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ABSTRACT

Galois field GF(2m) has many important applications, such as cryptography and error cor-

recting codes. For high-speed implementation of these applications, efficient implemen-

tation of arithmetic operations in GF(2m) is important. In this dissertation, three meth-

ods for efficient implementation of arithmetic operations in GF(2m) are proposed. These

methods are based on the idea of hardware assist that yields higher-speed and lower-power-

consumption implementation.

Chapter 2 shows arithmetic operations in GF(2m), the extended Euclid’s algorithm,

and a previously proposed hardware inversion algorithm as preliminaries. Chapter 3 pro-

poses a software algorithm for inversion in GF(2m) that is suitable for implementation with

a polynomial multiply instruction on GF(2). Among previously proposed instruction set

extensions for cryptography, ones for elliptic curve cryptography (ECC) or advanced en-

cryption standard (AES) include a polynomial multiply instruction on GF(2), because this

instruction can accelerate multiplication in GF(2m). The algorithm proposed in the chapter

employs the matrix that represents the operations required by several contiguous iterations

of the previously reported algorithm, and computes inversion fast through the matrix with a

polynomial multiply instruction on GF(2). When the word size of the processor is 32 and

m is 571, the proposed algorithm computes inversion with approximately half the num-

ber of polynomial multiply instructions on GF(2) and XOR instructions required by the

previously reported algorithm on the average.



Chapter 4 proposes a fast hardware division algorithm in GF(2m) with parallelization

of modular reductions for fast division circuit. This algorithm requires only one iteration

to perform the operations required by two iterations of a previously reported algorithm,

and performs two modular reductions in parallel by changing the order of execution of the

operations. A circuit based on the algorithm proposed in the chapter has almost the same

critical path delay as previously reported circuits, nevertheless the number of clock cycles

required by the circuit is almost half of that of previously reported circuits. The circuit is

estimated to be over 35% faster than previously reported circuits with logic synthesis.

Chapter 5 proposes a hardware algorithm for a combined circuit of multiplication and

inversion in GF(2m). Although both multiplication and inversion are employed for ECC,

realization of two circuits for them yields large area. Thus, for reduction of hardware

of these circuits, the algorithm proposed in the chapter is developed by focusing on the

similarities between conventional multiplication and inversion algorithms so that almost all

hardware components of a circuit based on the algorithm can be shared by multiplication

and inversion. The combined circuit is estimated to be over 15% smaller than the previously

proposed combined circuits with logic synthesis.

Finally, Chap. 6 concludes that hardware-assist is a promising technique for efficient

implementation of arithmetic operations in GF(2m). In addition, by focusing on similar-

ities and parallelism of algorithms, reduction and acceleration of them are possible. The

knowledge obtained through the study should make hardware-assisted implementation of

arithmetic operations in GF(2m) as well as other operations necessary in important appli-

cations more efficiently.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUNDS

With the spread of the Internet and mobile devices, the technologies for transferring infor-

mation safely and surely become much more important than ever before. Galois field has

many applications for these technologies, such as public-key cryptography, symmetric key

cryptography and error correcting codes. Galois field GF(2m), i.e. an extension field of

GF(2), is the most frequently employed among various types of Galois fields, because of

its ease of implementation with computers [1].

Implementation of arithmetic operations in GF(2m) is studied especially in elliptic

curve cryptography (ECC), because GF(2m) with large m is employed for it. In this study,

we focus on the hardware-assisted implementation of arithmetic operations in GF(2m) be-

cause it yields higher-speed and lower-power-consumption, although there are many stud-

ies about software implementation of them [2–7].

Hardware-assisted implementation can be classified into two types. One is adding small

arithmetic units to a general purpose processor and extending its instruction set for efficient

implementation. Although this way has been studied especially in the area of multime-
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dia, recently it has also come to be studied in the area of cryptography such as AES and

ECC [8–13]. Most of these studies reported that instruction set for operations that appear

in cryptographic processing, especially for multiplication in GF(2m), is useful for cryp-

tography. The other type of implementation is designing dedicated circuits for arithmetic

operations in GF(2m). This way is common in multiplication [14–22], multiplicative inver-

sion [20–30], and the combined arithmetic operations such as A2(x) ·B(x)+C(x) [31,32].

In this dissertation, we propose three methods for hardware-assisted implementation of

arithmetic operations in GF(2m). One is a fast software algorithm for inversion in GF(2m)

that is suitable for implementation with a polynomial multiply instruction on GF(2). An-

other is a fast hardware algorithm for division in GF(2m) that parallelizes the two modular

reductions required by two iterations of previously reported algorithms by changing the

order of execution of the operations. The other one is a hardware algorithm for a combined

circuit of multiplication and inversion. By using this algorithm, we can design a combined

circuit in which almost all hardware components are shared by multiplication and inversion.

Using the methods proposed in this dissertation, we can implement arithmetic opera-

tions in GF(2m) with hardware assist efficiently.

1.2 OUTLINES OF THE DISSERTATION

In Chap. 2, we show arithmetic operations in Galois field GF(2m) and a previously reported

hardware algorithm for inversion in GF(2m) which will be employed in Chap. 3 and 5.

In Chap. 3, we propose a fast software algorithm for inversion in GF(2m) suitable

for implementation with a polynomial multiply instruction on GF(2). In recent years, in-

struction set extensions for cryptosystems are studied, and many researches about them

reported a polynomial multiply instruction on GF(2) is useful for implementation of cryp-

tography [8–13]. The proposed algorithm in the chapter can compute inversion in GF(2m)

2
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fast by means of this instruction. In this algorithm, the operations required by several con-

tiguous iterations of previously reported algorithm are represented as a matrix computed

with only single-word operations. Then, these operations are performed at once through

the matrix efficiently by means of a polynomial multiply instruction on GF(2m). When

the word size of the processor is 32 and m is 571, the proposed algorithm compute inver-

sion with approximately half the number of polynomial multiply instructions on GF(2) and

XOR instructions compared to the conventional algorithm evaluated in [4] on the average.

In Chap. 4, we propose a hardware algorithm for division in GF(2m) to develop a

fast division circuit. This algorithm is based on the extended Euclid’s algorithm and re-

quires only one iteration to perform the operations that require two iterations in previously

reported division algorithms based on the extended Euclid’s algorithm. Although two it-

erations of the previously proposed division algorithms perform two modular reductions

sequentially, the algorithm proposed in the chapter performs them in parallel by changing

the order of execution of the operations. Thus, a circuit based on the proposed algorithm

has almost the same critical path delay as previously reported division circuits, while the

number of clock cycles required by this circuit is almost half of that required by previously

reported circuits.

In Chap. 5, we propose a hardware algorithm for a combined circuit for multiplication

and inversion in GF(2m) by focusing on the similarities between the conventional multi-

plication and inversion algorithms. In a combined circuit based on the algorithm proposed

in the chapter, almost all hardware components of the circuit are shared by multiplication

and inversion. Thus, the circuit is effective in area-restricted devices because it can be

implemented with much smaller area than previously proposed circuits. Compared with

previously proposed combined circuits for multiplication and division, the circuit has sev-

eral advantages. Although the area complexity of the circuit proposed in [20] is O(m2),

that of the circuit is O(m). The circuits proposed in [21,22] are based on the Stein’s binary

3
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GCD algorithm for division and need to reverse the order of the coefficients of inputs and

output polynomials for multiplication. Thus, the circuit proposed in [22] has extra area for

such pre- and post-computation. By logic synthesis, the area of the proposed circuit is es-

timated to be approximately over 15% smaller than that of previously proposed combined

multiplication and division circuits.

In Chap. 6, we conclude this dissertation.

4



CHAPTER 2

PRELIMINARIES

2.1 ARITHMETIC OPERATIONS IN GF(2m)

Let

G(x) = xm + gm−1x
m−1 + · · · + g1x + 1 (2.1)

be an irreducible polynomial on GF(2), where gi ∈ {0, 1}. Then, we can represent an

arbitrary element in GF(2m) defined by G(x) as

A(x) = am−1x
m−1 + · · · + a1x + a0, (2.2)

where ai ∈ {0, 1}. This representation is called the polynomial representation of an ele-

ment.

Addition and subtraction in GF(2m) are defined as polynomial addition and subtraction

on GF(2), respectively. Thus, both are computed with bitwise exclusive-OR operation as

A(x) + B(x) = (am−1 ⊕ bm−1) xm−1 + · · · + (a1 ⊕ b1) x + (a0 ⊕ b0) , (2.3)
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where the operation “⊕” represents the XOR operation and bi denotes the j-th coefficient

of the polynomial B(x). Multiplication “·” in GF(2m) is defined as a polynomial multipli-

cation modulo G(x) on GF(2) as

A(x) · B(x) = A(x) × B(x) mod G(x), (2.4)

where the operation “×” represents polynomial multiplication on GF(2). Multiplicative

inverse B−1(x) of B(x) in GF(2m) is defined as the element that satisfies

B(x) · B−1(x) = 1. (2.5)

Then, division “÷” in GF(2m) is defined as

A(x) ÷ B(x) = A(x) · B−1(x). (2.6)

In this dissertation, an algorithm that receives three polynomials A(x), B(x), and G(x),

and outputs A(x) · B(x) in the field defined by G(x) is called multiplication algorithm,

where A(x) and B(x) are polynomial representations of two elements and G(x) is the

irreducible polynomial that defines the field. Similarly, an algorithm that receives two

polynomials B(x) and G(x), and outputs B−1(x) in the field defined by G(x) is called

inversion algorithm. An algorithm that receives three polynomials A(x), B(x), and G(x),

and outputs A(x) ÷ B(x) in the field defined by G(x) is called division algorithm.

2.2 EXTENDED EUCLID’S ALGORITHM FOR POLYNOMIAL

The Euclid’s algorithm for polynomial, which calculates the greatest common divisor (GCD)

polynomial of two polynomials, B(x) and G(x), can be extended so that it can calculate

6
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the two polynomials, V (x) and Z(x), that satisfy

GCD (B(x), G(x)) = V (x) × B(x) + Z(x) × G(x). (2.7)

The extended Euclid’s algorithm is as follows, where the notation deg(·) denotes the degree

of a polynomial. the notation bR(x)/S(x)c denotes the quotient polynomial that satisfies

S(x) = bS(x)/R(x)c × R(x) + rem(x) (deg(rem(x)) < deg(S(x))) . (2.8)

[Algorithm EEA]

(The Extended Euclid’s Algorithm for Polynomial on GF(2))

Input: B(x), G(x): deg(G(x)) ≤ deg(B(x))

Output: GCD (B(x), G(x)), and V (x) and Z(x) that satisfy Eq. (2.7).

1: R(x) := B(x); U(x) := 1; W (x) := 0;

2: S(x) := G(x); V (x) := 0; Z(x) := 1;

3: while R(x) 6= 0 do

4: Q(x) := bS(x)/R(x)c;

5:

R(x)

S(x)

 :=

S(x) − R(x) × Q(x)

R(x)

 ;

6:

U(x)

V (x)

 :=

V (x) − U(x) × Q(x)

U(x)

 ;

7:

W (x)

Z(x)

 :=

Z(x) − W (x) × Q(x)

W (x)

 ;

8: end while

9: output S(x), V (x), and Z(x) as the results.

7
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R(x) S(x) U(x) V (x) Q(x)

— x6 + x4 x7 + x6 + x3 + x + 1 1 0 —
1 x5 + x4 + x3 + x + 1 x6 + x4 x + 1 1 x + 1
2 x4 + x3 + x2 + 1 x5 + x4 + x3 + x + 1 x + 1 1 x + 1
3 1 x4 + x3 + x2 + 1 x3 + x + 1 x2 x
4 0 1 — x3 + x + 1 —

Figure 2.1: Example of Inversion by Algorithm EEA (m = 7, G(x) = x7 +x6 +x3 +x+1,
B(x) = x6 + x4)

�

This algorithm can compute inversion by choosing the input values B(x) and G(x) as

a polynomial representation of an element and the irreducible polynomial with degree m

that defines the field, respectively [1]. This is explained as

GCD(B(x), G(x)) = V (x) × B(x) + Z(x) × G(x)

1 ≡ V (x) × B(x) (mod G(x))

B−1(x) ≡ V (x) (mod G(x)).

(2.9)

This algorithm can also compute division “A(x)÷B(x)” by replacing the initial value

U(x) by A(x). Note that, in this algorithm, we can compute inversion or division without

computing W (x) or Z(x) because they are computed independently of S(x) and V (x). In

addition, in the inversion case, we can obtain correct element without polynomial reduc-

tions of U(x) or V (x).

Figure 2.1 shows an example of inversion by Algorithm EEA, where m = 7, G(x) =

x7 + x6 + x3 + x + 1, and B(x) = x6 + x4. As described earlier, this example omits

the calculation of W (x) and Z(x). In this example, the inverse B−1(x) can be obtained as

V (x).

8



2.3. PREVIOUSLY PROPOSED HARDWARE INVERSION ALGORITHM

2.3 PREVIOUSLY PROPOSED HARDWARE INVERSION AL-

GORITHM

We explain the hardware inversion algorithm in GF(2m) proposed by Yan and Sarwate

[29], which is a typical algorithm based on the extended Euclid’s algorithm and will be

employed in Chap. 3 and 5. For VLSI implementation, this algorithm checks only the

m-th coefficients of two polynomials in the calculation of GCD, thus the polynomials are

multiplied by some power of x relative to the proper ones. The algorithm is as follows,

where rm denotes the m-th coefficients of R(x), and δ is a variable for determining the

time of swap of the polynomials.

[Algorithm YS]

(Yan and Sarwate’s Inversion Algorithm [29])

1: S(x) := G(x); V (x) := 0;

2: R(x) := B(x) × x; U(x) := 1;

3: δ := −1;

4: for i = 1 to 2m − 1 do

5: if rm = 0 then

6: R(x) := x × R(x);

7: U(x) := x × U(x);

8: else

9: if δ ≥ 0 then

10: R(x) := x × (R(x) − S(x));

11: U(x) := x × (U(x) − V (x));

12: else

9
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13:

R(x)

S(x)

 :=

x × (R(x) − S(x))

R(x)

 ;

14:

U(x)

V (x)

 :=

x × (U(x) − V (x))

U(x)

 ;

15: δ := −δ;

16: end if

17: end if

18: δ := δ − 1;

19: end for

20: output V (x) ÷ xm−1 as the result.

�

Note that, at the end of the k-th iteration in this algorithm, all uj and vj are 0 for

j’s outside the range [max(0, k − m), k], where uj and vj denote the j-th coefficients of

the polynomials, U(x) and V (x), respectively. Thus, when we implement this algorithm

as a sequential circuit, (m + 1)-bit width is sufficient for registers of R(x) and S(x) by

employing cyclic shift. The variable δ is employed to determine the time of swap of the

two polynomials, R(x) and S(x), for mutual division.

Figure 2.2 shows an example of inversion by Algorithm YS, where m = 7, G(x) =

x7 + x6 + x3 + x + 1, and B(x) = x6 + x4.

10
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i R(x) S(x) U(x) V (x) δ

x7+x5 x7+x6+x3+x+1 1 0 −1
1 x7+x6+x4+x2+x x7+x5 x 1 0
2 x7+x6+x5+x3+x2 x7+x5 x2+x 1 −1
3 x7+x4+x3 x7+x6+x5+x3+x2 x3+x2+x x2+x 0
4 x7+x6+x5+x3 x7+x6+x5+x3+x2 x4 x2+x −1
5 x3 x7+x6+x5+x3 x5+x3+x2 x4 0
6 x4 x7+x6+x5+x3 x6+x4+x3 x4 −1
7 x5 x7+x6+x5+x3 x7+x5+x4 x4 −2
8 x6 x7+x6+x5+x3 x8+x6+x5 x4 −3
9 x7 x7+x6+x5+x3 x9+x7+x6 x4 −4
10 x7+x6+x4 x7 x10+x8+x7+x5 x9+x7+x6 3
11 x7+x5 x7 x11+x10+x9+x7+x6 x9+x7+x6 2
12 x6 x7 x12+x11 x9+x7+x6 1
13 x7 x7 x13+x12 x9+x7+x6 0

= (x3+x+1) × x6

= B−1(x) × xm−1

Figure 2.2: Example of Inversion by Algorithm YS (m = 7, G(x) = x7 + x6 + x3 + x + 1,
B(x) = x6 + x4)

11





CHAPTER 3

FAST SOFTWARE INVERSION

ALGORITHM IN GF(2m) SUITABLE FOR

IMPLEMENTATION WITH A POLYNOMIAL

MULTIPLY INSTRUCTION ON GF(2)

3.1 INTRODUCTION

Among the basic arithmetic operations in GF(2m), inversion/division takes the maximum

time. Therefore, high-speed implementation for inversion in GF(2m) is required to accel-

erate applications of GF(2m) such as ECC. In this chapter, we propose a fast inversion

algorithm in GF(2m) which is suitable for implementation with a polynomial multiply in-

struction on GF(2).

In recent years, several instruction set extensions for cryptography, such as DES, AES,

and ECC, have been developed [8–13,33,34]. These instruction set extensions can increase

performance of a processor with small cost. Among them, instruction set extensions for
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AES or ECC include polynomial multiply instructions on GF(2) because this instruction

can accelerate calculation of multiplication in GF(2m). The proposed algorithm in this

chapter can compute inversion in GF(2m) fast by means of the instruction.

The algorithm proposed in this chapter is based on the extended Euclid’s algorithm.

In this algorithm, the operations required by several contiguous iterations of Yan and Sar-

wate’s inversion algorithm, which is suitable for VLSI implementation and based on the ex-

tended Euclid’s algorithm [29], are represented as a matrix computed with only single-word

operations. Then, these operations are performed at once through the matrix efficiently by

means of a polynomial multiply instruction on GF(2).

When the word size of the processor is 32 and m is 571, the proposed algorithm com-

putes inversion with approximately half the number of polynomial multiply instructions on

GF(2) and XOR instructions required by the conventional algorithm evaluated in [4] on the

average.

This chapter is organized as follows. In the next section, we explain the software in-

version algorithm evaluated in [4], and a polynomial multiply instruction for cryptography

which is reported before and considered in this chapter. In Sect. 3.3, we propose a fast

inversion algorithm in GF(2m) which is based on the extended Euclid’s algorithm and suit-

able for implementation with a polynomial multiply instruction on GF(2). In Sect. 3.4, we

evaluate the proposed algorithm by the numbers of instructions required for the proposed

algorithm and the previously reported algorithm. In Sect. 3.5, we make several discussions.

In Sect. 3.6, we summarize this chapter.

14
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3.2 PRELIMINARIES

3.2.1 PREVIOUSLY REPORTED SOFTWARE INVERSION ALGORITHMS

Hankerson et al. reported that an inversion algorithm based on the extended Euclid’s al-

gorithm is faster than the other inversion algorithms for software implementation [4]. The

algorithm evaluated in [4] is as follows.

[Algorithm EEIA]

(Software Inversion Algorithm in GF(2m) [4])

1: S(x) := G(x); V (x) := 0;

2: R(x) := B(x); U(x) := 1;

3: while deg(R(x)) 6= 0 do

4: δ := deg(S(x)) − deg(R(x));

5: if δ < 0 then

6:

R(x)

S(x)

 :=

S(x)

R(x)

 ;

7:

U(x)

V (x)

 :=

V (x)

U(x)

 ;

8: δ := −δ;

9: end if

10: S(x) := S(x) − xδ × R(x);

11: V (x) := V (x) − xδ × U(x);

12: end while

13: output U(x) as the result.

�
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R(x) S(x) U(x) V (x) δ

x6 + x4 x7 + x6 + x3 + x + 1 1 0
x6 + x4 x6 + x5 + x3 + x + 1 1 x 1
x6 + x4 x5 + x4 + x3 + x + 1 1 x + 1 0

x5 + x4 + x3 + x + 1 x5 + x2 + x x + 1 x2 + x + 1 −1
x5 + x4 + x3 + x + 1 x4 + x3 + x2 + 1 x + 1 x2 0

x4 + x3 + x2 + 1 1 x2 x3 + x + 1 −1
1 x3 + x2 + 1 x3 + x + 1 x6 + x3 + x + 1 −4

Figure 3.1: Example of Inversion by Algorithm EEIA (m = 7, G(x) = x7+x6+x3+x+1,
B(x) = x6 + x4)

Figure 3.1 shows an example of inversion by Algorithm EEIA, where m = 7, G(x) =

x7 + x6 + x3 + x + 1 and B(x) = x6 + x4. The point of this algorithm is we calculate the

difference of the degrees of two polynomials instead of calculating the quotient polynomial

of them, because multi-word polynomial division takes long time.

3.2.2 POLYNOMIAL MULTIPLY INSTRUCTION FOR CRYPTOGRAPHY

Here, we consider a typical polynomial multiply instruction on GF(2). The effectiveness

of the instruction was reported in [8–11]. We call it MULGF2 instruction as in [8]. MULGF2

instruction calculates the 2-word product from two 1-word operands.

A polynomial multiplier on GF(2) can be realized as an AND-array followed by an

XOR-tree, i.e. “carry-free” version of an integer multiplier. Since there are no carry propa-

gation, such multiplier is fast and small. In addition, we can also unify this multiplier into

an integer multiplier with a little cost as described in [35, 36].

16



3.3. FAST SOFTWARE INVERSION ALGORITHM SUITABLE FOR IMPLEMENTATION WITH
POLYNOMIAL MULTIPLY INSTRUCTION ON GF(2)

3.3 FAST SOFTWARE INVERSION ALGORITHM SUITABLE

FOR IMPLEMENTATION WITH POLYNOMIAL MULTIPLY

INSTRUCTION ON GF(2)

In this section, we propose a fast software inversion algorithm suitable for implementation

with polynomial multiply instruction on GF(2). We develop the algorithm from Algo-

rithm YS shown in Sect. 2.3. If we implement Algorithm YS directly with software, it

will be too slow because this algorithm needs two 1-bit multi-word shifts in each iteration.

However, we can modify this algorithm so that it will be suitable for software implementa-

tion by means of a polynomial multiply instruction on GF(2). We employ the matrix that

represents the operations required by several contiguous iterations of Algorithm YS. The

algorithm processes multiple bits in each iteration through the matrix for fast computation

with only single-word operations.

First, we describe the matrix employed in the proposed algorithm. In Algorithm YS,

R(x), S(x), U(x), and V (x) are updated according to the values of the m-th coefficients of

R(x). Similarly, we can decide the operations for updating R(x), S(x), U(x), and V (x)

in several contiguous iterations of Algorithm YS according to several coefficients of R(x)

and S(x). Therefore, we represent the operations for updating R(x), S(x), U(x), and

V (x) in several contiguous iterations of Algorithm YS as a matrix employed in [37] for

Montgomery modular inversion case.

The operations required by contiguous k iterations of Algorithm YS can be represented

17
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as R(x)

S(x)

 := H(x) ×

R(x)

S(x)

 ; (3.1)

U(x)

V (x)

 := H(x) ×

U(x)

V (x)

 ; , (3.2)

where H(x) is the (2× 2)-matrix computed from coefficients from (m− k + 1)-th to m-th

coefficients of R(x) and S(x), and the elements in H(x) are polynomials on GF(2) with a

degree k or less.

Next, we explain how to compute the matrix H(x) by using an example, where m = 7,

G(x) = x7 + x6 + x3 + x + 1, B(x) = x6 + x4, and k = 3. In this case, the initial values

of variables are R(x) = x7 + x5, S(x) = x7 + x6 + x3 + x + 1, U(x) = x, V (x) = 0, and

δ = −1. In the first iteration of Algorithm YS, the operations,

R(x)

S(x)

 :=

x × (R(x) − S(x))

R(x)

 ; (3.3)

U(x)

V (x)

 :=

x × (U(x) − V (x))

U(x)

 ; , (3.4)

are performed. These operations can be represented in matrices as

R(x)

S(x)

 :=

x x

1 0

 ×

R(x)

S(x)

 ; (3.5)

U(x)

V (x)

 :=

x x

1 0

 ×

U(x)

V (x)

 ; . (3.6)
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By the above operations, we update the variables as R(x) = x7 + x6 + x4 + x2 + x,

S(x) = x7 + x5, U(x) = x, V (x) = 1, and δ = 0. Similarly, in the next iteration of

Algorithm YS, the operations,

R(x) := x × (R(x) − S(x)); (3.7)

U(x) := x × (U(x) − V (x)); , (3.8)

are performed. These operations can be represented in matrices as

R(x)

S(x)

 :=

x x

0 1

 ×

R(x)

S(x)

 ; (3.9)

U(x)

V (x)

 :=

x x

0 1

 ×

U(x)

V (x)

 ; . (3.10)

By the above operations, we update the variables as R(x) = x7 + x6 + x5 + x3 + x2,

S(x) = x7 + x5, U(x) = x2 + x, V (x) = 1, and δ = −1. Then, in the next iteration of

Algorithm YS, the operations

R(x)

S(x)

 :=

x × (R(x) − S(x))

R(x)

 ; (3.11)

U(x)

V (x)

 :=

x × (U(x) − V (x))

U(x)

 ; , (3.12)
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are performed. These operations can be represented in matrices as

R(x)

S(x)

 :=

x x

1 0

 ×

R(x)

S(x)

 ; (3.13)

U(x)

V (x)

 :=

x x

1 0

 ×

U(x)

V (x)

 ; . (3.14)

The operations required by the above three iterations of Algorithm YS can be performed

at once by employing the matrix,

H(x) =

x x

1 0

 ×

x x

0 1

 ×

x x

1 0


=

x3 + x2 + x x3

x2 + x x2

 .

(3.15)

For the word-level description of the proposed algorithm, we partition the polynomials,

R(x), S(x), U(x), and V (x), into polynomials with a degree (w − 1) on GF(2), where

w is the word size of the processor. We can represent R(x) by polynomials with a degree

(w − 1) as

R(x) = RM−1(x)x(M−1)w + · · · + R1(x)xw + R0(x)

Ri(x) = riw+w−1x
w−1 + · · · + riw+1x + riw,

(3.16)

where M = d(m + 1)/we and rj = 0 for j ≥ m because the degree of the polynomial

R(x) is up to m. Similarly, we can represent S(x) by M polynomials with a degree (w−1)

and the two polynomials,U(x) and V (x), by at most 2M polynomials with a degree (w−1).

The matrix H(x) whose elements are polynomials on GF(2) with a degree less than w can
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be computed from RM−1(x) and SM−1(x) by only single-word operations.

Equations (3.1) and (3.2) include (multi-word × single-word)-multiplication. This mul-

tiplication is computed with single-word multiplication as

R(x) × h(x)

=(RM−1(x)x(M−1)w+. . .+R1(x)xw+R0(x))×h(x)

= RM−1(x)×h(x)x(M−1)w+RM−2(x)×h(x)x(M−2)w

+. . .+R1(x)×h(x)xw+R0(x)×h(x).

(3.17)

Thus, this multiplication is computed with M MULGF2 instructions and (M − 1) XOR

instructions.

The proposed fast inversion algorithm in GF(2m) suitable for implementation with a

polynomial multiply instruction on GF(2) is as follows.

[Algorithm MIA]

(The Proposed Algorithm)

1: M := d(m + 1)/we;

2: deg r := deg(B(x)); deg s := m;

3: S(x) := G(x) × xMw−m−1; V (x) := 0;

4: R(x) := B(x) × xMw−deg r−1; U(x) := xMw−deg r ;

5: while deg r > 0 do

6: C(x) := RM−1(x);

7: D(x) := SM−1(x);

8: if C(x) = 0 then

9: R(x) := xw × R(x);

10: U(x) := xw × U(x);
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11: deg r := deg r − w;

12: else

13: H(x) :=

1 0

0 1

 ;

14: j := 1;

15: while j < w and deg r > 0 do

16: j := j + 1;

17: if cw−1 = 0 then

18: C(x) := x × C(x);

19: H(x) :=

x 0

0 1

 × H(x);

20: else

21: if deg r < deg s then

22:

deg r

deg s

 :=

deg s

deg r

 ;

23:

C(x)

D(x)

 :=

x x

1 0

 ×

C(x)

D(x)

 ;

24: H(x) :=

x x

1 0

 × H(x);

25: else

26: C(x) := x × (D(x) − C(x));

27: H(x) :=

x x

0 1

 × H(x);

28: end if

29: deg r := deg r − 1;

30: end if

31: end while
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32:

R(x)

S(x)

 := H(x) ×

R(x)

S(x)

 ;

33:

U(x)

V (x)

 := H(x) ×

U(x)

V (x)

 ;

34: end if

35: end while

36: output


V (x)/xMw if deg s = 0

U(x)/xMw otherwise
as the result.

�

Note that, we initialize U(x) to xMw−deg(B(x)) instead of 1(= x0). This modification

leads the result to be B−1(x) × xMw. Thus, we can avoid a multi-word shift at the end of

the algorithm. U(x) and V (x) are (M + 1) or less words because all uj and vj are 0 for j’s

outside the range [max(0, k−m), k] as mentioned before. Figure 3.2 shows an example of

inversion by Algorithm MIA, where m = 7, w = 4, G(x) = x7 + x6 + x3 + x + 1, and

B(x) = x6 + x4.

3.4 EVALUATION OF THE PROPOSED ALGORITHM

We have evaluated the proposed algorithm by comparing the number of MULGF2 and XOR

instructions of the algorithm with that of Algorithm EEIA. We assume that MULGF2 in-

struction has the same clock cycle latency as XOR instruction. We count the number of

MULGF2 and XOR instructions required by the following operations in Algorithm EEIA
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because they need (multi-word × single-word)-multiplication.

R(x) := R(x) − xj × S(x); (3.18)

U(x) := U(x) − xj × V (x); (3.19)

Similarly, we count the number of MULGF2 and XOR instructions in Eq. (3.1) and (3.2), in

Algorithm MIA. In addition, we also count the number of MULGF2 and XOR instructions

in operations for calculating H(x) which is in the form

H(x) :=

h00(x) h01(x)

h10(x) h11(x)

 × H(x); . (3.20)

Table 3.1 shows the number of MULGF2 and XOR instructions of the above operations.

The figures are the average of inversion of 1, 000 random elements, and we employed

NIST-recommended irreducible polynomials [38]. When w = 32 and w = 16, Algorithm

MIA can compute inversion faster than Algorithm EEIA in almost all m on the average.

Especially, when m and w are 571 and 32, respectively, the proposed algorithm performs

inversion with approximately half the number of instructions required by Algorithm EEIA

on the average. Table 3.1 also shows no advantage when either the number of words or

the word size is small. In these cases, the cost of the computation for the matrix H(x)

is probably bigger than the advantage from performing the operations at once through the

matrix.

3.5 DISCUSSION

In the proposed algorithm, we can compute the matrix H(x) whose elements are polyno-

mials on GF(2) with a degree w or less from the most significant words of R(x) and S(x).
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3.5. DISCUSSION

Therefore, the algorithm can compute inversion faster by modifying a polynomial multiply

instruction on GF(2) to compute w × (w + 1)-bit multiplication.

We can reduce the computation time of the matrix H(x) by employing a look-up table.

The table has w · 22(w−1) entries and each entry is (4w + dlog2(w + 1)e)-bit. For large w,

we can compute the matrix H(x) from a smaller table instead of direct table look-up. For

example, for m = 7, w = 8, G(x) = x7 + x6 + x3 + x + 1, and B(x) = x4 + x2 + x, we

can look up the matrix H1(x) from a smaller table as

H1(x) =

x3 + x2 x2

x 0

 , (3.21)

according to coefficients from a degree 4 to 7 of C(x) and D(x). Then, we can update

C(x) and D(x) by employing H1(x), and look up the matrix H2(x) as

H2(x) =

 x2 + x x2

x3 + x2 + x x3

 , (3.22)

from the same table. Finally, we can compute H(x) by H1(x) and H2(x) as

H(x) = H2(x) × H1(x)

=

 x5 x4 + x3

x6 + x4 + x3 x5 + x4 + x3

 .
(3.23)

This operation can be performed with only single-word instructions.
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CHAPTER 3. FAST SOFTWARE INVERSION ALGORITHM IN GF(2M ) SUITABLE FOR
IMPLEMENTATION WITH A POLYNOMIAL MULTIPLY INSTRUCTION ON GF(2)

3.6 SUMMARY OF THE CHAPTER

We have proposed a fast inversion algorithm in GF(2m) suitable for implementation with

a polynomial multiply instruction on GF(2). In the proposed algorithm, the operations

required by several contiguous iterations of the VLSI algorithm proposed by Yan and Sar-

wate are represented as a matrix. The operations are performed at once through the matrix.

When the word size of the processor is 32 and m is 571, the algorithm performs inversion

with approximately half the number of polynomial multiply instructions on GF(2) and

XOR instructions required by the conventional algorithm for software implementation on

the average. We can also accelerate the proposed algorithm by employing a look-up table.
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CHAPTER 4

FAST HARDWARE DIVISION ALGORITHM

IN GF(2m) WITH PARALLELIZATION OF

MODULAR REDUCTIONS

4.1 INTRODUCTION

Galois field GF(2m) has many applications, especially in elliptic curve cryptography (ECC).

In order to accelerate such applications, high-speed implementation of arithmetic opera-

tions in GF(2m) is required. Among basic arithmetic operations in GF(2m), inversion/division

takes the maximum time. In this chapter, we propose a fast hardware algorithm for division

in GF(2m) with parallelization of modular reductions, which requires only one iteration to

perform the operations that require two iterations in previously reported division algorithms

based on the extended Euclid’s algorithm.

In general, one of the following three methods is employed for division in Galois field:

the Fermat’s little theorem [7,31], the extended Euclid’s algorithm [23–30,39], or a solution

of a system of linear equations [20, 40]. When m is large, division algorithms based on
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the extended Euclid’s algorithm are the most efficient way to implement circuits because

circuits based on them can be implemented easily and have lower AT-product [20,25]. The

algorithm to be proposed in this chapter is also based on the extended Euclid’s algorithm,

and accelerated with parallelization of the modular reductions, although effectiveness of

parallelization of the modular reductions for multiplication has been showed in [18, 19].

The proposed algorithm requires only one iteration to perform the operations that re-

quire two iterations in previously reported division algorithms based on the extended Eu-

clid’s algorithm. Division algorithms based on the extended Euclid’s algorithm perform

modular reductions. In contrast with two iterations of the previously proposed division

algorithms perform two modular reductions sequentially, the proposed algorithm performs

them in parallel by changing the order of execution of the operations.

We have designed a circuit based on this algorithm, which performs the operations

in one iteration of the algorithm in one clock cycle. The latency of the circuit is m clock

cycles, which is almost half of the circuits proposed in [23,30] that have architecture similar

to our circuit. The critical path delay of the circuit is larger by the delay of a 2-input XOR

gate than that of the circuit reported in [30], and smaller by approximately the delay of a

2:1 multiplexer than that of the circuit reported in [23] because of its parallelism.

This chapter is organized as follows. In the next section, we explain previously reported

hardware division algorithms. In Sect. 4.3, we propose a fast hardware division algorithm

with parallelization of modular reductions. In Sect. 4.4, we design a division circuit based

on the proposed algorithm. In Sect. 4.5, we estimate and evaluate the circuit by comparing

complexity of the circuit and the area and the delay obtained with logic synthesis of it with

those of previously reported circuits. In Sect. 4.6, we make several discussions. In Sect.

4.7, we summarize this chapter.
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4.2 PRELIMINARIES

4.2.1 BRUNNER ET AL.’S HARDWARE DIVISION ALGORITHM

Here, we describe the division algorithm proposed by Brunner et al. [23], which is a typical

algorithm based on the extended Euclid’s algorithm.

The algorithm of Brunner et al. is as follows, where rm and sm denote the m-th coeffi-

cients of R(x) and S(x), respectively. The notation f ∧ P (x) denotes

f ∧ P (x) =


P (x) (f = 1)

0 (f = 0)

. (4.1)

[Algorithm BCH]

(Brunner et al.’s Division Algorithm [23])

1: R(x) := B(x); S(x) := G(x);

2: U(x) := A(x); V (x) := 0;

3: δ := 0;

4: for i = 1 to 2m do

5: if rm = 0 then

6: R(x) := R(x) × x;

7: U(x) := U(x) · x;

8: δ := δ + 1;

9: else

10: S(x) := (S(x) − sm ∧ R(x)) × x;

11: V (x) := V (x) − U(x);

12: if δ = 0 then

31



CHAPTER 4. FAST HARDWARE DIVISION ALGORITHM IN GF(2M ) WITH PARALLELIZATION
OF MODULAR REDUCTIONS

13:

R(x)

S(x)

:=

S(x)

R(x)

;

14:

U(x)

V (x)

:=

V (x)

U(x)

;

15: U(x) := U(x) · x;

16: δ := 1;

17: else

18: U(x) := U(x) ÷ x;

19: δ := δ − 1;

20: end if

21: end if

22: end for

23: output U(x) as the result.

�

4.2.2 GUO AND WANG’S HARDWARE DIVISION ALGORITHM

Here, we describe the division algorithm proposed by Guo and Wang [25] for description

of the proposed algorithm. Guo and Wang’s algorithm is a modified version of Algorithm

BCH, and has been developed for systolic architecture. The feature of this algorithm is that

there are two for-loops in the algorithm so that we can avoid bidirectional shifts when we

implement it as a circuit. This algorithm computes (A(x) ÷ B(x)) ·xm in the first for-loop,

and computes A(x) ÷ B(x) by dividing the result of the first for-loop by xm in the second

for-loop. Thus, the critical path delay of the circuit is smaller than that of the circuit based

on Algorithm BCH, although its latency is 3m clock cycles. Guo and Wang’s algorithm is
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as follows.

[Algorithm GW]

(Guo and Wang’s Division Algorithm)

1: R(x) := B(x); S(x) := G(x);

2: U(x) := A(x); V (x) := 0;

3: δ := 0;

4: for i = 1 to 2m do

5: if rm = 0 then

6: R(x) := R(x) × x;

7: U(x) := U(x) · x;

8: δ := δ + 1;

9: else

10: S(x) := (S(x) − sm ∧ R(x)) × x;

11: V (x) := (V (x) − sm ∧ U(x)) · x;

12: if δ = 0 then

13:

R(x)

S(x)

 :=

S(x)

R(x)

 ;

14:

U(x)

V (x)

 :=

V (x)

U(x)

 ;

15: δ := δ + 1;

16: else

17: δ := δ − 1;

18: end if

19: end if

20: end for
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21: for i = 1 to m do

22: U(x) := U(x) ÷ x;

23: end for

24: output U(x) as the result.

�

4.3 FAST HARDWARE DIVISION ALGORITHM WITH PAR-

ALLELIZATION OF MODULAR REDUCTIONS

In this section, we propose a fast hardware algorithm for division in GF(2m). First, we

modify Algorithm GW to reduce the number of shift registers when implementing the

algorithm as a sequential circuit. This modification is performed by allowing δ to be neg-

ative. This technique is described in [24, 27], The modified algorithm is as follows, where

the notation SEL(flag , S1(x), S2(x)) denotes

SEL(flag , S1(x), S2(x)) =


S1(x) if flag = 1

S2(x) otherwise
, (4.2)

and SGN (a) denotes

SGN (a) =


1 if a < 0

0 otherwise
. (4.3)

Note that swap is the variable employed as a flag for deciding whether the algorithm assigns

R(x) to S(x).
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[Algorithm MGW]

(Modified Version of Guo and Wang’s Division Algorithm)

1: R(x) := B(x); S(x) := G(x);

2: U(x) := A(x); V (x) := 0;

3: δ := 0;

4: for i = 1 to 2m do

5: swap := SGN (δ)∧rm;

6:

R(x)

S(x)

:=

 (R(x)−rm∧S(x))×x

SEL(swap, R(x), S(x))

;

7:

U(x)

V (x)

:=

 (U(x)−rm∧V (x)) · x

SEL(swap, U(x), V (x))

;

8: δ := (−1)swapδ − 1;

9: end for

10: for i = 1 to m do

11: V (x) := V (x) ÷ x;

12: end for

13: output V (x) as the result.

�

Figure 4.1 shows an example of division by Algorithm MGW, where m = 4, A(x) =

x2 + x, B(x) = x3 + x, and G(x) = x4 + x + 1.

Next, we describe the algorithm to be proposed using Algorithm MGW. We start with

merging the second for-loop of Algorithm MGW into its first for-loop. Since the operation

in line 7 of Algorithm MGW is performed exactly 2m times, we can perform this merger
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i R(x) S(x) U(x) V (x) δ

x3 + x x4 + x + 1 x2 + x 0 0
1 x4 + x2 x4 + x + 1 x3 + x2 0 −1
2 x3 + x2 + x x4 + x2 x3 + x + 1 x3 + x2 0
3 x4 + x3 + x2 x4 + x2 x2 + 1 x3 + x2 −1
4 x4 x4 + x3 + x2 1 x2 + 1 0
5 x4 + x3 x4 + x3 + x2 x3 x2 + 1 −1
6 x3 x4 + x3 x3 + 1 x3 0
7 x4 x4 + x3 1 x3 −1
8 x4 x4 1 1 0


1st for-loop

1 x3 + 1
2 x3 + x2 + 1
3 x3 + x2 + x + 1
4 x3 + x2 + x

2nd for-loop

Figure 4.1: Example of Division by Algorithm MGW (m = 4, A(x) = x2 + x,B(x) =
x3 + x,G(x) = x4 + x + 1)

by replacing m arbitrary chosen operations out of the 2m operations in line 7 with

U(x)

V (x)

:=

 (U(x)−rm∧V (x))

SEL(swap, U(x), V (x)) ÷ x

; . (4.4)

For this purpose, we modify the algorithm so that it performs the operations of two itera-

tions in one iteration of the first for-loop, and replace one of the two operations that update

U(x) and V (x) with the above expression.

By the above modification, the operations for U(x) and V (x) in one iteration of the
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merged algorithm can be represented as

U ′(x)

V ′(x)

:=

 (U(x)−rm∧V (x)) · x

SEL(swap, U(x), V (x))

; (4.5)

U(x)

V (x)

:=

 (U ′(x)−r′m∧V ′(x))

SEL(swap ′, U ′(x), V ′(x)) ÷ x

; . (4.6)

Note that, in the above operations, two modular reductions are performed sequentially,

where U ′(x) and V ′(x) are intermediate variables for U(x) and V (x), respectively, and r′m

and swap ′ are obtained from the result of the first operation as


r′m := rm−1 ⊕ (rm ∧ sm−1)

swap ′ := SGN ((−1)swapδ − 1) ∧ r′m.

(4.7)

Finally, we modify the timing of polynomial reduction in the above operations as

U ′(x)

V ′(x)

:=

 (U(x)−rm∧V (x))×x

SEL(swap, U(x), V (x))

; (4.8)

U(x)

V (x)

:=

(U ′(x)−r′m∧V ′(x)) mod G(x)

SEL(swap ′, U ′(x), V ′(x)) ÷ x

; . (4.9)

so that the two polynomial reductions are performed in parallel. Note that, since the con-

stant term of U ′(x) and m-th coefficient of V ′(x) is always zero, modular reductions of the
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above expressions are performed as



u′
j := uj−1 ⊕ (rm ∧ vj−1) ;

v′
j := SEL (swap, uj, vj)

uj := u′
j ⊕ (u′

m ∧ gj) ⊕
(
r′m ∧ v′

j

)
;

vj := SEL
(
swap ′, u′

j+1, v
′
i+1 ⊕ (v′

0 ∧ gi+1)
)

(4.10)

where u′
j , v′

j , and gj denote the j-th coefficients of U ′(x), V ′(x), and G(x), respectively.

The proposed hardware algorithm is as follows.

[Algorithm DEEA]

(Proposed Division Algorithm)

1: R(x) := B(x); S(x) := G(x);

2: U(x) := A(x); V (x) := 0;

3: δ := 0;

4: for i = 1 to m do

5: swap := SGN (δ)∧rm;

6:

R′(x)

S ′(x)

:=

 (R(x)−rm∧S(x))×x

SEL (swap, R(x), S(x))

;

7:

U ′(x)

V ′(x)

:=

 (U(x)−rm∧V (x))×x

SEL (swap, U(x), V (x))

;

8: δ′ := (−1)swapδ − 1;

9: swap ′ := SGN (δ′)∧r′m;

10:

R(x)

S(x)

:=

 (R′(x)−r′m∧S ′(x))×x

SEL (swap ′, R′(x), S ′(x))

;
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i R(x) S(x) U(x) V (x) δ

x3 + x x4 + x + 1 x2 + x 0 0
1 x3 + x2 + x x4 + x2 x3 + x2 x2 + x 0
2 x4 x4 + x3 + x2 x3 + x2 + 1 x3 + x2 0
3 x3 x4 + x3 x3 + x2 + x 1 0
4 x4 x4 x3 + x2 + x x3 + x2 + x 0

i R′(x) S ′(x) U ′(x) V ′(x) δ′

1 x4 + x2 x4 + x + 1 x3 + x2 0 −1
2 x4 + x3 + x2 x4 + x2 x4 + x3 x2 + x −1
3 x4 + x3 x4 + x3 + x2 x x3 + x2 −1
4 x4 x4 + x3 x4 + x3 + x2 1 −1

Figure 4.2: Example of Division by Algorithm DEEA (m = 4, A(x) = x2 + x,B(x) =
x3 + x,G(x) = x4 + x + 1)

11:

U(x)

V (x)

:=

(U ′(x)−r′m∧V ′(x)) mod G(x)

SEL (swap ′, U ′(x), V ′(x)) ÷ x

;

12: δ := (−1)swap′
δ′ − 1;

13: end for

14: output V (x) as the result.

�

Figure 4.2 shows an example of division by the proposed algorithm, where m = 4,

A(x) = x2 + x, B(x) = x3 + x, and G(x) = x4 + x + 1.

4.4 DESIGN OF A CIRCUIT BASED ON THE PROPOSED AL-

GORITHM

We have designed a sequential circuit that performs the operations in one iteration of the

proposed algorithm in a cycle. Figure 4.3 shows a block diagram of the circuit. Figures
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4.4–4.6 show basic cells in the circuit. Reg-R, Reg-S, Reg-U, Reg-V, Reg-G, Reg-∆, and

Reg-sgn are registers for storing R(x), S(x), U(x), V (x), G(x), 2m−|δ|, and the sign of δ,

respectively. Figure 4.7 shows the controller of the circuit. Note that, in order to accelerate

the circuit, we employ 1-hot counter for δ that consists of Reg-∆, which holds ∆ = 2m−|δ|

instead of δ, and Reg-sgn, which holds 1 if δ is negative. RS-calc is the part that updates

the polynomials R(x) and S(x) as



r′j := rj−1 ⊕ (rm ∧ sj−1) ;

s′j := SEL (swap, rj, sj) ;

rj := r′j−1 ⊕
(
r′m ∧ s′j−1

)
;

sj := SEL
(
swap ′, r′j, s

′
j

)
;

(4.11)

and consists of (m + 1) RS-cells. UV-calc is the part that updates the polynomials U(x)

and V (x) according to expressions (4.10) and consists of m UV-cells and one UV-cell2 at

the extreme left of the figure. ∆-calc is the part that updates ∆ and consists of (m + 1)

∆-cells.

The control signals of the circuit, swap, swap ′, shift1, and shift2, are computed as



swap := sgn ∧ rm

swap ′ := sgn ′ ∧ r′m

shift1 := (δm ∧ sgn) ∨ (sgn ∧ rm)

shift2 :=
(
δ′m ∧ sgn ′

)
∨ (sgn ′ ∧ rm

′) .

(4.12)

The value of sgn ′ is the same as that of shift1, and the value of sgn in the next iteration is

the same as that of shift2.
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4.5 ESTIMATION AND EVALUATION OF THE CIRCUIT

We compare the circuit based on the proposed algorithm with two previously proposed cir-

cuits designed as sequential circuits. One is the circuit proposed by Brunner et al. described

in Sect. 4.2.1. The other is proposed by Kim et al. [30] that has the same critical path delay

as Guo and Wang’s one, which is described in Sect. 4.2.2, with latency of 2m − 1 cycles.

Table 4.1 shows a comparison of the circuits. The critical path delay of the circuit based on

this algorithm is larger by the delay of a 2-input XOR gate than that of the circuit reported

in [30]. The circuit based on the proposed algorithm has m clock cycle latency, which is

almost half of that of the previously proposed circuits.

We described the two circuits with Verilog-HDL for several m’s, and synthesized them

with Synopsys Design Compiler using Rohm 0.18 µm CMOS standard cell library pro-

vided by VLSI Design and Education Center (VDEC), the University of Tokyo. One is

the circuit described in this section and the other is the circuit proposed in [30], Table 4.2

shows the synthesis results. We set 0 as area constraint and various values as critical path

delay constraints. The figures in the table are the best AT-product ones obtained with the

synthesis. The area of the proposed circuit is 40% or less larger than that of the circuit

proposed in [30]. The computation time of the proposed circuit is over 35% shorter than

that of the circuit proposed in [30].

4.6 DISCUSSION

The circuit designed in the previous section employs 1-hot counter to store the value of δ

because if we employ binary counter for it the counter can be the critical path. In order

to reduce the area of the circuit, we can employ a two-level 1-hot counter [24] for storing

the value of |δ|. It consists of δh-bit and δl-bit 1-hot counters, where m + 1 ≤ δh · δl and

δh ≈ δl ≈
√

m. Thus, we can reduce the register size and the number of 2:1 multiplexer
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Table 4.1: Comparison of Circuits
Brunner et al. [23] Kim et al. [30] Proposed

Latency [clock cycle] 2m 2m − 1 m
Critical Path Delay 2TA + 2TX + 2TM 2TA + 2TX 2TA + 3TX

Register Size [bit] 4m + 2 + dlog2(m + 1)e 5m + 2 5m + 4
# of Gates for Basic Cells

2-input AND gate 3m + 1 3m 6m + 3
2-input XOR gate 3m + 1 3m 6m + 3

2:1 MUX 8m + 1 3m 6m + 4

TA: the delay of a 2-input AND gate
TX : the delay of a 2-input XOR gate
TM : the delay of a 2:1 MUX

Table 4.2: Synthesis Results

m Circuit Area [mm2]
Critical Path

# of cycle Comp. time [ns]
Delay [ns]

163
Kim et al. [30] 0.1150 1.30 325 422.5

Proposed 0.1576 1.67 163 272.2

233
Kim et al. 0.1648 1.33 465 618.5
Proposed 0.2266 1.67 233 389.1

283
Kim et al. 0.2000 1.34 565 757.1
Proposed 0.2707 1.71 283 483.9

409
Kim et al. 0.2869 1.38 816 1127.5
Proposed 0.3782 1.78 409 728.0

571
Kim et al. 0.3936 1.42 1141 1620.2
Proposed 0.5585 1.73 571 987.8
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significantly. Since the critical path delay of the circuit is a little larger than that of Kim et

al.’s one, we can apply such a modification to the circuit easier without a high cost about

critical path delay.

4.7 SUMMARY OF THE CHAPTER

We have proposed a fast hardware algorithm for division in GF(2m) in this chapter. This

algorithm is based on the extended Euclid’s algorithm, and requires only one iteration to

perform the operations that require two iterations in previously reported division algorithms

with parallel execution of the operations.

We have designed a circuit based on the proposed algorithm. The circuit has m clock

cycle latency, which is almost half of that of the previously proposed circuits. It has al-

most the same critical path delay as previously proposed circuits because of its parallelism.

Therefore, it can compute division in GF(2m) much faster than the previously proposed

circuits. The computation time of the proposed circuit is over 35% shorter than that of the

circuit proposed in [30].
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CHAPTER 5

HARDWARE ALGORITHM FOR A

COMBINED CIRCUIT OF

MULTIPLICATION AND INVERSION IN

GF(2m)

5.1 INTRODUCTION

Multiplication and inversion in GF(2m) are employed for elliptic curve cryptography (ECC)

which is one of the major public key cryptosystems. Since m is very large in ECC [1, 38],

realization of circuits for both operations yields large area. Thus, the reduction of hardware

of these circuits is important for area-restricted devices like portable ones.

In this chapter, we propose a combined circuit for multiplication and inversion in

GF(2m). In the circuit, multiplication and inversion are carried out with the MSB-first

multiplication algorithm and the inversion algorithm proposed in [29] which is based on

the extended Euclid’s algorithm, respectively. In order to develop a combined circuit based
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on these algorithms, we start with combining them by focusing on the similarities between

them. Since almost all hardware components of the circuit are shared by multiplication

and inversion, the circuit can be implemented with significantly smaller hardware than that

necessary to implement both multiplication and inversion separately.

Compared with previously proposed combined circuits for multiplication and division,

the circuit to be proposed has several advantages. Although the area complexity of [20] is

O(m2), that of the circuit to be proposed is O(m). The circuits proposed in [21, 22] are

based on the Stein’s binary GCD algorithm for division and need to reverse the order of the

coefficients of inputs and output polynomials for multiplication. Thus, the circuit proposed

in [22] has extra area for such pre- and post-computation, and [21] does not describe how

to implement such computation. In contrast, the circuit proposed here does not need such

computations.

We have synthesized the circuit to be proposed using 0.18 µm CMOS standard cell

library, for several m’s, and estimated its area and critical path delay. The area of the

circuit and registers is significantly smaller than that of the previously proposed combined

multiplication/division circuits [21, 22].

This chapter is organized as follows. In the next section, we explain a previously re-

ported hardware multiplication algorithm. In Sect. 5.3, we propose a hardware algorithm

for a combined circuit of multiplication and inversion. In Sect. 5.4, we design a combined

circuit based on the proposed algorithm. In Sect. 5.5, we estimate and evaluate the cir-

cuit by comparing complexity of the circuit and the area and the delay obtained with logic

synthesis of it with those of previously reported combined circuits. In Sect. 5.6, we make

several discussions. In Sect. 5.7, we summarize this chapter.
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5.2 PREVIOUSLY REPORTED HARDWARE MULTIPLICATION

ALGORITHM

We combine the MSB-first multiplication algorithm with the inversion algorithm shown

later, because they are suited to be combined. The MSB-first multiplication algorithm in

GF(2m) is as follows, where bj denotes the j-th coefficient of the polynomial B(x). The

operation “×” denotes polynomial multiplication on GF(2). The notation deg(·) denotes

the degree of a polynomial.

[Algorithm MSB]

(The MSB-first Multiplication Algorithm in GF(2m))

Input: A(x), B(x): deg(A(x)), deg(B(x)) ≤ m − 1

G(x): deg(G(x)) = m and irreducible
Output: A(x) · B(x)(= A(x) × B(x) mod G(x))

1: P (x) := 0;

2: for i := 1 to m do

3: if bm−1 = 0 then

4: P (x) := x × P (x) mod G(x);

5: else

6: P (x) := (x × P (x) + A(x)) mod G(x);

7: end if

8: B(x) := x × B(x);

9: end for

10: output P (x) as the result;

�
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Table 5.1: Operations of Algorithm MSB in an iteration
bm−1 B(x) P (x)

0 B(x) := x × B(x); P (x) := x × P (x) mod G(x);

1 B(x) := x × B(x);
P (x) := (x × P (x) + A(x)) mod G(x);(

P (x) := x × (P (x) + x−1 × A(x)) mod G(x);
)

Table 5.2: Operations of Algorithm YS in an iteration
rm δ ≥ 0 R(x), S(x)

0 don’t care R(x) := x × R(x);

1
false

[
R(x)
S(x)

]
:=

[
x × (R(x) + S(x))

R(x)

]
;

true R(x) := x × (R(x) + S(x));

rm δ ≥ 0 U(x), V (x)

0 don’t care U(x) := x × U(x) mod (xm+1 + 1);

1
false

[
U(x)
V (x)

]
:=

[
x × (U(x) + V (x)) mod (xm+1 + 1)

U(x)

]
;

true U(x) := x × (U(x) + V (x)) mod (xm+1 + 1);

Note that, in the execution of the algorithm, although the degree of B(x) exceeds (m−

1), the variables bk’s are not referred to, for k ≥ m. Therefore, when we implement the

algorithm as a circuit, an m-bit register is sufficient to store B(x).

5.3 HARDWARE ALGORITHM FOR A COMBINED CIRCUIT

OF MULTIPLICATION AND INVERSION

In order to develop a combined circuit, we start with combining Algorithms MSB and YS

by focusing on the similarities between them. Tables 5.1 and 5.2 show the operations in an

iteration of Algorithms MSB and YS, respectively.

The polynomial B(x) in Algorithm MSB and the polynomial R(x) in Algorithm YS

determine which operation is carried out in an iteration. Therefore, we consider merging
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the two polynomials first. We represent the obtained polynomial as BR(x). With Tables

5.1 and 5.2, we also merge the polynomials P (x) and x−1 ×A(x) in Algorithm MSB with

the polynomials U(x) and V (x) in Algorithm YS, respectively. We represent the obtained

polynomials as PU(x) and AV(x), respectively. Note that, for multiplication, we must

modify the algorithm so that it satisfies δ ≥ 0 at all times.

Next, we consider merging the reduction polynomials of the two algorithms. The re-

duction polynomial of Algorithm MSB is the irreducible polynomial with degree m that

defines the field. On the other hand, the reduction polynomial of Algorithm YS imple-

mented as a circuit is the polynomial xm+1 + 1 whose degree is m + 1, because we employ

cyclic left shift instead of logical left shift in an (m + 1)-bit register as described earlier.

Since it is desirable for VLSI implementation that the degrees of the two reduction poly-

nomials are identical, we employ x × G(x) instead of G(x) as the reduction polynomial

in Algorithm MSB. Along with this modification, we also modify the other polynomials,

PU (x), BR(x), and AV (x), as multiplied by x. This modification is simply performed by

changing the initial values of them with the values multiplied by x.

Finally, we apply two modifications for efficiency. One is that we employ (m − 1) and

x × B(x) + 1 as the initial values of δ and BR(x), respectively, for multiplication. By this

modification, δ ≥ 0 is always true in the execution of the algorithm, and after m iterations,

the values of BR(x), PU (x), and δ will be 1, (A(x) · B(x)) × x, and −1, respectively.

Therefore, in the (m + 1)-th iteration, the result (A(x) · B(x)) × x will be transferred to

the register for AV (x) that stores the result of inversion. At the same time, we employ x3

as the initial value of PU (x) for inversion so that the result B−1(x) × x will be stored in

the register for AV (x), namely both of the product and the inverse will appear in the same

position in the register.

The other is that we also merge the two polynomials, G(x) in Algorithm MSB and

S(x) in Algorithm YS, so that they can share register. It is because the polynomial G(x) in
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Algorithm MSB is not employed in Algorithm YS, and the polynomial S(x) in Algorithm

YS is not employed in Algorithm MSB. We represent the obtained polynomial as GS (x).

A combined algorithm for multiplication and inversion in GF(2m) is as follows, where

br j , puj , and gsj denote the j-th coefficient of the polynomials, BR(x), PU (x), and

GS (x), respectively. mode is a control signal for selection of multiplication or inversion.

[Algorithm MULINV]

(A Combined Algorithm for Multiplication and Inversion in GF(2m))

Input: A(x), B(x): deg(A(x)), deg(B(x)) ≤ m − 1

G(x): deg(G(x)) = m > 3 and irreducible

mode =


0 (inversion mode)

1 (multiplication mode)

Output: B−1(x) (if mode = 0)

A(x) · B(x) (if mode = 1)

1: if mode = 0 then /∗ inversion ∗/

2: BR(x) := x × B(x); GS (x) := G(x);

3: PU (x) := x3; AV (x) := 0;

4: δ := −1; n := 2m − 1;

5: else /∗ multiplication ∗/

6: BR(x) := x × B(x) + 1; GS (x) := G(x);

7: PU (x) := 0; AV (x) := A(x);

8: δ := m − 1; n := m + 1;

9: end if

10: for i := 1 to n do

11: if brm = 0 then

12: BR(x) := BR(x) × x;
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13: PU (x) := PU (x) × x;

14: else

15: if δ ≥ 0 then

16: BR(x) := (BR(x) + mode × GS (x)) × x;

17: PU (x) := (PU (x) + AV (x)) × x;

18: else

19:

BR(x)

GS (x)

 :=

 x × (BR(x) + GS (x))

mode × GS (x) + mode × BR(x)

 ;

20:

PU (x)

AV (x)

 :=

x × (PU (x) + AV (x))

PU (x)

 ;

21: δ := −δ;

22: end if

23: end if

24: if pum+1 = 1 then

25: PU (x) := PU (x)

+xm+1 +
∑m−1

k=1 (mode ∧ gsk)x
k+1 + mode;

26: end if

27: δ := δ − 1;

28: end for

29: output AV (x)/x as the result;

�
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Table 5.3: Operations of Algorithm MULINV in an iteration
brm δ ≥ 0 BR(x),GS (x)

0 don’t care BR(x) := x × BR(x);

1
false

[
BR(x)
GS (x)

]
:=

[
x × (BR(x) + mode × GS (x))

mode × GS (x) + mode × BR(x)

]
;

true BR(x) := x × (BR(x) + mode × GS (x));

brm δ ≥ 0 PU (x),AV (x)

0 don’t care PU (x) := x × PU (x) mod F (x);

1
false

[
PU (x)
AV (x)

]
:=

[
x × (PU (x) + AV (x)) mod F (x)

PU (x)

]
;

true PU (x) := x × (PU (x) + AV (x)) mod F (x);

F (x) =

{
xm+1 + 1 mode = 0

GS (x) × x (= G(x) × x) mode = 1

5.4 DESIGN OF A CIRCUIT BASED ON THE PROPOSED AL-

GORITHM

We have designed a sequential circuit based on Algorithm MULINV, which performs op-

erations of an iteration of the algorithm in a cycle. Table 5.3 shows the operations in an

iteration in Algorithm MULINV.

Figure 5.1 shows a block diagram of the proposed circuit. Calc-1 and Calc-2 consist of

(m + 1) Cell-Is and (m + 1) Cell-IIs, respectively. Calc-1 updates BR(x) and GS (x), and

Calc-2 updates BR(x) and AV (x) in accordance with Table 5.3. Reg-BR, Reg-GS, Reg-

PU, and Reg-AV, are the registers for storing BR(x), GS (x), PU (x), and AV (x), which

have (m + 1)-bit width, respectively. Figures 5.2–5.4 show design examples of basic cells

(Cell-I, Cell-II), and the controller in Fig. 5.1, respectively. The control signals of the
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Figure 5.1: Block Diagram of the Proposed Circuit

circuit, reduce A, reduce B , swap A, swap B , and reduction, are computed as follows:



reduce A = brm ∧ mode

reduce B = brm

swap B =


1 (brm = 1 and δ < 0)

0 (otherwise)

swap A = swap B ∧ mode

reduction =


(pum ⊕ (avm ∧ brm)) ∧ mode (for pu0 and av 0)

(pum ⊕ (avm ∧ brm)) ∧ mode (for the others)

(5.1)

5.5 ESTIMATION AND EVALUATION OF THE CIRCUIT

Table 5.4 shows the comparison of the combined circuits that have O(m) area complexity.

The proposed circuit can be implemented with small area, although it needs more m clock

cycles for division than the others circuits. Note that gate count in the table includes only
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Figure 5.4: Controller of the Proposed Combined Circuit
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Table 5.4: Comparison of Combined Circuits
Kim et al. [21] Lin et al. [22] Proposed

# of Cycles per Mul. m m m + 1
# of Cycles per Inv. 2m − 1 2m − 1 2m − 1
# of Cycles per Div. 2m − 1 2m − 1 (3m)

Register Width [bit] 6m + 2
5m 4m + 7
+dlog2(m + 1)e +dlog2(m + 1)e

# of Gates for Basic Cells:
2-input AND 4m 6m + 4 3m + 3
2-input XOR 4m 3m 3m + 3

2:1 MUX 4m 5m 2m + 2
Critical Path Delay 2TA + 2TX + 2TM 2TA + 2TX + TM 3TA + 2TX

TA: the delay of a 2-input AND gate
TX : the delay of a 2-input XOR gate
TM : the delay of a 2:1 MUX

gates for basic cells because the area of the whole circuit is almost occupied by basic cells

and registers when m is large. Also note that we added m MUXs to the circuits proposed

in [21, 22] to stop the operations after the circuit finished multiplication. Otherwise, the

result of multiplication will change after m clock cycles.

We described circuits based on Algorithm MULINV with Verilog-HDL for several

m’s. For comparison, we also described circuits based on the MSB-first multiplication

and the Yan and Sarwate’s algorithm, and the previously proposed combined multiplica-

tion/division circuits in [21, 22]. Note that although the circuit in [21] needs to reverse

the order of the coefficients of inputs and output polynomials, we did not include the cost

of such pre- and post-computation in the estimation because they do not describe how to

implement such computation.

We synthesized them with Synopsys Design Compiler using Rohm 0.18 µm CMOS

standard cell library provided by VLSI Design and Education Center (VDEC), the Uni-

versity of Tokyo. Table 5.5 shows the synthesis results. We set 0 as area constraint and

various values as critical path delay constraints, and synthesized them with Design Com-
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Table 5.5: Synthesis Results

m Circuit
Critical Path Calc. Time [ns]

Area [mm2]
Delay [ns] Mul. Inv. Div.

163

Algorithm MSB+YS 1.034 / 1.172 168.5 308.9 — 0.2132
Lin et al. [22] 1.282 209.0 416.8 416.8 0.1429
Kim et al. [21] 1.314 214.2 427.1 427.1 0.1600

Proposed 1.233 202.2 400.7 (602.7) 0.1238

233

Algorithm MSB+YS 1.099 / 1.189 256.1 552.9 — 0.2980
Lin et al. 1.318 307.0 612.7 612.7 0.2007
Kim et al. 1.303 303.6 605.9 605.9 0.2211
Proposed 1.274 298.1 592.4 (890.4) 0.1710

283

Algorithm MSB+YS 1.046 / 1.197 296.0 676.3 — 0.3653
Lin et al. 1.324 374.6 747.9 747.9 0.2406
Kim et al. 1.373 388.6 775.7 775.7 0.2696
Proposed 1.292 366.9 730.0 (1097) 0.2092

409

Algorithm MSB+YS 1.150 / 1.208 470.4 986.9 — 0.5234
Lin et al. 1.354 553.8 1106 1106 0.3485
Kim et al. 1.418 580.0 1159 1159 0.3880
Proposed 1.326 543.7 1083 (1627) 0.2957

571

Algorithm MSB+YS 1.150 / 1.284 656.7 1464 — 0.7202
Lin et al. 1.341 765.6 1530 1530 0.4872
Kim et al. 1.433 818.2 1635 1635 0.5335
Proposed 1.320 755.0 1506 (2261) 0.4169
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piler’s synthesis option “-incremental_mapping.” The figures in the table are the

best area-time product ones obtained with the synthesis. The area of the proposed circuit is

approximately over 15% smaller than that of the combined multiplication/division circuits

proposed in [21, 22].

5.6 DISCUSSION

Although we have considered the case of the general irreducible polynomial G(x), we can

simplify the combined circuit by employing the special formed irreducible polynomial as

a multiplier. Especially, if G(x) is all one polynomial (AOP), the reduction polynomial

will be (xm+1 + 1) as in [41]. Therefore, in such case, we can design a smaller combined

circuit than a combined circuit with a general irreducible polynomial, because such circuit

employes the same reduction polynomials for multiplication and inversion.

5.7 SUMMARY OF THE CHAPTER

We have proposed a combined circuit for multiplication and inversion in GF(2m) in this

chapter. In order to develop the combined circuit, we have combined the MSB-first mul-

tiplication algorithm and the Yan and Sarwate’s inversion algorithm by focusing on the

similarities between them. Almost all hardware components of a circuit based on the pro-

posed algorithm are shared by multiplication and inversion.

The area of the proposed circuit has been estimated with logic synthesis using Rohm

0.18 µm CMOS standard cell library. The area of the circuit is significantly smaller than

that necessary to implement both multiplication and inversion separately and that of the

previously proposed combined multiplication/division circuits. Therefore, the proposed

circuit is effective in area-restricted devices.
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CHAPTER 6

CONCLUSION

In this dissertation, we proposed three methods for hardware-assisted implementation of

arithmetic operations in Galois field GF(2m).

In Chap. 3, we proposed a fast software algorithm for inversion in GF(2m) that is based

on the extended Euclid’s algorithm and suitable for implementation with a polynomial

multiply instruction on GF(2). This algorithm employes the matrix that represents the op-

erations required by several contiguous iterations of the previously reported algorithm, and

computes inversion with a polynomial multiply instruction on GF(2) through the matrix.

When the word size of the processor is 32 and m is 571, the proposed algorithm com-

putes inversion with approximately half the number of polynomial multiply instructions on

GF(2) and XOR instructions required by the previously proposed algorithm.

In Chap. 4, we proposed a fast hardware algorithm for division in GF(2m) for a fast

dedicated circuit. This algorithm performs the operations required by two iterations of the

previously reported algorithm in one iteration, and parallelizes the two modular reductions

for fast calculation by changing the order of execution of the operations. By the paralleliza-

tion of the modular reductions, the critical path delay of a circuit based on this algorithm

is almost the same as that of the previously reported circuit, nevertheless the number of
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clock cycles required by the circuit is almost half of that of the previously reported circuit.

By logic synthesis, the computation time of the circuit has been estimated to be over 35%

shorter than that of the previously reported circuit.

In Chap. 5, we proposed a hardware algorithm for a combined circuit of multiplication

and inversion in GF(2m). The proposed algorithm has been developed by focusing on

the similarities between the MSB-first multiplication algorithm and the Yan and Sarwate’s

inversion algorithm. In a combined circuit based on this algorithm, almost all hardware

components of a circuit based on the proposed algorithm are shared by multiplication and

inversion. By logic synthesis, the area of the combined circuit is estimated to be over

15% smaller than that of the previously reported combined circuits. In addition, unlike the

previously reported combined circuits, the combined circuit does not need any pre- and

post-computation.

Thorough the study in this dissertation, we could show effectiveness of hardware-

assisted implementation of arithmetic operations in GF(2m) and obtain the knowledge

about the effectiveness of designing software/hardware algorithms by focusing their simi-

larities and parallelism for hardware-assisted implementation. We could show in Chap. 3

that a polynomial multiply instruction on GF(2) is useful for not only multiplication but

also inversion in GF(2m). We could also show in Chap. 4 that the method that parallelizes

the modular reductions is a efficient technique for speeding up division in GF(2m). We

could also show in Chap. 5 that a combined circuit designed by focusing on the similarities

between multiplication and inversion is useful for area-restricted devices because of this

small area. Therefore, we can conclude this dissertation that hardware-assist is a promising

technique for efficient implementation of arithmetic operations in GF(2m). We could also

conclude that hardware-assisted implementation of arithmetic operations in GF(2m) can be

more efficient by designing software/hardware algorithms carefully about their similarities

and parallelism. Knowledge obtained through the study should make hardware-assisted im-
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plementation more efficient for arithmetic operations in GF(2m) as well as other operations

necessary in important applications.
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