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Abstract 

Michel [1] and Ekeland and Scheinkman [2] presented the transversality condition for the 

first order differential problems:     
0

max , ,v t t t dt


x
x x , which may have unbounded 

objective functions. Kamihigashi [3] showed a generalization of their transversality 

condition that does not assume concavity. Using the variational approach, this paper deals 

with higher order differential problems:         ( )

0

max , , , , ,nv t t t t t dt


x
x x x x   . We 

derive two conditions: the Euler’s condition and the transversality condition, for such 

problems in a simple manner. They are imperative to solve the variational problems. 

Furthermore, two assumptions are necessary to induce the two conditions. We construct a 

counterexample in which the transversality condition is not satisfied without the two 

assumptions.  

Keywords: Transversality condition; Dynamic optimization; Infinite horizon; Unbounded; 

Higher order differential problems 
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1. Introduction 

 

We study the transversality conditions for the following reduced model 

 (1)  
        

              

( )

0

( )
0

max , , , , ,   subject to

0 ,  0,  , , , , ,  

n

nn N

v t t t t t dt

t t t t t X t




     

x
x x x x

x x x x x x

  

   

 

where N  , v  is a real-valued -thn  order continuously differentiable function, and 

 tx  is -thn  order continuously differentiable.1 Notice that the objective functional of 

(1) is not necessarily finite. So far, the most general form transversality conditions for the 

1n   case is presented in Kamihigashi [3, Theorem 3.2], which generalizes the results of 

Michel [1] and Ekeland and Scheinkman [2]. Kamihigashi considers the transversality 

condition for the first order differential problems:     
0

max , ,v t t t dt


x
x x , using the 

Lebesgue integral. In this paper, we extend their results to higher order differential 

problems using the classical Riemannian integral. In order to attain the maximality in 

these problems, the following two conditions, the Euler’s condition and the transversality 

condition, are needed. To realize the feasibility for the two conditions, further two 

assumptions are provided. The application of such higher order differential problems can 

be found in economics. Specially, second order differential problems appear in the 

discussion concerning the acceleration principle. When the investment depends on the 

variation of the income, consumption then depends on the second order difference of the 

capital. Under such a case, the utility will also depend on the second order difference of 

                                                  
1 Normally,   is defined on  nN   . The domain of   is denoted by  X t , in included in  nN , 

for all t .  
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the capital.  

Obviously, if the objective function   is a piece-wise -thn  order continuously 

differentiable function, we should need to consider the problem under the Lebesgue 

integral. Kamihigashi [3] considers such a case only for the first order differential 

problems. His Assumption 3.1 corresponds to our two assumptions when 1n  . 

We first use the variational approach to present a complete representation of the two 

conditions for higher order differntial problems. Using the variational approach, Chiang 

[4] also considers the transversality condition for the infinite horizon first order 

differential problems ( 1n  ). The two assumptions should be needed in this approach. To 

show this fact, we provide a counterexample. However, the two assumptions are naturally 

satisfied when a discounting factor is incorporated into the model. Therefore, the 

transversality condition generalizes the result obtained in the presence of discounting. The 

optimal solutions to this class are discussed in Cai and Nitta [5-7].  

 

2.  A Complete Characterization of the Transversality Conditions 

 

Suppose that the optimal path to (1) exists and is given by x , optimal in the sense of 

overtaking criterion. We perturb it with -thn  order continuously differentiable curves 

 tp ,  

(2)      t t t  x x p , 

We define  

(3) 
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                      ( ) ( ) ( )

0

, inf , , , , , , , , .x p x p x p x x x
T

n n n

T T

V T v t t t t t t t v t t t t dt   


     


         

We use Brock’s [8] notion of weak maximality as our optimality criterion and assume that 

there exists an optimal path that satisfy the weak maximality criterion, which is defined as: 

an attainable path   tx  is optimal if no other attainable path overtakes it2:  

(4)

                    ( ) ( ) ( )

0

lim inf , , , , , , , , 0.
T

n n n

T T T

v t t t t t t t v t t t t dt  


     

 
       x p x p x p x x x  

  Let    lim ,
T

V V T 


 . Differentiating it with respect to  , we have 

(5)  

                      ( ) ( ) ( )

0 0
0

, , , , , , , ,
lim lim lim inf .

n n nT

T T T

v t t t t t t t v t t t tV
dt

 

  






     

   

     
 

x p x p x p x x x  

  Let 
 

0
lim .

V





   In general,    lim , lim ,
T T

d d

d d
f T f T

 
 

 
  only if  lim ,

T

d
f T

d



 

converges uniformly for   (Lang [9]). We assume 

 

Assumption 1. Assume   converges uniformly for   when T  . 

 

If   satisfies Assumption 1, we can then rewrite (5) as 

(6)

                    ( ) ( ) ( )

0
0

, , , , , , , ,
lim lim inf .

n n nT

T T T

v t t t t t t t v t t t t
dt



  



     





 

     
  

x p x p x p x x x  

  Next, we impose another assumption:  

 

                                                  
2 Brock (1970) shows that once such a path exists once two assumptions are satisfied.  
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Assumption 2. We assume for any 0T  , 

              
0

, , , , , ,
inf

T

T T

v t t t t t v t t t
dt

 



   



    


x p x p x x  
 converges uniformly 

for  . 

 

The assumption means: Let 

 
              

0

, , , , , ,
.,

T v t t t t t v t t t
dtA T

 




       
 

x p x p x x  
 Then there 

exists a sequence  ,nA T   for each 0  , so that    inflim , ,
T T

nn
A T A T 


  , 

uniformly for  , that is, the sequence is uniformly convergence for  . 

Assumption 1 and 2 corresponds to Assumption 3.1 in Kamihigashi [3], which uses the 

Lebesgue integral. When Assumption 1 and 2 are satisfied, then 
0

lim
 

 and inf
T T 

 can be 

interchanged, and equality (6) can then restated as 

(7) 

                    ( ) ( ) ( )

0
0

, , , , , , , ,
lim inf lim .

x p x p x p x x xn n nT

T T T

v t t t t t t t v t t t t
dt



  



     





  

     
  

  

Because T   is finite uniformly for  ,  

if
                    ( ) ( ) ( )

0

, , , , , , , ,n n nT v t t t t t t t v t t t t
dt

  



           


x p x p x p x x x  
 

exists, (7) is then rewritten as 

(8)

                    ( ) ( ) ( )

0
0

, , , , , , , ,
lim inf lim .

n n nT

T T T

v t t t t t t t v t t t t
dt



  



     





  

     
  

x p x p x p x x x  

Since   is differentiable, we see that  
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                    

                    

     

( ) ( ) ( )

( )

0

( ) ( ) ( )

( )
( ) ( ) ( )

, , , , , , , ,
lim

, , , , , , , ,

,x x x

x p x p x p x x x

x p x p x p x x x

p p p

n n n

n

n n n

n
t t t

v t t t t t t t v t t t t

dv v t t t t t t t v t t t t

d

v t v t v t



  



  



     



     

     

     


   

  

  

 

Hence,       ( )

( )
( ) ( ) ( )

0

lim inf .n

T
n

t t tT T T
v t v t v t dt



 
     x x x

p p p    

Using partial integral, we obtain 

(9)    ( ) ( ) ( )

( ) ( 1) ( 1)

0 0

( )k k k

T T
k k kv p dt p v p v dt   x x x 

 , 

and 

      

 

       

( )

( )

( ) ( ) ( )

( )
( ) ( ) ( )

0

( )

0

1 ( 1) 2 ( 2) ( 1)

0

( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) ( 1) ( ) .

n

n

n n n

T
n

t t t

T
n n

T
n n n n n

v t v t v t dt

v v v p t dt

p t v v v p t v v v p t v



    

  

     

             





x x x

x x x

x x x xx x x

p p p



   

 



  

Note that when 0  , the argument is the same. Therefore, for arbitrary -thn  order 

continuously differentiable curve  tp , we have 

(10)

 

       

( )

( ) ( ) ( )

( ) ( )

0

( )

0

1 ( 1) 2 ( 2 ) ( 1)

0
.

0 lim inf ( , , , )

 lim inf ( ) ( 1) ( )

    lim inf ( ) ( 1) ( ) ( ) ( 1) ( )

( )
x x x

x x x xx x x

x x

n

n n n

T

n n

T

T

n n

T

Tn n n n n

T

d
v t p p dt

d

v v v dt

p t v v v p t v v v p t v

p t

 




    



  

    

              



 

   





  

Hence, the Euler’s condition is  

(11)

                        ( ) ( ) ( )

( )

( )

, , , , , , , , , , , ,( 1) 0,n n n

n

n

n

t t t t t t t t t tv v vt t           
 

x x x
x x x x x x xx x

   

which is an extenstion of the standard Euler’s condition ( ) 0x xv v  , and the 

transversality condition is 

(12) 
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   ( ) ( ) ( )

1 ( 1) 2 ( 2) ( 1)

0
lim inf 0.( ) ( 1) ( ) ( ) ( 1) ( )n n n
T

T
n n n n np v v v p v v v p v



                  x x x xx x x       

  We fix 0 1   and : ,C     ,      ( 1)0 0, , 0 0, , 1.n t t        

Next, we consider a special curve  tp . Let    p t x t  , then (12) is modified to  

(13)

   
   

( ) ( ) ( )

( ) ( )

1 ( 1) 2 ( 2) ( 1)

0

1 ( 1) 2 ( 2)

lim inf

lim inf

( ) ( 1) ( ) ( ) ( ) ( 1) ( ) ( )

( ) ( 1) ( ) ( ) ( ) ( 1) ( )

n n n

n n

T

T

T
n n n n n

n n n n

x v v v x v v v x v

x v v v x v v v

  







       

     

           

           

  x x x xx x x

x x x xx x

   

   

   

    ( )

( 1)

0.

( ) n

n

T
x v 




x

Because 0  , we then have 

(14) 

    ( ) ( ) ( )

1 ( 1) 2 ( 2) ( 1)lim inf ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) 0,( )n n n

n n n n n

T T
x v v v x v v v x v    



            x x x xx x x      

which is an extension of Kamihigashi [3]’s transversality condition.  

 

4.  A Counterexample 

 

  Next we show that the two assumptions we identified are imperative in the sense that 

(12) is invalid if one of them is violated. We consider the following simple 

counterexample ( 2n  ): 

(15)              2
, ,x t x t x t x t a bx t cx t        , 

where 0a  , 0b  , 0c  , and the initial value 0x  is given, with 0x a . 

  From (11), we see that the Euler’s condition is  

(16)     0x x xv v v     , 

that is, 

(16’)   2 0x t a b c      



 8

Thus, we have  x t a .  

Choosing a p  so that  0 0p   and   0,p t    0 0p  , there exists 0 0T  , so 

that   0p t  , 0t T , that is,  p t  is a constant 0p   for 0t T .  

From (12), we see that 

(17)     
0

liminf 0,
T

x x xT
p p  



         

The left hand side (LHS) of (17) can be further rewritten as 

 LHS of (17)=  
0

liminf
T

T
p b c pc



    
  

     
    
 

liminf ( ) (0) ( ) 0

liminf ( ) 0.
T

T

p T p b c p c

p b c p b


 

   

   


 

We have then derived a contradiction to (12). Next we show that Assumption 1 is violated, 

which causes this contradiction. 

  We first consider    , , , ,x p x p x p x x x             . Substituting  x t a  into it, 

we have 

(18) 

   
            
   

2 2

2

, , , ,

.

x p x p x p x x x

x p a b x p c x p x a b x c x

p bp cp

    

  

 

   

          

  

     

     

 

 

Hence,  
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(20) 

   

  

 

         

2

0

2

0

2

0
0

2

0

2

0

2

0

2

0

inf

inf

inf

inf 0 0

inf

inf

T

T T

T

T T

T
T

T T

T

T T

T

T T

T

T T

T

p bp cp
dt

p bp cp dt

p dt bp cp

p dt b p T p c p T p

p dt bp

p dt bp

p dt bp

 









































 

  

 
   

 
 

      
 
 

  
 
 

  
 

 















 

 



 

 

  is the limit of (20) when T  , 0  . However, because 2

0

lim lim
T

T
p dt




 
  , 

whereas 2

0
0

lim lim 0
T

T
p dt




 
 , we see that   does not converge uniformly for   when 

T  . Hence, Assumption 1 is not satisfied and (14) (when 2,n   

  lim inf ( ) 0( )
T T

x v v x v


  x x x   ) is also not satisfied.  

 

5.  Conclusions 

  

This paper gives the two assumptions that are needed to consider infinite horizon 

optimization problems in which the objective functions are unbounded. It generalizes the 

results of Michel [1], Ekeland and Scheinkman [2], and Kamihigashi [3] ( 1n  ) to higher 

order differential problems. Specifically, when 1n  , our transversality condition is 

exactly the same as Kamihigashi (Theorem 3.2). Moreover, Assumption 3.1 of 
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Kamihigashi corresponds to our Assumption 1 and 2. Our Assumption 1 and 2 obviously 

hold when a discounting factor is incorporated into the model. This paper also generalizes 

the transversality conditions examined in the presence of discounting.  
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