is similarly given.
When the bias functions of these objects are F1 and F2, the
cross power spectrum is given by substitutions

hF0i ! 1
2ðhF0

1i þ hF0
2iÞ; (A18)
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hF00i ! 1
2ðhF00

1 i þ hF00
2 iÞ; (A19)

hF0i2 ! hF0
1ihF0

2i; (A20)

hF00i2 ! hF00
1 ihF00

2 i; (A21)

hF0ihF00i ! 1
2ðhF0

1ihF00
2 i þ hF00

1 ihF0
2iÞ; (A22)

in Eq. (A11).
Next we define mixed polyspectra of each order in

perturbations:

h~�Lðk1Þ � � � ~�LðklÞ ~�ðn1Þ
i1

ðp1Þ � � � ~�ðnmÞ
im

ðpmÞic
¼ ð2�Þ3�3

Dðk1 þ � � � þ kl þ p1 þ � � � þ pmÞ
� ð�iÞmCðn1���nmÞ

i1���im ðk1; . . . ; kl;p1; . . . ;pmÞ; (A23)

where ~�ðnÞ
i are the Fourier transforms of the displacement

field of order n in Eq. (A1). For lþm ¼ 2 in Eq. (A23),
we also use notations similar to those in Eq. (A10), such as

CðnÞðkÞ, CðnÞ
i ðkÞ, Cðn1n2Þ

ij ðkÞ. Equation (A23) is nonzero only
when lþ n1 þ � � � þ nm is an even number. The original
mixed polyspectra of Eq. (A9) are given by sums of the
polyspectra of each order. In particular,

CiðpÞ ¼ Cð1Þ
i ðpÞ þ Cð3Þ

i ðpÞ þ � � � ; (A24)

CijðpÞ ¼ Cð11Þ
ij ðpÞ þ Cð22Þ

ij ðpÞ þ Cð13Þ
ij ðpÞ þ Cð31Þ

ij ðpÞ
þ � � � ; (A25)

Ciðp1;p2;p3Þ ¼ Cð2Þ
i ðp1;p2;p3Þ þ � � � ; (A26)

Cijðp1;p2;p3Þ ¼ Cð12Þ
ij ðp1;p2;p3Þ þ Cð21Þ

ij ðp1;p2;p3Þ
þ � � � ; (A27)

Cijkðp1;p2;p3Þ ¼ Cð112Þ
ijk ðp1;p2;p3Þ þ Cð121Þ

ijk ðp1;p2;p3Þ
þ Cð211Þ

ijk ðp1;p2;p3Þ þ � � � ; (A28)

up to second order in PLðkÞ. Using the LPT kernels of
Eq. (A2), the mixed polyspectra of each order are given by

CðpÞ ¼ PLðpÞ; (A29)

Cð1Þ
i ðpÞ ¼ Lð1Þ

i ðpÞPLðpÞ; (A30)

Cð11Þ
ij ðpÞ ¼ �Lð1Þ

i ðpÞLð1Þ
j ðpÞPLðpÞ; (A31)

Cð3Þ
i ðpÞ ¼ 1

2
PLðpÞ

Z d3p0

ð2�Þ3 L
ð3Þ
i ðp;�p0;p0ÞPLðp0Þ;

(A32)

Cð22Þ
ij ðpÞ ¼ � 1

2

Z d3p0

ð2�Þ3 L
ð2Þ
i ðp0;p� p0ÞLð2Þ

j ðp0;p� p0Þ
� PLðp0ÞPLðjp� p0jÞ; (A33)

Cð13Þ
ij ðpÞ ¼ Cð31Þ

ji ðpÞ

¼ � 1

2
Lð1Þ
i ðpÞPLðpÞ

�
Z d3p0

ð2�Þ3 L
ð3Þ
j ðp;�p0;p0ÞPLðp0Þ; (A34)

Cð2Þ
i ðp1;p2;p3Þ ¼ Lð2Þ

i ðp1;p2ÞPLðp1ÞPLðp2Þ; (A35)

Cð12Þ
ij ðp1;p2;p3Þ ¼ Cð21Þ

ji ðp1;p3;p2Þ
¼ �Lð1Þ

i ðp2ÞLð2Þ
j ðp1;p2ÞPLðp1ÞPLðp2Þ;

(A36)

Cð112Þ
ijk ðp1;p2;p3Þ¼Cð211Þ

kij ðp3;p1;p2Þ
¼Cð121Þ

jki ðp2;p3;p1Þ
¼Lð1Þ

i ðp1ÞLð1Þ
j ðp2ÞLð2Þ

k ðp1;p2Þ
�PLðp1ÞPLðp2Þ: (A37)

As in paper I, diagrammatic representations are helpful
to understand the structure of perturbative terms. With
Feynman rules of Fig. 6 and appropriate statistical factors,
Eqs. (A29)–(A37) are diagrammatically represented in
Fig. 7. Substituting Eqs. (A12)–(A17) and (A24)–(A37)
into Eq. (A11), we obtain a lengthy expression of PobjðkÞ.
For a diagrammatic representation of the result, we intro-
duce additional Feynman rules for external lines in Fig. 8.
All the contributions to the power spectrum PobjðkÞ, but the
exponential prefactor, are diagrammatically given in Fig. 9.
In the exponent of the exponential prefactor in Eq. (A11),
we consider only the first order in PLðkÞ, since the remain-
ing factor is already first order. In this approximation, the
exponential factor corresponds to the bubble diagrams in
Fig. 10. If we expand this exponential factor as well, we

p

: PL(p)

pn

p1

i

: 1

: L
(n)
i (p1, . . . , pn)

FIG. 6. Feynman rules for diagrammatic representations.
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obtain a standard loop expansion of the power spectrum. In
the absence of bias, the result agrees with that of standard
EPT. In paper I, we pointed out that keeping the exponen-
tial prefactor unexpanded provides a better description of
the nonlinear power spectrum in the quasilinear regime
than the standard EPT. In the diagrammatic interpretation,
the use of the exponential prefactor corresponds to the
partial renormalization of the vacuum graphs, as depicted
in Fig. 10.

In real space, it is straightforward to evaluate Eq. (A11)
using Eqs. (A12)–(A37) and perturbative kernels in real

space, LðnÞ. The above expressions are not confined in real
space, and they are also applicable for redshift-space clus-

tering when we use perturbative kernels LsðnÞ in
Eqs. (A29)–(A37). As a result, the mixed polyspectra in
redshift space are obtained from those in real space, sub-
jecting to linear transformations:

Cðn1���nmÞ
i1���im ! Csðn1���nmÞ

i1���im ¼ Rðn1Þ
i1j1

� � �RðnmÞ
imjm

Cðn1���nmÞ
j1���jm : (A38)

Therefore, it is desirable to first perform the integrations
which appear in Eqs. (A12)–(A17) with decomposed poly-
spectra of Eqs. (A24)–(A27) in real space. The calculations
are similar to those presented in Appendix A of paper I.
Several integrations we need are already given there, and
others are not. To present the results, we first define the
following integrals:

QnðkÞ ¼ k3

4�2

Z 1

0
drPLðkrÞ

Z 1

�1
dxPL½kð1þ r2 � 2rxÞ1=2�

� ~Qnðr; xÞ; (A39)

RnðkÞ ¼ k3

4�2
PLðkÞ

Z 1

0
drPLðkrÞ ~RnðrÞ; (A40)

where

~Q 1 ¼ r2ð1� x2Þ2
ð1þ r2 � 2rxÞ2 ;

~Q2 ¼ ð1� x2Þrxð1� rxÞ
ð1þ r2 � 2rxÞ2 ;

(A41)

~Q 3 ¼ x2ð1� rxÞ2
ð1þ r2 � 2rxÞ2 ;

~Q4 ¼ 1� x2

ð1þ r2 � 2rxÞ2 ;
(A42)

~Q 5 ¼ rxð1� x2Þ
1þ r2 � 2rx

; ~Q6 ¼ ð1� 3rxÞð1� x2Þ
1þ r2 � 2rx

;

(A43)

~Q 7 ¼ x2ð1� rxÞ
1þ r2 � 2rx

; ~Q8 ¼ r2ð1� x2Þ
1þ r2 � 2rx

; (A44)

~Q 9 ¼ rxð1� rxÞ
1þ r2 � 2rx

; ~Q10 ¼ 1� x2; (A45)

~Q 11 ¼ x2; ~Q12 ¼ rx; ~Q13 ¼ r2; (A46)

and

FIG. 7. Diagrammatic representations of polyspectra.

: ki1 · · · kim〈F (n)〉k
pm

i1

im

p′
n

p1

p′
1

FIG. 8. Feynman rules for external lines. The momentum
conservation, k ¼ p1 þ � � �pm þ p0

1 þ � � �p0
n, is assumed.
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~R1 ¼
Z 1

�1
dx

r2ð1� x2Þ2
1þ r2 � 2rx

¼ � 1þ r2

24r2
ð3� 14r2 þ 3r4Þ

þ ðr2 � 1Þ4
16r3

ln










1þ r

1� r









; (A47)

~R2 ¼
Z 1

�1
dx

ð1� x2Þrxð1� rxÞ
1þ r2 � 2rx

¼ 1� r2

24r2
ð3� 2r2 þ 3r4Þ

þ ðr2 � 1Þ3ð1þ r2Þ
16r3

ln










1þ r

1� r









; (A48)

After lengthy algebra (see also paper I), we obtain

CðkÞ ¼ PLðkÞ; (A49)

Cð1Þ
i ðkÞ ¼ ki

k2
PLðkÞ; (A50)

Cð3Þ
i ðkÞ ¼ 5

21

ki
k2

R1ðkÞ; (A51)

Cð11Þ
ij ðkÞ ¼ � kikj

k4
PLðkÞ; (A52)

Cð22Þ
ij ðkÞ ¼ � 9

98

kikj

k4
Q1ðkÞ; (A53)

Cð13Þ
ij ðkÞ ¼ Cð31Þ

ij ðkÞ ¼ � 5

21

kikj

k4
R1ðkÞ; (A54)

Z d3p

ð2�Þ3 C
ð2Þ
i ðk;�p;p� kÞ ¼ 3

7

ki
k2

½R1ðkÞ þ R2ðkÞ�;
(A55)

Z d3p

ð2�Þ3 C
ð2Þ
i ð�p;p� k; kÞ ¼ � 3

7

ki
k2

Q8ðkÞ; (A56)

Z d3p

ð2�Þ3C
ð12Þ
ij ðk;�p;p� kÞ ¼

Z d3p

ð2�Þ3C
ð21Þ
ij ðk;�p;p� kÞ

¼ � 3

14

�ij

k2
R1ðkÞ

þ 3

14

kikj

k4
½R1ðkÞ þ 2R2ðkÞ�;

(A57)

Z d3p

ð2�Þ3 C
ð12Þ
ij ð�p;p� k;kÞ ¼ � 3

7

kikj

k4
Q5ðkÞ; (A58)

Z d3p

ð2�Þ3 C
ð21Þ
ij ð�p;p� k; kÞ ¼ � 3

7

kikj

k4
½R1ðkÞ þ R2ðkÞ�;

(A59)

FIG. 9. All kinds of tree and one-loop diagrams for the biased power spectrum but an exponential prefactor. Topologically equivalent
diagrams are not listed.

FIG. 10. Diagrammatic representation of the exponential pre-
factor in one-loop approximation.
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Z d3p

ð2�Þ3 C
ð112Þ
ijk ðk;�p;p� kÞ

¼
Z d3p

ð2�Þ3 C
ð121Þ
ijk ðk;�p;p� kÞ

¼ 3

14

ki�jk

k4
R1ðkÞ � 3

14

kikjkk

k6
½R1ðkÞ þ 2R2ðkÞ�;

(A60)

Z d3p

ð2�Þ3 C
ð211Þ
ijk ðk;�p;p� kÞ

¼ 3

14

ki�jk

k4
Q1ðkÞ � 3

14

kikjkk

k6
½Q1ðkÞ þ 2Q2ðkÞ�;

(A61)

Z d3p

ð2�Þ3 CðpÞCðk� pÞ ¼ Q13ðkÞ; (A62)

Z d3p

ð2�Þ3 CðpÞC
ð1Þ
i ðk� pÞ ¼ ki

k2
Q12ðkÞ; (A63)

Z d3p

ð2�Þ3 CðpÞC
ð11Þ
ij ðk� pÞ ¼ � 1

2

�ij

k2
Q10ðkÞ þ 1

2

kikj

k4

�½Q10ðkÞ � 2Q11ðkÞ�;
(A64)

Z d3p

ð2�Þ3 C
ð1Þ
i ðpÞCð1Þ

j ðk� pÞ ¼ � 1

2

�ij

k2
Q8ðkÞ þ 1

2

kikj

k4

�½Q8ðkÞ þ 2Q9ðkÞ�;
(A65)

Z d3p

ð2�Þ3 C
ð1Þ
ði ðpÞCð11Þ

jkÞ ðk� pÞ ¼ � 1

2

�ðijkkÞ
k4

Q6ðkÞ

þ 1

2

kikjkk

k6

� ½Q6ðkÞ � 2Q7ðkÞ�;
(A66)

Z d3p

ð2�Þ3 C
ð11Þ
ðij ðpÞCð11Þ

klÞ ðk� pÞ

¼ 3

8

�ðijkklÞ
k4

Q1ðkÞ � 1

4

�ðijkkklÞ
k6

½3Q1ðkÞ þ 12Q2ðkÞ

� 2Q4ðkÞ� þ 1

8

kikjkkkl

k8
½3Q1ðkÞ þ 24Q2ðkÞ

þ 8Q3ðkÞ � 4Q4ðkÞ�; (A67)

where the spatial indices are symmetrized over in
Eqs. (A66) and (A67). In deriving the above equations,
the transverse part of Eq. (A5) does not contribute at all,
because the rotational covariance implies

Z d3p

ð2�Þ3 gðk;pÞTðk;�p;pÞ / k; (A68)

where g is a scalar function.
Applying the transformation of Eq. (A38), the corre-

sponding integrals in redshift space are straightforwardly
obtained. The resulting integrals are substituted in
Eqs. (A11)–(A17) with the help of Eqs. (A24)–(A27).
The final result is represented as

PðsÞ
objðkÞ ¼ expf�½1þ fðfþ 2Þ�2�ðk=kNLÞ2g

�
ð1þ hF0i

þ f�2Þ2PLðkÞ þ
X
n;m

�2nfmEnmðkÞ
�
; (A69)

where

kNL ¼
�

1

6�2

Z
dkPLðkÞ

��1=2
; (A70)

and

E00 ¼ 9

98
Q1 þ 3

7
Q2 þ 1

2
Q3 þ 10

21
R1 þ 6

7
R2

þ hF0i
�
6

7
Q5 þ 2Q7 þ 4

3
R1 þ 12

7
R2

�

þ hF00i
�
3

7
Q8 þQ9

�
þ hF0i2

�
Q9 þQ11

þ 6

7
R1 þ 6

7
R2

�
þ 2hF0ihF00iQ12 þ 1

2
hF00i2Q13;

(A71)

E11 ¼ 18

49
Q1 þ 12

7
Q2 þ 2Q3 þ 40

21
R1 þ 24

7
R2

þ hF0i
�
18

7
Q5 þ 6Q7 þ 4R1 þ 36

7
R2

�

þ hF00i
�
6

7
Q8 þ 2Q9

�
þ hF0i2

�
2Q9 þ 2Q11

þ 12

7
R1 þ 12

7
R2

�
þ 2hF0ihF00iQ12; (A72)

E12 ¼ � 3

14
Q1 � 3

2
Q2 þ 1

4
Q4 � 6

7
R1 þ hF0i

�
Q6 � 6

7
R1

�

� 1

2
hF00iQ8 � 1

2
hF0i2ðQ8 �Q10Þ; (A73)

E22 ¼ 57

98
Q1 þ 51

14
Q2 þ 3Q3 � 1

4
Q4 þ 16

7
R1 þ 30

7
R2

þ hF0i
�
12

7
Q5 �Q6 þ 6Q7 þ 18

7
R1 þ 24

7
R2

�

þ hF00i
�
1

2
Q8 þQ9

�
þ hF0i2

�
1

2
Q8 þQ9

� 1

2
Q10 þQ11

�
; (A74)
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E23 ¼ � 3

7
Q1 � 3Q2 þ 1

2
Q4 � 6

7
R1 þ hF0iQ6; (A75)

E24 ¼ 3

16
Q1; (A76)

E33 ¼ 3

7
Q1 þ 27

7
Q2 þ 2Q3 � 1

2
Q4 þ 6

7
R1 þ 12

7
R2

þ hF0ið�Q6 þ 2Q7Þ; (A77)

E34 ¼ � 3

8
Q1 � 3

2
Q2 þ 1

4
Q4; (A78)

E44 ¼ 3

16
Q1 þ 3

2
Q2 þ 1

2
Q3 � 1

4
Q4; (A79)

and all the other Enm which are not listed above are zero.
Equations (A69)–(A79), together with Eqs. (A39)–

(A48), are a complete set of equations to give the general
one-loop power spectrum with effects of local Lagrangian
bias and redshift-space distortions. Although the number of
terms are large, they are all given by simple integrals of
QnðkÞ and RnðkÞ of Eqs. (A39) and (A40), which are
numerically easy to evaluate. The power spectrum in real
space is obtained by simply putting f ¼ 0. When the bias
is not present, hF0i ¼ hF00i ¼ 0, this result exactly agrees
with the one which is derived in paper I. A cross power
spectrum is obtained by substitutions of Eqs. (A18)–(A22),
after expanding Eq. (A69) in terms of hF0i and hF00i.

[1] P. J. E. Peebles and J. T. Yu, Astrophys. J. 162, 815 (1970);
R. A. Sunyaev and Y. B. Zel’dovich, Astrophys. Space Sci.
7, 3 (1970); J. R. Bond and G. Efstathiou, Astrophys. J.
Lett. 285, L45 (1984); Mon. Not. R. Astron. Soc. 226, 655
(1987); J. A. Holtzman, Astrophys. J. Suppl. Ser. 71, 1
(1989).

[2] A. D. Miller et al., Astrophys. J. Lett. 524, L1 (1999); P. de
Bernardis et al., Nature (London) 404, 955 (2000); S.
Hanany et al., Astrophys. J. Lett. 545, L5 (2000); C. L.
Bennett et al., Astrophys. J. Suppl. Ser. 148, 1 (2003).

[3] D. J. Eisenstein, W. Hu, and M. Tegmark, Astrophys. J.
Lett. 504, L57 (1998); A. Cooray, W. Hu, D. Huterer, and
M. Joffre, Astrophys. J. Lett. 557, L7 (2001).

[4] C. Alcock and B. Paczynski, Nature (London) 281, 358
(1979).

[5] W. E. Ballinger, J. A. Peacock, and A. F. Heavens, Mon.
Not. R. Astron. Soc. 282, 877 (1996); T. Matsubara and Y.
Suto, Astrophys. J. Lett. 470, L1 (1996).

[6] T. Matsubara and A. S. Szalay, Astrophys. J. Lett. 556,
L67 (2001); Astrophys. J. 574, 1 (2002); Phys. Rev. Lett.
90, 021302 (2003).

[7] W. Hu and Z. Haiman, Phys. Rev. D 68, 063004 (2003); C.
Blake and K. Glazebrook, Astrophys. J. 594, 665 (2003);
H.-J. Seo and D. J. Eisenstein, Astrophys. J. 598, 720
(2003); E. V. Linder, Phys. Rev. D 68, 083504 (2003); L.
Amendola, C. Quercellini, and E. Giallongo, Mon. Not. R.
Astron. Soc. 357, 429 (2005); C. Blake and S. Bridle,
Mon. Not. R. Astron. Soc. 363, 1329 (2005); K.
Glazebrook and C. Blake, Astrophys. J. 631, 1 (2005);
D. Dolney, B. Jain, and M. Takada, Mon. Not. R. Astron.
Soc. 366, 884 (2006); H.-J. Seo and D. J. Eisenstein,
Astrophys. J. 665, 14 (2007).

[8] T. Matsubara, Astrophys. J. 615, 573 (2004).
[9] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005); S.

Cole et al., Mon. Not. R. Astron. Soc. 362, 505 (2005); M.
Tegmark et al., Phys. Rev. D 74, 123507 (2006); G. Hütsi,
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