メスバウア - 効果による微粒子 及びその集合体の研究

田村一郎

名	古屋大学図書
和	1066179

■告番号乙第 3806 号

.

-

				目次	
	_			- 74	1
第	Ι	章	序	;論	1
				参考文献(I)	4
第	П	軬	微	牧粒子の作成	5
	第	1	節	物理的方法	5
	第	2	節	本研究におけるガス蒸発法	6
	第	3	節	化学的方法	9
				参考文献(Ⅱ)	10
第	Ш	章	: 従	故粒子の格子振動とメスバウアー効果	11
	第	1	節	微粒子の格子振動	11
			1-1	理論的研究	11
			1-2	X線と電子線回折による研究	14
			1-3	メスバウアー効果による研究	17
	第	2	節	鉄微粒子の格子振動	19
			2-1	実験	19
			2-2	2 無反跳分率とその解釈	23
			2-3	結論	27
				参考文献(Ⅲ)	28
第	; IV	「章	计份	岗粒子の振動とメスバウア-効果	30
	第	1	節	鉄微粒子の振動	30
			1-1	理論	30
			1-2	2 実験1	35
			1-3	3 実験2	38
			1-4	1 結論	40
	第	\$ 2	節	金合金微粒子焼結体の振動	41
			2-1	し金合金微粒子焼結体のメスバウアー効果	42
			2-2	2 実験結果の解釈	46
			2-3	3 結論	47
				参考文献(Ⅳ)	49

/

第Ⅴ	軰	微	粒子	01	ፚ性						 	 		 	 	 	-5	0
第	1	節	微粒	子(の磁	(性の)問	題,	¥		 •	 		 	 	 	5	i0
第	2	節	鉄微	粒	子の)内部	阝磁	場			 	 		 	 	 	5	57
		2-1	実験	と.	その)結り	艮 -				 	 		 	 	 	5	58
		2-2	理論	iと	解析	結	艮 -				 	 		 	 	 	6	52
		2-3	結論	i							 	 		 	 	 	6	37
第	; 3	節	酸化	鉄	微粘	达子约	集合	体			 	 		 	 	 	6	<u> </u>
		3-1	実験	}							 	 		 	 	 	6	69
		3-2	実験	結	果						 	 		 	 	 	7	72
		3-3	実験	結	果0	の解れ	沂 -				 	 		 	 	 	7	77
		3-4	結論	à -							 	 		 	 	 	{	87
笌	\$4	節	鉄微	牧粒	子の	D表ī	面酸	化	層 -		 	 		 	 	 	{	88
		4-1	実鬄	もと	その	の結果	果 -				 	 		 	 	 	{	89
		4-2	理論	₹ -							 	 		 	 	 	{	94
		4-3	議訴	≩ -							 	 		 	 	 	{	98
		4-4	結諧	ð -							 	 		 	 	 	-10	00
			参考	⋚ 文	献	(V))				 	 		 	 	 	-1	11
第Ⅴ	I章	亡 紹	8括 ·								 	 	. <u> </u>	 	 	 	-1	03
謝郡	¥ -										 	 		 	 	 	-1	06
付銀	ł	メフ	へべら	ゥア	- 3	动果					 	 		 	 	 	-1	07
엵	貫1	節	メン	てバ	ウ	7 -	効界	もの	原理	E	 	 		 	 	 	-1	07
約	貫 2	節	無反	反跳	分望	轻					 	 		 	 	 	-1	12
勞	育 3	3節	スイ	ペク	トノ	レの	超贫	女細	構造	<u>i</u> .	 	 		 	 	 	-1	15
		3-1	異性	生体	:シ [·]	フト					 	 		 	 	 	-1	15
		3-2	四相	亟子	分	烈					 	 		 	 	 	-1	15
		3-3	磁気	贰双	極	子分	烈				 	 		 	 	 	-1	16
		3-4	偏相	亟効	果						 	 		 	 	 	1	18
ム シ	寛 4	節	2 १	々の	ド	ップ	ラ -	- シ	フト	•	 	 		 	 	 	1	.19

٠

1

第6節	本研究におけるメスパワアー装置	
第7節	実験データの解析方法125	
	参考文献(A)129	
発表論文	130	

.

1

.

第1章 序論

メスバウアー効果(無反跳核 γ 線共鳴)は 1957 年にR.L.Mössbauer により ¹⁹¹Ir核に対して発見された¹⁾. その後,1959年に⁵⁷Fe核,1960年に¹¹⁹Sn核と いうふうに,次々と同様な共鳴(メスバウアー効果)に利用できる原子核(メス バウアー核)が見いだされた. 現在では,数10種類の原子核がメスバウアー効 果に利用できることがわかっている. これらの原子核の内で最も多く用いられ ているのは⁵⁷Fe核である. これは鉄を含んだ物質が非常に多いことと,⁵⁷Feの 親核種として用いられる⁵⁷Coの半減期が比較的長い(270 日)ことによる.

メスバウアー効果で直接得られる情報は,核(メスバウアー核)の位置での電 場勾配,電子密度,内部磁場,そして核の重心の振動(格子振動)の平均2乗振 幅である. これらの情報の内,内部磁場と格子振動の平均2乗振幅について は,それぞれNMRとX線回折からも得られる. しかし,メスバウアー効果で は,他の実験手段と違い,試料にメスバウアー核がなくてはならない. このこ とは, 測定できる試料が限られるという欠点がある反面,試料のある部分(例え ば表面)だけにメスバウアー核を入れることにより,その部分のみの情報が得ら れるという利点がある. そのため,表面(界面)磁性の研究に用いられること が多い. また,物性物理学の他,生化学,分析化学,核化学,化学反応などの 分野の研究に広く用いられている.

一方, 微粒子の研究は戦後, ガス蒸発法(第 II 章参照)による微粒子の作成方 法が確立したことにより盛んになった. 微粒子に対する素朴な興味は, どの程 度の大きさ, 即ち微粒子を構成する原子数がどの程度あれば固体としての性質が 現われるか, また, それは構成原子数が多くなるに従って, どのように変化して 固体の物性となるかということにある. 例えば, 金属原子が数個集まっても金 属ではないが, 数十万個集まれば明かに金属である. 微粒子の大きさの定義は 決まっていないが, 本研究で対象とするのは, 粒径数10Åから数1000Åの微粒子 であり, 超微粒子とも呼ばれる. 即ち, 分子として考えるには大きすぎ, 固体 (バルク)として考えるには小さすぎる大きさである.

これまで行なわれてきた微粒子に関する研究は,だいたい次の五種類にまとめ られる. (1) 微粒子の結晶構造や晶壁(外形)に関する研究.

(2) 金属微粒子の電子状態に関する研究.

(3) 微粒子の磁性に関する研究.

(4) 微粒子の格子振動に関する研究.

(5) 微粒子の応用に関する研究.

この内,金属微粒子の電子状態に関する研究と微粒子の格子振動に関する研究で は,微粒子(超微粒子)の中でも特に小さい方(粒径100 Å以下)に関心が持た れている. というのは,伝導電子のエネルギー準位の離散化による物理量(磁 化率,電子比熱など)のバルクと異なった振舞い(久保効果²⁾)と,格子振動の ソフト化(第Ⅲ章参照)は小さい微粒子ほど顕著に現われると考えられるからで ある.

微粒子の研究にメスバウア-効果が用いられるようになったのは、1960年代後 半からであるが、それらの大部分は(3)の微粒子の磁性に関する研究と(4) の微粒子の格子振動に関する研究である. 微粒子の磁性に関する研究は, 強磁 性微粒子やフェリ磁性微粒子が磁気記録媒体として広く用いられるようになった こともあり,応用を中心として盛んに行なわれている. また,基礎的な研究 も,超常磁性(第V章第1節参照)の研究が1949年にNéel³⁾により始められてか ら注目されるようになった. 超常磁性の測定手段として,メスバウアー効果は 最も適している. というのは,超常磁性はメスバウアー効果で直接観測できる からである. メスバウア-効果による研究から. 超常磁性になる前段階として 集団磁気励起(第V章第1節参照)による内部磁場の減少があることがわかって ただし、超常磁性と集団磁気励起に関する初期の理論は、孤立した微粒 きた. 子に対するものであった. ところが,鉄微粒子の内部磁場の温度変化,鉄及び 鉄微粒子の表面酸化層のメスバウア-スペクトル.互いに接触した酸化鉄微粒子 のメスバウアースペクトルなどのように,孤立した微粒子に対する超常磁性と集 団磁気励起の理論では説明がつかないことが多くでてきた. 本研究の磁性に関 する研究は、これらのことがらを解明することを目的として行なった。

微粒子の格子振動については、初期のX線回折の研究や理論的研究から、超微 粒子はバルクに比べてかなり柔らかい(ソフト化)と予想されていた. 多くの

-2-

メスバウアー効果による研究からも2,3の例外を除くと,微粒子のソフト化を 支持する結果が得られた.しかし,これらのメスバウアー効果の結果には,微 粒子の格子振動の他,微粒子全体としての振動が影響していると指摘する人もあ ったが,この指摘はあまり重要視されていなかった.そこで,本研究の格子振 動に関する研究は,微粒子全体としての振動を十分に考慮したメスバウアー効果 の実験と実験結果の解析をすることにより,微粒子がソフト化しているかどうか を明らかにする目的で始めた.それと同時に,微粒子全体としての振動がメス バウアー効果に及ぼす影響についても調べた.その後,微粒子焼結体と液体へ リウム間のカピッツア抵抗(第1V章第2節参照)の問題に関して,微粒子全体と しての振動の重要性が指摘されたため,微粒子焼結体の振動の研究をメスバウア ー効果を用いて行なった.以下に各章で述べることをまとめる.

第Ⅱ章では, 微粒子の作成方法について述べる.

第Ⅲ章では,今まで行われた微粒子の格子振動の研究を述べた後,本研究で行 なった鉄微粒子の格子振動に関するメスバウアー効果の実験を述べる.

第Ⅳ章第1節では,鉄微粒子の振動とそのメスバウアースペクトルの関係について本研究で行なったことを述べる. 第2節では,第1節の研究を基礎として,金(金合金)微粒子焼結体について,極低温における金属微粒子焼結体と液体ヘリュウムの界面の熱抵抗から予想されている金属微粒子焼結体の振動を確認したことを述べる.

第V章第1節では、微粒子の磁性についての概要と問題点を指摘する. 第2 節では、本研究で行なった鉄微粒子の内部磁場の温度依存性の原因を究明する. 第3節では、互いに接触した酸化鉄(γ-Fe₂O₃) 微粒子集合体のメスバウア - スペクトル(内部磁場の分布)がどのような特長を持つかを孤立した微粒子の 場合と比較して述べる. 第4節では、極めて特異な振る舞いをする鉄微粒子の 表面酸化層のメスバウア-スペクトルについて、その原因を予想する.

参考文献(I)

ч,

- 1) R. L. Mössbauer: Z. Physik, 151(1958)124.
- 2) R. Kubo: Phys. Letters 1(1962)49.; J. Phys. Soc. Japan 17(1962)975.
- 3) L. Néel: Ann. Geophys. 5(1949)99.

第Ⅱ章 微粒子の作成

第1節 物理的方法

物理的に微粒子を作成する基本的方法はガス蒸発法である. これは,金属を 不活性ガス中で蒸発させると,金属の蒸気は不活性ガス中で冷え,凝縮して微粒 子になるという原理である. この方法は1930年にPfund ¹⁾がビスマスを低圧空 気中で蒸発させ,ビスマス煤を作ったのが最初である. その後,Uyeda と Kimotoを中心とする名大グループはこの方法を発展させた²⁾.

原理的なガス蒸発法の装置は図Ⅱ-1に示したように,真空蒸発装置にHe, Ar, Xeなどの不活性ガスを導入できるようにしたものである.

図Ⅱ-1 ガス蒸発法装置の略図

例えば、この装置を使って金属微粒子を次のように作成することができる. 蒸発容器内にタングステンフィラメントをセットし、フィラメントに金属線を細かく切って掛け、真空に排気する. +分に排気した後で不活性ガス(1 - 数10 Torr)を封入し、フイラメントに電流を流して金属線を蒸発させると、金属の 蒸気は不活性ガス中で冷え、凝縮して微粒子になる. この場合、HeガスはArガ スより小さい微粒子を作るのに適していること^{3,4)}、同じガスの種類ではガス圧 が低いほど小さくなり^{5,6)}、蒸発速度が速いほど粒径が大きくなる⁷⁾ことなどが 見いだされている.

ガス蒸発法で作成された微粒子は,粒径 200-300 Åから数千Åでみごとな晶 癖を持ち,広い範囲の物質に適用できるという利点がある. しかし,この方 は多くても一回に数10 mg の微粒子しか作ることができないため,工業化のため にはもっと効率の良い方法が必要で,次のような方法が考案されている. すな わち,不活性ガスプラズマ中に材料の固体粒子を注入し蒸発させるプラズマ蒸発 法⁸⁾,耐火性のるつぼ内に蒸発原料を入れ,るつぼの外周の銅製誘導コイルに 高周波電流を流し,原料を加熱・蒸発させる高周波誘導加熱法⁹⁾,電子ビーム で原料を蒸発させる電子ビーム加熱法¹⁰⁾,レーザービームで原料を蒸発させる レーザービーム加熱法¹¹⁾,高周波スパッター装置を用いるスパッタリング法 ¹²⁾などが考えられている。

第2節 本研究におけるガス蒸発法

図Ⅱ-2 本研究で用いたガス蒸発法による微粒子作成装置

図II-2は本研究で微粒子を作るのに用いたガス蒸発法の装置の写真である. この装置を使って鉄微粒子を次のようにして作った. 蒸発容器内にタングステ ンフィラメントをセットし,フィラメントに鉄線を細かく切って掛けた後,真空 に排気する. +分に排気した後で不活性ガス(1 - 数10 Torr)を封入し,フ イラメントに電流を流して鉄線を蒸発させると,鉄の蒸気は不活性ガス中で冷や され,凝縮して鉄の微粒子になる. しばらくして,容器内の温度が完全に冷え た後,容器内の壁に付いた微粒子をハケで集める. ただし,この集め方では微 粒子が直接空気に触れる. そこでそれを避けるため,真空容器内の下の方にシ リコーン油を入れた容器を置き,シリコーン油に入った微粒子だけを集めたり, パラフィンなどの比較的低温で溶ける物質を塗った真鍮板(銅版)を真空容器内 の下の方に置き,パラフィン上に落ちた微粒子を,空気を入れる前にパラフィン を溶かして埋め込んだりした. もちろん,シリコーン油やパラフィンは使用す る前に十分にガス抜きをしておいた. しかし,このようにしても鉄微粒子の酸 化度はハケで集めた場合とあまり変らなかった.

微粒子の粒径は,主に封入する不活性ガスの種類とガス圧によって制御する. 小さい微粒子を作るには,Heガスを用いて,なるべく低いガス圧にする. ただ し,ガス圧をあまりに低くすると真空蒸着と同じようになるので,用いられるガ ス圧には下限がある. 鉄微粒子では,Heガス1Torrのもとで平均粒径60Åぐら いがガス蒸発法で作れる最小の微粒子である. また,蒸発速度によっても粒径 が変るが,これを厳密に制御するのは難しい. 本研究で使用した装置で作成さ れる鉄微粒子の粒径は,Heガス1Torrから数Torrまでの間ではほとんど変らず, 平均粒径60-70Å程である. Arガスを用いた場合は,1Torr で平均粒径100-150 Å, 2Torrで平均粒径150-200 Å,12Torrで平均粒径450-500 Åになる. ただし,一般に平均粒径が大きいほど粒径は不揃いである. なお,一回に蒸発 させる鉄線の量は約50mgで,蒸発にかかる時間は約一分間である. 図Ⅱ-3は本 装置で作られた様々な粒径の鉄微粒子の電顕写真である.

本研究では、金や銀などの比較的融点の低い物質を蒸発させるときには、タン グステンフィラメントの替わりにタングステンやモリブデンのボートを用いた. いずれを用いた場合でも、純度のよい微粒子を作るため、フィラメントやボート は一回ごとに新しいものに替え、試料が完全に無くなるまで蒸発させないで、フ ィラメントやボートに少し残るようにした.

図Ⅱ-3 本装置で作られた様々な粒径を持つ鉄微粒子の電顕写真. a はHeガ ス2Torr, bはArガス0.8 Torr, cはArガス4Torr 中で作成した鉄微 粒子.

第3節 化学的方法

化学的に微粒子を作る方法は極めて多いが、その中で最も多く利用されてきた のは次のような方法である. 硫酸第一鉄の水溶液に水酸化ナトリウム液を加 え、PHを9 以上にしてFe(OH)2 を沈殿させ、それに空気を吹き込んで酸化させる と、針状のα-FeOOH(ゲーサイト)微粒子が得られる¹³⁾. このα-FeOOH微粒 子を出発点として、酸化、還元、脱水などの手段により、γ-Fe2O3 微粒子など の磁性材料を作る. また、PH 7~9 で沈殿させたFe(OH)2 を空気で酸化させる とFe3O4 (マグネタイト)微粒子が得られる. 粒径は硫酸第一鉄水溶液の濃度 や空気で酸化させるときの速度(温度)で調節できる.

互いに孤立した粒径数10Åの超微粒子を作るには、シリカゲルなどの多孔質体 の穴の中で作成する必要がある. 例えば、粉々にして十分乾燥させたシリカゲ ルにFe(NO₃)₃ 水溶液をしみこませた後、空気中で熱して乾燥させれば、互いに 孤立したα-Fe₂O₃ 微粒子を作成することができる¹⁴⁾.

また、本研究で用いた化学的方法は次のような原理である¹⁵⁾. シクロヘキ サン中の界面活性剤の逆ミセル内で、Fe²⁺ + 2Fe³⁺ + 80H⁻ → Fe₃O₄ + 4H₂O の 反応でマグネタイトを合成すると、マグネタイトは界面活性剤の逆ミセルに邪魔 されて大きく成長することが出来ない. 従って、微粒子の粒径は界面活性剤の 量により調節出来る. 詳しくは第V章第3節で述べる.

参考文献(Ⅱ)

- 1) A. H. Pfund: Rev. Sci. Inst. 1(1930)397.
- 2) S. Yatsuya and R. Uyeda: 応用物理 42(1973)1067.
- K. Kimoto, Y. Kamiya, M. Monoyama and R. Uyeda: Japan. J. Appl. Phys. 2(1963)702.
- 4) N. Wada: Japan. J. appl. Phys. 6(1967)553.
- 5) N. Wada: Japan. J. appl. Phys. 7(1968)287.
- 6) K. Kimoto and I. Nishida: Japan. J. appl. Phys. 6(1967)1047.
- S. Yatsuya, R. Uyeda and Y. Fukano: Japan. J. appl. Phys. 11(1972)408.
- 8) N. Wada: Japan. J. appl. Phys. 8(1969)551.
- E. Fuchida, M. Oda and S. Kashu:
 Proc. 7th ICVM, 1982, Tokyo, Japan, p.973.
- S. Iwama, E. Shichi and T. Sahashi: Japan. J. Appl. Phys. 12(1973)1531.
- 11) M. Kato: Japan. J. Appl. Phys. 15(1976)757.
- 12) 三好忠彦, 鬼沢賢一: 日本化学会誌 (1984)831.
- 13) 北本達治:日本の化学と技術,"超微粒子",日本科学技術振興財団・科学 技術館 25(1984)70.
- 14) W. Kundig, H. Bömmel, G. Constabaris and R. H. Lindquist: Phys. Rev. 142(1966)327.
- 15) 北原文雄: コロイドの話し(培風館,東京, 1984) p.65.

第Ⅲ章 微粒子の格子振動とメスバウアー効果

第1節 微粒子の格子振動

1-1 理論的研究

単結晶粒子の体積をバルクからしだいに小さくしていくと仮定する. まず問 題になるのは表面の割合が大きくなることによる表而エネルギーの増加である。 ここで、表面エネルギーとは、表面の原子の外側に向う結合の手が切れているこ とによる,余分のポテンシャルエネルギーのことである. また,表面エネル ギーの大きさは微粒子の体積だけでなく,その形にもよる. 表面エネルギーを 最小にするため、どのような多面体になったら(晶癖を持ったら)よいかという 問題は Wulffによって初めて解かれ,ウルフの多面体1)と呼ばれている. ただ し. 実際の微粒子が必ずしもウルフの多面体となっているとは限らないことは, ガス蒸発法で作成された微粒子の電顕写真²⁾からも明かである. また,表面 の原子は結合の手が切れているから、その熱振動はソフト化していると推定され る. 例えば, 微粒子の融点の降下は古くから観測されているし³⁾, 微粒子の超 伝導の転移温度の上昇などもフォノン(格子振動)のソフト化で説明される4). このようなソフト化の原因となるのは、表面原子における最隣接原子数の減 少からくる原子間結合の切断の効果であることをすでに述べたが、これを実際に 確かめた実験に, MacRae⁵⁾ がNiの(110) 面について行なった低速電子線回折 (LEED)の実験がある. この実験により,表面原子の熱振動の平均二乗振幅の 表面に垂直な成分は,バルクの約2倍もあることがわかった. その後. 他の物質についてのLEEDの実験でも表面はソフト化しているという結果が得られ た^{6,7,8)}. 理論的研究では, Allen とde Wette⁹⁾が原子間力をLennard-Jones ポテンシャルと仮定したfcc 構造の21層の板状結晶について平均二乗振幅を計算 した結果がある. それによると, (100)表面一層目の原子の平均二乗振幅の表 面に垂直な成分 <uz² > は内部の約2倍に達しているが, 二層目からは急激に 減少して内部の値に近づくことがわかった(図Ⅲ-1). この表面一層目の平均 二乗振幅の計算結果はLEEDの実験結果と一致している.

 図Ⅲ-1 デバイ温度より僅かに高い温度での(100)表面付近の原子の平均二乗 変位の表面に垂直な成分 <u_x ² > ⁹). 横軸はその原子が属する
 層の表面から数えた位置. 上の実線はすべての原子間の相互作用を 考慮し,平衡位置がずれることも考えに入れた場合. 下の実線は平
 衡位置がずれることを考慮しない場合. 点線は相互作用を最近接原
 子間のみとした場合. ただし, ε と σ はL J ポテンシャルの定数, aは最隣接原子間距離を√2 a として定義される距離である.

格子振動のソフト化の目安となる量は格子振動の振動数の二乗平均 <ω² > と 原子の平均二乗振幅 <u² > であるが. <ω² > は

$$\langle \omega^2 \rangle = \frac{1}{3N} \sum_n \omega_n^2$$
 (3.1.1)

で定義される. ただし, Nは全原子数, ω, は n 番目の固有振動の振動数である. また,メスバウアー効果の無反跳分率や回折のデバイ・ワーラー因子に直接効くのは,原子の平均二乗振幅 <u² > であるが,振動数とは高温で

$$\langle u^2 \rangle = \frac{1}{3N} \sum_n \langle u_n \rangle^2 \rangle = \frac{k_{\rm B} T}{M} \frac{1}{3N} \sum_n \frac{1}{\omega_n}^2$$
(3.1.2)

の関係がある10).

原子間力が最近接原子間でのみ働くと仮定した場合,アインシュタイン模型での表面の格子振動の振動数の二乗平均<ω² >。は次式で書ける.

$$\langle \omega^2 \rangle_{\mathbf{s}} = \frac{Z_{\mathbf{s}}}{Z_{\mathbf{b}}} \langle \omega^2 \rangle_{\mathbf{b}}$$
 (3.1.3)

ただし, z_s は表面の平均最近接原子数, z_b はバルクの最近接原子数, < ω² >_b はバルクの格子振動の振動数の二乗平均である. 表面の原子数を n_s, 内部の原子数をn_i とすると, 微粒子の格子振動の振動数の二乗平均 < ω² >_p は

$$\langle \omega^{2} \rangle_{p} = \frac{n_{s} \langle \omega^{2} \rangle_{s} + n_{i} \langle \omega^{2} \rangle_{b}}{n_{s} + n_{i}}$$

$$= \frac{n_{s} Z_{s} + n_{i} Z_{b}}{(n_{s} + n_{i}) Z_{b}} \langle \omega^{2} \rangle_{b}$$

$$= \frac{\langle Z \rangle_{p}}{Z_{b}} \langle \omega^{2} \rangle_{b} \qquad (3.1)$$

と書ける¹⁰⁾. ただし、 < 2>p は最近接原子数の微粒子を構成する全原子についての平均値、すなわち微粒子の平均最近接原子数である. 微粒子のサイズが小さくなると表面の割合が大きくなるから < 2>p は小さくなり、(3.1.4)式に従って格子振動はソフト化する. なお、(3.1.4)式はデバイ模型でも成立つ. (3.1.4)式のように、微粒子表面の原子の最近接原子数が減少した分だけソフト化するという模型をマクミランの式に適用すると、金属微粒子の超伝導の転移温度の上昇を説明することができる³⁾.

.4)

しかし、特に金属では、原子間の結合力が遠距離にまで及ぶから、表面付近の

ソフト化が内部にまで及び,この模型より更にソフト化していることも考えられる¹⁰⁾. この可能性を調べるには,X線回折やメスバウアー効果は有力な手段である.

1-2 X線と電子線回折による研究

回折法において,格子振動の効果はデバイ・ワーラー因子に現れる. この因 子はメスバウアー効果における無反跳分率と同等であり¹¹⁾,ブラッグの積分強 度に比例する. 今,ミラー指数が*hkl*のデバイ・シェーラー環に沿った単位長 さ当たりの観測積分強度を*I*obs(*hkl*)とすると次式のように書ける.

$$I_{obs}(hkl) = I_{cal}(hkl) \exp\left[-2B(\sin\theta / \lambda)^2\right]$$
(3.1.5)

ただし, *I*_{ca1}(*hk1*)は,熱振動を除いた他の因子(構造因子,吸収因子,偏向因 子,面頻度など)を含んだ計算値,θは回折角の半分,λはX線や電子線の波長 を表し, *B*は(*hk1*)面の法線方向の平均二乗振幅 <*u*² >*_{hk1}*を用いて次のように 表される量である.

$$B = 8\pi^2 \langle u^2 \rangle_{hkl} \tag{3.1.6}$$

特に微粒子の場合, Bには熱振動による部分 Br の他に, 格子の静的な乱れによる部分 Bs が含まれる可能性がある. この点が, デバイ・ワーラー因子と無反跳分率の違いである. すなわち, 無反跳分率は静的な格子の乱れを含んでいない. 熱振動による部分 Br はデバイ近似によると

$$B_{T} = \frac{3 h}{2Mk_{\rm B} \Theta_{\rm D}} \{1 + 4(\frac{T}{\Theta_{\rm D}})^{2} \int_{0}^{\Theta_{\rm D}} \frac{T u du}{e^{u} - 1} \}$$
(3.1.7)

となる. ここで, h はプランク定数である. 高温近似 (T >> O_D)では (3.1.7) 式は

$$B_{T} = \frac{6h^{2}}{Mk_{\rm B}} \frac{T}{\Theta_{\rm D}^{2}}$$
(3.1.8)

となる. 従って,高温近似では(3.1.5)式は

$$\frac{\ln(I(T)/I(T_0))}{2(\sin\theta/\lambda)^2} = \frac{6h^2}{Mk_{\rm B}} \frac{(T_0 - T)}{\Theta_{\rm D}^2}$$
(3.1.9)

図Ⅲ-2 室温の銀微粒子¹²⁾. (a), (b), (c)の粒径はそれぞれ20 ~50Å, 200 Å,約1000Å.

図Ⅲ-2はKasiwaseら¹²⁾が銀微粒子について行なった,(3.1.5)式に基づく電 子線回折とX線回折の結果である. この図では縦軸を(1/2)ln($I_{ca1}(T)/I_{obs}(T)$),横軸を $(\sin \theta / \lambda)^2$ としてプロットされているが,粒径が小さく なるにつれて,フィットさせた直線の傾き,即ち,ln($I_{ca1}(T)/I_{obs}(T)$)/ 2 $(\sin \theta / \lambda)^2$ の値が大きくなっている. これは粒径が小さくなるにつれて, デバイ温度が低下するためと説明できる. しかし,この方法では実験結果に格 子の静的な乱れによる成分 Bs が含まれる可能性がある. この Bs の成分を除 くには, Bの温度変化を調べる必要がある.

Kasiwaseら¹³⁾によれば、粒径150 Åの銀微粒子について Bの温度変化から求 めたデバイ温度は図Ⅲ-2から求まる値よりは高い. しかし、それでもまだバル クに比べてかなり低く、単に表面の一層か二層だけがソフト化していると仮定し ては説明できないということである. これに対し、Harada、Ohshima¹⁴⁾は粒 径の異なる金微粒子をX線回折法で調べた. そこで得られた温度因子の温度変 化から、デバイ温度 Θ_Dを求め、その Θ_Dの粒径依存から、ソフト化しているの は表面一層だけであると結論した. また、彼らによる銀、銅、鉛微粒子につい ての実験結果も、金で得られた結果と同様であった¹⁵⁾. 図Ⅲ-3はOhsima、 Harada¹⁵⁾による銀微粒子の Bの温度変化を示したものである. 粒径の変化に 対してKasiwaseらが示したほど著しい Bの変化は見られない. 以上のように、 金属微粒子内部のソフト化については、一致した結論が得られていないが、少な くともその表面第一層目はソフト化していると考えられる. また、格子定数に ついては、微粒子はバルクと誤差の範囲で変らないことがすべての実験で確認さ れている.

図Ⅲ-3 銀微粒子について得られた Bの温度変化¹⁵). (O)と(●)は、
 それぞれ平均粒径 130Åと 190Åの銀微粒子の値. 実線と破線は
 アインシュタイン近似による曲線,点線はデバイ近似による曲線である. Θ_b (= 212K)はバルクのデバイ温度である.

1-3 メスバウアー効果による研究

回折実験で得られるデバイ・ワーラー因子は、メスバウアー効果における無反 跳分率に相当するものである¹¹⁾. 従って、微粒子の無反跳分率の温度変化か らデバイ温度が求められる(付録第2節と第7節参照). この場合、メスバウ アー効果による方法では、振動による成分のみが観測にかかり静的な格子の乱れ は全く関与しないので、実験から得られる<u²>にはX線の場合のように静的な 成分が含まれないという利点がある. この点に注目して、金、スズ、タングス テン、鉄微粒子などについて無反跳分率の温度変化からデバイ温度 Θ_D が求めら れた. 初期の実験で得られた Θ_D は二三の例外を除くとバルクのデバイ温度よ り小さく¹⁶⁾、中には極端に小さい結果を示すものがある.

van Wieringen¹⁷,は微粒子の無反跳分率の実験結果に,微粒子の全体として の振動(重心の振動と回転振動)も含まれることを最初に指摘した. ところ が,彼の指摘はあまり注目されなかったため,微粒子の振動の効果を無視した議 論がその後もなされた. この振動の効果を考慮すると微粒子の無反跳分率fa^P は

 $f_{a}^{P} = \exp(-4\pi^{2} \langle (X_{L} + X_{GR})^{2} \rangle / \lambda^{2})$

 $= \exp\{-4\pi^{2} (\langle \chi_{L}^{2} \rangle + \langle \chi_{GR}^{2} \rangle)/\lambda^{2} \}$

$$= f_{\mathbf{a}}^{\mathbf{L}} \quad f_{\mathbf{a}}^{\mathbf{GR}} \tag{3.1.10}$$

と書ける. ただし, x_L と x_{GR}はそれぞれ格子振動と微粒子全体としての振動に よる原子の平衡位置からの変位, f_a^L と f_a^{GR}はそれぞれ格子振動と微粒子全体と しての振動による無反跳分率である. 従って, 微粒子の格子振動による無反跳 分率 f_a^L だけを求めるには, 微粒子全体としての振動を止めて f_a^{GR} = 1 となるよ うにしなければならない.

本研究のメスバウアー効果による微粒子の格子振動の研究はこの点を考慮して 解析した. その結果は,表面第一層のみソフト化しているとしたHaradaと Ohsima^{14,15})のX線回折の実験結果と矛盾しないものであった. この詳細については,第2節で述べる.

•

磁粒子の格子振動をメスバウアー効果で調べることに関して前章までに述べた ことをまとめると次のようになる. メスバウア効果はX線回折と並んで微粒子 の格子振動を調べるのに有力な手段である. この二つの手段を比べると、メス パウア効果における無反跳分率には回折におけるデバイワーラー因子に含まれる ような静的な格子の乱れを含まないという利点がある反面、微粒子全体としての 振動も含むという欠点がある. 従って、格子振動のみを調べるには微粒子の振 動を抑えるため、ある程度以上の硬さのマトリックスに埋め込む必要がある. 以上の点に注意して、ガス蒸発法で作った平均粒径130 Åの鉄微粒子を中心とし て、メスバウアー効果で調べた結果を述べる.

2-1 実験

鉄微粒子はガス蒸発法で作成した. 用いた鉄は純度99.9985 %のJohnson
 Matthey Chemicals 製の鉄線である. 平均粒径 130Åの鉄微粒子は鉄線を0.5 1 Torrの低圧のArガス中で0.5-1 mg/minの遅い蒸発速度で蒸発させて作った.

図Ⅲ-4 ガス蒸発法で作成した平均粒径 130Åの鉄微粒子の電顕写真18).

図Ⅲ-4はこの条件で作った鉄微粒子の電顕写真である. 鉄微粒子は菱形十二 面体で鎖状に連なっていることがわかる. また,電子線回折よりこれらの微粒 子はバルクと同じくα-Fe であることがわかった. これらの微粒子の粒径分布 を図Ⅲ-5に示す.

図Ⅲ-5 ガス蒸発法で作成した平均粒径 130Åの鉄微粒子の粒径分布¹⁸⁾.

ここで, 平均粒径 <d>を次のごとく定義する.

$$\langle d \rangle = \sum_{i} n_{i} v_{i} d_{i} / \sum_{i} n_{i} v_{i}$$
$$= \sum_{i} n_{i} d_{i} / \sum_{i} n_{i} d_{i}^{3}$$
(3.2.1)

ただし,粒径d_iは i番目の微粒子の粒径, v_i はその体積, n_i はその数である. この定義に従うと,図Ⅲ-5の粒径分布から < d>> = 130 Åが得られる.

試料は微粒子をパラフィン,ビースワックス,松脂,アロンアルファ(シアノ アクレリック系接着剤)などに埋め込むことによって作った. パラフィンやビ ースワックスに埋め込む場合は不活性ガス中で加熱して,これらを溶かすことに よって微粒子を埋め込んだ. 松脂に埋め込む場合は松脂をエーテルで溶かした 溶液に微粒子を入れ,エーテルが蒸発するのを待った. アロンアルファに埋め 込む場合は微粒子にアセトンを加え,その上からアロンアルファを数滴垂らし, アセトンが蒸発するのを待った. なお,比較のためマトリックスに埋め込まな い試料も作った. この場合はハケで集めた綿状の微粒子集合体にアルコールを 加え,軽く固まった状態にしてから,アルコールが蒸発するのを待って得た試料 (密度0.1 g/cm³)と,その後更に圧力をかけて得た試料(密度0.7 g/cm³)の 2通りを作った. また,メスバウアー効果の測定に用いた装置は島津製作所製 のMEG-1で,線源の駆動波形はノコギリ波である.

無反跳分率を求める際,面積強度に対する飽和効果を注意しなければならない ので,ここでそれを考察する. 本実験で用いた試料のFeの面密度は5-10mg/cm² である. また,後で示すが,鉄微粒子の酸化の割合は質量にして20-30 %であ ることがわかる. これらの値と試料の無反跳分率faをバルクの鉄と同じと仮定 した値から,6本線の内最も大きい外側の吸収線の有効厚みTa を計算すると約 0.9 である. Lang¹⁹⁾が計算した飽和関数(付録図A-4参照)にこの値を代入 すると,飽和効果を考慮しないことによるfa(T)/fa(80)の誤差は,80-300Kの温 度範囲で1.4 %以内であることがわかる. 実験誤差はこの値より大きいと推定 されるから,飽和効果を無視する.

実験手段の確認と実験結果の比較のため、鉄のフォイル(面密度20mg/cm²) も 測定した. この程度の厚みになると、飽和効果のため無反跳分率(の温度変 化)は面積強度(の温度変化)に比例しないから、フォイルの無反跳分率(の温 度変化)は次のようにして求めた. 室温での鉄の f_a は0.81($\Theta_D = 470$ Kに対 する理論値)と仮定して、それぞれの吸収線に対する有効厚み T_a を求め、その 値を基準として他の温度での f_a をそれぞれの吸収線の面積強度からLangの飽和関 数を用いて求めた. その結果、フォイルの無反跳分率の温度変化は、デバイ 温度 Θ_D としてバルクの鉄の低温近似の値 $\Theta_D = 470$ K²⁰ をデバイ模型の式 (付録(A.2.4)式参照)に代入した理論曲線とほとんど一致した. 更に、こ の Θ_D の値に対する無反跳分率の理論値は、すでに得られている鉄の無反跳分率 の値^{21,22} とも矛盾しない. 従って、鉄の Θ_D は約 470Kであり、室温での f_a は0.81であることが改めて確認された.

本試料における鉄微粒子の酸化度は,試料に含まれる鉄微粒子の面密度に対する6本線の面積強度と,それと同じ面密度に(上で述べた値を用いて)換算した

-21-

鉄のフォイルの6本線の面積強度との比較から推定される. その値は質量にして20-30%である. 従って,平均粒径 130Åの鉄微粒子では表面1,2層が酸化層であると推定される.

図Ⅲ-6¹⁸⁾ はシアノアクレリック系接着剤に平均粒径 130Åの鉄微粒子を埋め 込んだ試料から得たメスバウアースペクトルである. 低温におけるスペクトル には,表面の酸化によるマグネタイトの弱いピークが矢印で示したように見られ るが,その他はほとんどバルクの鉄と変らない¹⁸⁾. しかし,スペクトルの6 本線の間隔(超微細分裂)は低温で微粒子のほうがバルクのそれより僅かに(約 1%)大きいことが認められる. これは,低温で微粒子の内部磁場がバルクの それより約 1%大きいことを意味する^{23,24)}. このことについては第V章第2 節の「鉄微粒子の内部磁場」で詳しく論ずる.

図Ⅲ-6 三つの温度での平均粒径 130Åの鉄微粒子のメスバウアースペクトル (シアノアクレリック系接着剤に埋め込んだ場合)¹⁸⁾. 矢印で示 した所がマグネタイトの高温相のピーク.

図Ⅲ-7 平均粒径 130Åの鉄微粒子の無反跳分率の温度変化¹⁸⁾. Oはシア
 ノアクレリック系接着剤,●はパラフィン,△はビースワックス,▲
 は松脂に埋め込んだ場合. ×は平均密度 0.7g/cm³,□は平均密度
 0.1g/cm³ に圧縮した場合. 破線はバルクの鉄のデバイ温度(Θ_D)
 =470 K)に対する理論曲線.

鉄做粒子の無反跳分率とその温度依存性は,試料をどのような状態で測定する かによって非常に大きく影響される. 例えば,微粒子をハケで集めた状態(綿 状)のまま測定すれば,ほとんどスペクトルが観測されないくらい無反跳分率が 小さい. その逆に,シアノアクレリック系接着剤,パラフィン,ビースワック ス,松脂などに埋め込んだ場合は,微粒子内部の鉄の部分(6本線)の無反跳分 率の温度依存性は点線で示したバルクの鉄の値と誤差範囲内で一致する(図Ⅲ-7 (a)-(d)参照)^{18,25)}. (ただし,無反跳分率の算出に際しては,鉄の6本線 の内,酸化層のピークと分離が困難な鉄の三番目の吸収線を除いた.) これら の無反跳分率の温度依存性から直接検索法(付録第7節参照)によりデバイ温度 を求めると,それぞれ Θ_D = 459 K,434 K,436 K,444 Kを得た. また, 鉄のフォイル(0.1mg⁵⁷Fe/cm²)に対して飽和効果を考慮して直接検索法でデバ イ温度を求めると、 Θ_D = 437 Kを得た(付録第7節参照). 試料のデバイ温 度の実験誤差はそれぞれ±30K程度と見積もることができるので、これらのマト リックスに埋め込んだ微粒子のデバイ温度はバルクの鉄の値と誤差の範囲内で一 致する. また、マトリックスを使わず、微粒子を単に圧縮した場合の無反跳分 率は圧縮の程度が高くなるほどバルクの無反跳分率(の温度変化)の値に近づく (図Ⅲ-7(e)参照)^{18,26)}.

第1節で述べたように, 微粒子の無反跳分率 f_a^P は格子振動による無反跳分率 f_a^L と微粒子の振動による無反跳分率 f_a^{CR}の積である.

$$f_{\mathbf{a}}^{\mathbf{P}} = f_{\mathbf{a}}^{\mathbf{L}} f_{\mathbf{a}}^{\mathbf{GR}}$$
(3.2.2)

ここで f_a^P , f_a^L , f_a^{GR} は,格子振動と微粒子の振動による原子の平衡位置からの変位 x_L と x_{GR} を用いて次式で書ける.

$$f_{a}^{P} = \exp\{-4 \pi^{2} \langle (x_{L} + x_{GR})^{2} \rangle / \lambda^{2} \}$$

$$f_{a^{L}} = \exp(-4 \pi^{2} \langle \chi_{L}^{2} \rangle / \lambda^{2})$$

$$f_{a}^{GR} = \exp(-4\pi^{2} \langle x_{GR}^{2} \rangle / \lambda^{2}) \qquad (3.2.3)$$

以上の実験において、微粒子をこれらの4つのマトリックスのいずれかに埋め 込んだ場合、バルクの鉄の無反跳分率 f_a^B の温度依存性と同じになった. この ことは、微粒子の重心の振動が抑えられたということを示している. すなわ ち、 $f_a^{GR}=1$ であり、 $f_a^B = f_a^P = f_a^L f_a^{GR} = f_a^L$ を意味する. というの は、これらの4通りの場合のそれぞれについて $f_a^{GR} < 1$, $f_a^L > f_a^B$ でかつ偶 然 $f_a^B = f_a^P = f_a^L f_a^{GR}$ になっているという可能性はほとんどないからである. また、このことは次の計算によっても確認できる.

まず、 微粒子の振動として 微粒子の重心の振動だけ考慮した場合(回転振動を

考慮しない場合)にfa^{cr}をfa^c と書くことにする. ここで, fa^c をアインシュ タイン模型で表すと,高温近似では次式で書ける.

$$f_{a}^{G} = \exp[-(h^{2} / Mk_{B} \lambda^{2})(T / \Theta_{E}^{2})]$$
(3.2.4)

ただし、Mは微粒子の質量、 $\Theta_{\rm E}$ はアインシュタイン温度である。 アインシュ タインの角振動数 $\omega_{\rm E}$ ($\omega_{\rm E} = 2\pi k_{\rm B} \Theta_{\rm E} / h$)は、バネ定数qを用いて $\omega_{\rm E} = \sqrt{(q/M)}$ と書けるから、(3.2.4)式は

 $f_{a}^{G} = \exp[-4\pi^{2} k_{B} T / q\lambda^{2}]$ (3.2.5)

となる. ⁵⁷Feの場合, $\lambda = 0.8602$ Åであるから $q \gtrsim 2 \times 10^3$ (S.I.単位) であれば $T \lesssim 300$ Kで $|1 - f_a^c| \lesssim 0.01$ になる. 2×10^3 (S.I.単位) は一般 的な分子結晶における分子間力のバネ定数の十倍以内であるから,本実験で用い たマトリックスと微粒子の間のバネ定数は, 微粒子の大きさを考慮すると, $q \gtrsim$ 2×10^3 (S.I.単位) の条件を充たしていると考えられる.

図Ⅲ-8 平均粒径66Åの鉄微粒子をシアノアクレリック系接着剤に埋め込んだ 試料の無反跳分率の温度変化. Oは実験値. 実線は直接検索法に よる理論曲線 (𝒫p = 470 K).

以上のことから、微粒子内部の鉄の部分の格子振動はバルクのそれと変わらないと推定できる. このことは、本研究で作成した最も小さい鉄微粒子(平均粒径66Å)でも成立っている²³⁾. 例えば、図Ⅲ-8は平均粒径66Åの鉄微粒子を シアノアクレリック系接着剤に埋め込んだ試料の無反跳分率の温度変化である が、直接検索法によりデバイ温度を求めると、 *Θ*_D = 470 Kが得られる.

ここで、本研究で求めたデバイ温度は鉄微粒子のどの部分か吟味してみる. 本研究で無反跳分率の算出に用いたのはバルクの鉄の6本線とほとんど同じ位置 にある6本線である. しかし、この他、鉄微粒子のスペクトルには表面酸化層 の吸収線とα-Fe が表面酸化層に接する境の部分(1原子層程度)の非常に弱い 吸収線がある(第V章第4節参照). 従って、本研究で得たのは鉄微粒子から 表面酸化層とα-Fe が表面酸化層に接する境の部分(1原子層程度)を除いた部 分のデバイ温度である(図Ⅲ-9 参照).

図Ⅲ-9 鉄微粒子の構造.

また,鉄微粒子は表面1,2層が酸化されているが,このことが微粒子内部の 格子振動にどのように影響しているかわからない. しかし,Ohshima ら²⁷⁾の 銅微粒子についてのX線回折の結果によれば,表面の酸化は内部の格子振動に影 響しないようである. 本研究での結果は,表面から1,2層入るとバルクとほ とんど変らなくなるという理論計算の結果⁹⁾や表面1層だけのソフト化で説明が つくというHaradaとOhshima ^{14,15)}のX線回折の結果と矛盾しない.

それでは鉄微粒子の表面の酸化層はソフト化しているかという問題があるが, 表面酸化層のピークは低温から室温までの間に非常に大きな変化をするため,正 確な面積強度の算出が困難である. ただし,Shinjoら²⁸⁾による鉄薄膜表面の 酸化層のメスバウアー効果の研究によれば,面積強度の温度変化は少なく,従っ てソフト化はしていないという結論である. おそらく,表面酸化層は綺麗な金 属の表面に比べてソフト化の程度が少ないということを意味すると思われる. いずれにしても, 微粒子の内部にまではソフト化が及んでいないと考えてよい.

2-3 結論

ガス蒸発法で作った平均粒径130 Åの鉄微粒子を中心として,鉄微粒子の格子 振動がバルクの鉄に比べてソフト化しているかどうかをメスパウアー効果で調べ た. 鉄微粒子のメスパウアースペクトルはα-Fe の6本線と表面酸化層の弱い 吸収線に分けられる. 鉄微粒子のα-Fe の6本線の無反跳分率とその温度変化 は,鉄微粒子をマトリックスに埋め込んで微粒子全体としての振動を押さえてし まえば,バルクの鉄の値と変わらないことがわかった. このことは平均粒径66 Åの鉄微粒子でも成立っている. 従って,粒径66Å以上の鉄微粒子の内部(表 面酸化層とα-Fe 表面の1原子層程度を除いた部分)はソフト化していないと考 えられる. 参考文献(Ⅲ)

- 1) G. Wulff: Z. Krist. 34(1901)449.
- S. Yotsuya, S. Kawabe and R. Uyeda: Japan. J. appl. Phys. 12(1973)1675.
- 3) M. Takagi: J. Phys. Soc. Japan 9(1954)359.
- 4) S. Matsuo, H. Sugiura and S. Noguchi:J. Low Temp. Phys. 15(1974)481.
- 5) A. U. MacRae: Surf. Sci. 2(1964)52.
- 6) R. M. Goodman and G. A. Somorjai: J. chem. Phys. 52(1970)6325.
- 7) R. Kaplan and G. A. Somorjai: Solid state Commun. 9(1971)505.
- 8) S. Y. Tong, T. N. Rhodin and A. Ignatiev: Phys. Rev. B8(1973)906.
- 9) R. E. Allen and F. W. de Wette: Phys. Rev. 179(1969)873.
- 10)長岡洋介: 固体物理 別冊特集号,"超微粒子",アグネ技術センター (1984)27.
- C. Kittel: Introduction to Solid State Physics (John Wiley, New York, 1976) p.63
- 12) Y. Kashiwase, I. Nishida, Y. Kainuma and K. Kimoto:J. Phys. Soc. Japan. 38(1975)899.
- 13) Y. Kashiwase, I. Nishida, Y. Kainuma and K. Kimoto:J. Physique Suppl. (1977)C2-157.
- 14) J. Harada and K. Ohshima: Surf. Sci. 106(1981)51.
- 15) K. Ohshima and J. Harada: J. Phys. C 17(1984)1607.
- 16) 林光彦: 固体物理 別冊特集号,"超微粒子",アグネ技術センター (1984)41
- 17) J. S. van Wieringen: Phys. Lett. 26A(1968)370.
- 18) M. Hayashi, I. Tamura, Y. Fukano, S. Kanemaki and Y. Fujio: J. Phys. C 13(1980)681.
- 19) G. Lang: Nucl. Instr. Methods, 24(1963)425.

20) C. Kittel:

Introduction to Solid State Physics (Wiley, New York, 1976)p.126

- 21) S. S. Hanna and R. S. Preston: Phys. Rev. A139(1965)722.
- 22) J. M. Trooster and M. P. A. Viegers:Mössbauer Effect Data and Reference Journal 1(1978)154.
- 23) M. Hayashi, I. Tamura, Y. Fukano and S. Kanemaki: Surf. Sci. 106(1981)453.
- 24) I. Tamura and M. Hayashi: J. Mag. and Mag. Mat. 31-34(1983)945.
- 25) M. Hayashi, I. Tamura, Y. Fukano, S. Kanemaki and Y. Fujio:J. Physique Suppl. (1979)C2-661.
- 26) M. Hayashi, I. Tamura, Y. Fukano and S. Kanemaki: Phys. Letters 77A(1980)332.
- 27) K. Ohshima, T. Yoshiyama and J. Harada: J. Phys. C 18(1985)3073.
- 28) T. Shinjo, T. Shigematu, N. Hosoito, T. Iwasaki and T. Takada: Japan. J. Appl. Phys. 21(1982)L220.

第Ⅳ章 微粒子の振動とメスバウア-効果

第1節 微粒子の振動

1-1 理論

微粒子の場合,その振動がメスバウアースペクトルの強度(無反跳分率)に極めて大きな影響を及ぼすことはすでに述べた. だだし,そこで述べたのは微粒子の振動の角振動数 Ω がメスバウアー核の励起状態の緩和時間 τ の逆数(57 Feでは10⁷Hz)よりずっと高い場合($\Omega \gg 1/\tau$)である. この場合,微粒子の振動がメスバウアースペクトルに及ぼす影響は本質的には格子振動のそれと変らない. そこで,本節では振動数が低い場合($\Omega \approx 1/\tau$ や $\Omega \ll 1/\tau$)も含めた一般的な議論をする.

微粒子の振動は簡単のため古典論で議論する. また, 微粒子の振動には, 重 心の振動の他, 回転(ねじれ)振動も有り得るが, ここでは, まず重心の振動の み考えることにする. Shapiro¹⁾が格子振動に対して用いた理論を微粒子 の振動に適用すると, γ線の進行方向を x軸として, 重心の変位がx_G sin Ωt と なる調和振動をしている微粒子から見た場合, 角振動数ω。のγ線は次式で書け る.

$$A = A_0 \exp(i\omega_0 t) \cdot \exp[i(2\pi x_G / \lambda) \sin \Omega t]$$

$$= A_0 \sum_{n=-\infty}^{+\infty} J_n (2\pi x_G / \lambda) \exp[i(\omega_0 + n\Omega)t]$$
(4.1.1)

ただし、Aはベクトルポテンシャル、 A_{o} はベクトルポテンシャルの時間によらない成分、 J_{n} は n次のベッセル関数である。 従って、(4.1.1) 式はいろいろの振動数(ω_{o} , $\omega_{o} \pm \Omega$, $\omega_{o} \pm 2\Omega$, -----)の波が、対応する次数のベッセル関数を係数とした割合で重なり合っていることがわかる。 図IV-1はこのことをスペクトルで表した図である。 なお、メスバウアー γ 線のスペクトルの半値幅は理想的には自然幅 Γ_{o} / \hbar (= 2/ τ) である。

図IV-1 角振動数 Ωで振動している微粒子から見た場合の角振動数 ω₀の γ線のスペクトル・

図 IV-2 多くの角振動数 Ωで振動している微粒子から見た場合の角振動数 ω。
 の γ 線のスペクトル. (a) は Ω ≥ 1/τ の場合. (b) は Ω ≈ 1/τ の
 場合.

実際には微粒子の振動は多くの Qの重ね合わせである. 従って,図W-1のゼロ次(中心)以外のピークは重なり合い帯状になる. この帯状のスペクトルを PO wing と呼ぶことにする. それに対し,中心のピークはメスバウアー線 (Mössbauer line)と呼ばれている.
Ω≫1/τの場合には、PO wing の高さが極めて低く、幅が極めて広くなるた め、PO wing はスペクトルのバックグラウンドに含まれる(図Ⅳ-2(a)). 従って、PO wing はメスバウアースペクトルの吸収線に寄与しないから、吸収 線の半値幅は微粒子の振動がない場合と変らない. しかし、メスバウアー線の 強度がPO wing の分だけ小さくなっているため、吸収線の面積強度は小さくな る.

Ω≈1/τの場合には、PO wing の幅がメスバウアー線の幅に比べ得る程に狭くなる(図IV-2(b)). この場合メスバウアースペクトルの解析に際しては、メスバウアー線による吸収線と、それと重なっているPO wing による吸収線を一つのローレンツ形曲線として解析するため吸収線の幅が広がる. しかし、面積強度は変らない.

 $\Omega \ll 1/\tau$ の場合には、 γ 線が吸収される瞬間 ($t-\tau/2 \sim t+\tau/2$) に微粒子 はほぼ一様な速度 $\Omega x_{G} \cos \Omega t$ で運動しているから、吸収線はこの速度に対応し た大きさのドップラーシフトをする. しかし、 γ 線が吸収される時刻は乱雑で あるから、ドップラーシフトの値も速度に換算して – $\Omega x_{G} \sim \Omega x_{G}$ の範囲に乱雑 に分布する. しかも、この範囲は一般に用いられる線源の速度の振幅よりはる かに大きいので吸収線は観測されない.

微粒子の無反跳分率 f^a は微粒子の格子振動による部分 f^{ab} と重心の振動による部分 f^{ab} の積に等しい {(3.2.2)式}. また, 微粒子の重心の振動の励起 を伴う γ線共鳴吸収の確率 (PO wing の面積強度に比例) は

 $f_{a}^{L} (1 - f_{a}^{G})$ (4.1.2)

である. また,格子振動の励起を伴う確率は

 $(1 - f_a^L) f_a^G$ (4.1.3)

である。 また, 微粒子の格子振動と重心の振動の両方の励起を伴う確率は

$$(1-f_{a}^{L})(1-f_{a}^{G})$$

である. これらのスペクトルをまとめて図示すると図Ⅳ-3²⁾のようになる. ただし,古典論では量子論と異なり電磁波(γ線)による反跳は考慮されていな いから,図Ⅳ-3は古典論に反跳エネルギーの分だけ修正した図である.

(4.1.4)

図IV-3 メスバウアー用 γ 線の微粒子内の原子核からの放出と吸収スペクト ル²¹. ただし, $\Omega \gg 1/\tau \geq \langle x_G \rangle^2 > \langle \lambda \rangle^2$ を仮定した. Aは無反 跳 γ 線のピーク(Mössbauer line), Bは重心の振動を励起して放出 吸収される γ 線のピーク(PO wing), Cは格子振動を励起して放 出吸収される γ 線のピーク(Phonon wing), Dは両方の振動を励起 して放出吸収される γ 線のピーク, ε 。は無反跳 γ 線のエネルギー, *Rと P*はそれぞれ原子核と微粒子が真空中に孤立している場合の反跳 エネルギーである. なお, 添字s とa はそれぞれ線源と吸収体にお ける値であることを表す. また,多くの場合には*P*が非常に小さい ため, PO wing の重心の位置はMössbauer lineの位置と一致する.

図Ⅳ-4 斜めの実線は(4.1.5) 式でfa^c = 0.99とおいて,様々な粒径の微粒子 に対する Ωを温度 Tの関数として示した曲線. 破線AA'とBB' の間の領域は Ω≈1/τと見做せる範囲³⁾.

微粒子の重心の振動が吸収線の強度と幅に及ぼす影響をまとめると次のように なる. アインシュタイン模型によると,重心の振動による無反跳分率は

$$f_{a}^{G} = \exp\left[-\frac{\hbar}{2M\Omega\lambda^{2}}\left(\frac{2}{\exp(\hbar\Omega/k_{B}T)-1}\right) + 1\right)\right]$$
(4.1.5)

と書ける. (4.1.5) 式で fa[°] = 0.99とおいて, 粒径 (質量 M) の異なる鉄微粒 子に対する Qを温度 Tの関数として図 IV-4に実線で示した. それぞれの粒径 の微粒子について, それに対応する実線と破線 A A'の両方の線より上の領域で は吸収線の幅や強度に微粒子の重心の振動の影響は現れない. この実線より下 で破線 A A'より上の領域では吸収線の幅には重心の振動の影響は現れないが, 吸収線の強度はその影響を受けて減少する. 破線 A A'と B B'間の領域では 重心の振動により吸収線の幅が広がる. 破線 B B'より下の領域では重心の振 動が y 線に対するドップラー効果として影響し, 一般にそのドップラー速度が線 源のドップラー速度より大きいため, 吸収線は観測されない.

-34-

回転振動の場合には、それによる無反跳分率 f_{a}^{R} は(4.1.5)式のように簡単な 式では表せない. というのは、同一の微粒子内のメスパウアー核に対して、回 転振動による平均2乗振幅 $\langle x_{R} \rangle^{2} + y_{R} \rangle^{2} + z_{R} \rangle^{2}$ は回転軸からの距離の2乗 に比例しているうえ、一般に回転軸も一つではないので平均2乗振幅の γ 線の進 行方向の成分 $\langle x_{R} \rangle^{2}$ 、は簡単に表すことが出来ないからである. しかし、微 粒子は一直線状に並んでいるわけではないから、回転振動が重心の振動を伴わず に起きることはほとんどないと考えてよい. 従って、実験結果の解析の際、回 転振動は考慮していないが、回転振動を考慮したとしても本質的には(4.1.5)式 に基づく考察と異ならないと考えられる.

次に微粒子の振動がメスバウア-効果に及ぼす影響を調べた二つの実験につい て述べる.

1-2 実験1

試料は平均粒径 130Åと1000Åの鉄微粒子をガス蒸発法で作り,様々な密度に 圧縮した. すなわち,マトリックスを使わない試料は,平均粒径 130Åの微粒 子の場合,密度0.1,0.7 g/cm³の2通りの試料,平均粒径 1000 Åの微粒子の 場合,1.1,0.2,0.05 g/cm³の3通りの試料を作った. また,比較のため それぞれの粒径の微粒子につきシアノアクレリック系接着剤に埋め込んだ試料も 作った. これらの試料をメスバウアー効果で測定してその無反跳分率を求め た. なお,使用したメスバウアー装置は島津製作所のMEG-1 である.

図IV-5(a)と(b)はそれぞれ平均粒径 130Åと1000Åの鉄微粒子の無反跳分率 である²⁾. どの粒径に対しても密度の低い試料ほど無反跳分率が小さいことが わかる.

一方,それぞれの吸収線の半値幅は,自然幅をΓ。とすると 1.5× 2Γ。から 1.8 × 2Γ。の間にあり,温度や試料の密度に対して規則性は見いだせないの で,粒子の振動による半値幅の増加はないと考えられる. 従って, Ω≫1/τで あることがわかる. 次に図IV-5に基づき微粒子の重心の振動を大まかに解析す る.

-35-

 図Ⅳ-5 鉄微粒子集合体の無反跳分率f^P の温度変化²⁾. Aは平均粒径 130 Aの微粒子をシアノアクレリック系接着剤に埋め込んだ試料. Bと Cは平均粒径 130Åの微粒子をそれぞれ密度 0.7g/cm³ と 0.1g/cm³ に圧縮した試料. Dは平均粒径1000Åの微粒子をシアノアクレリッ ク系接着剤に埋め込んだ試料. E, F, Gは平均粒径1000Åの微粒 子をそれぞれ密度 1.1g/cm³, 0.2g/cm³, 0.05g/cm³ に圧縮した試 料.

微粒子の無反跳分率fa[®] は次式で書ける.

 $f_{\mathbf{a}}^{\mathbf{P}} = f_{\mathbf{a}}^{\mathbf{L}} f_{\mathbf{a}}^{\mathbf{G}}$

 $= f_{\mathbf{a}}^{\mathbf{L}} \exp\left(-4\pi^{2} \langle x_{\mathbf{G}}^{2} \rangle / \lambda^{2}\right)$

 $= f_{a}^{L} \exp\left(-4\pi^{2} k_{B} T / q \lambda^{2}\right)$

 $= f_{a}^{L} \exp(-4\pi^{2} k_{B} T / M\lambda^{2} \Omega^{2})$ (4.1.6)

ただし, Mは微粒子の質量である. また, f_a^c についてはアインシュタイン 模型の高温近似を用いた. λに⁵⁷Feのメスバウアーγ線の波長8.602x10⁻⁹cm, f_a^L にバルクの鉄の無反跳分率を代入して, それぞれの試料の無反跳分率の値を 一つの角振動数 Ωにより解析しようとしても実験値に合わせることができない. そこで, (4.1.6) 式を次式の様に拡張する.

$$f_{\mathbf{a}}^{P} = f_{\mathbf{a}}^{L} \sum_{i} w_{i} \exp(-4\pi^{2} k_{B} T / M\lambda^{2} \Omega_{i}^{2})$$
(4.1.7)

ただし、 W_i は角振動数 Ω_i に対する重みで、 $\Sigma_i W_i = 1$ である. Ω_i を等間隔 に取り、 W_i を実験値に合うように試行錯誤で求めることにより図IV-6に示した ような角振動数 Ω の分布が得られる.

図Ⅳ-6 角振動数 Ωの分布²⁾. BとCは平均粒径 130Åの微粒子をそれぞれ 密度 0.7g/cm³ と 0.1g/cm³ に圧縮した試料. E, F, Gは平均粒 径1000Åの微粒子をそれぞれ密度 1.1g/cm³, 0.2g/cm³, 0.05g/ cm³ に圧縮した試料. Cは Ωの分布関数. また,それぞれの試料について, Ω とバネ定数qの平均値と 300Kでの < x_a^2 > を表IV-1に示す. ここで、 57 Feの τ の値 9.77 × 10⁻⁸sec と図IV-6 や表IV-1の Ω の値を比較することにより, $\Omega \gg 1/\tau$ であることが改めて確認される.

表IV-1 Ωとバネ定数 g の平均値, 及び 300Kでの微粒子の重心の平均二乗振 幅<xg² > ²).

Average diameter of particles (Å)	Average density of specimen (g cm ⁻³)	Ω (s ⁻¹)	q (g s ⁻²)	<⊼g² > (cm)
130	0.1	3.77 × 10 ¹⁰	5.84×10^{3}	2.00×10^{-9}
	0.7	7.71 × 10 ¹⁰	2.45 × 10 ⁴	1.40×10^{-9}
1000	0.05	1.04 × 10 ⁹	4.44×10^{3}	2.10×10^{-9}
	0.2	2.38 × 10 ⁹	2.33 × 10 ⁴	1.45×10^{-9}
	1.1	5.95 × 10 ⁹	1.46 × 10 ⁵	1.07×10^{-9}

2-3 実験2

平均粒径 500Åと2500Åの鉄微粒子をガス蒸発法で作り,それぞれ0.26と0.4 g/cm³の密度に圧縮した. これらの試料をメスバウアー効果で測定し,実験1 と同じように解析した(図Ⅳ-7(a)参照)³⁾. なお,使用したメスバウアー装 置はエルシント社のAME-50である.

図IV-7 鉄微粒子集合体の無反跳分率faと半値幅 wの温度変化(a),及び角振動数 Qの分布(b)³⁾. Aと(O)は平均粒径 130Åで密度 0.7 g/cm³ (実験1のデータ),Bと(△)は平均粒径 500Åで密度 0.26g/cm³,Cと(×)は平均粒径 2500 Åで密度 0.4g/cm³の鉄 微粒子集合体に対する曲線と実験値. (●)は理想的な半値幅 2 Г。(Г。は自然幅)を基準にした場合の平均粒径2500Åで密度 0.4g/cm³の鉄微粒子集合体の半値幅 wである. 他の試料の半値幅 はバルクの値と同じで,すべての温度で約 1.6× 2 Г。である.

平均粒径 500Åの試料の吸収線の半値幅は $(1.55\pm0.1) \times 2\Gamma$ 。であり,これ らの値はバルクの値と変らない. しかし,平均粒径2500Åの試料の半値幅は温 度が上昇するに従って広がる. 例えば78Kでは $1.6 \times 2\Gamma$ 。であるが,298 K では2.22× 2Γ 。に広がる (図IV-7(a)参照)³⁾. 図IV-7(b) からも明かなよ うに,これは $\Omega \approx 1/\tau \approx 10^7$ Hzの振動数による半値幅の増加である. すなわ ち,温度の上昇と共に半値幅が増加するのは,無反跳 γ 線による吸収線の割合が f_a° に比例して減少するのに対して, 微粒子の振動とエネルギーを交換した γ 線 による幅の広い吸収線の割合が 1-f^c に比例して増加するからである. な お、この試料には Ω≈1/τの振動数を持つモードの他, Ω≫1/τのモードもある ので吸収線の面積強度はバルクのそれより小さくなっている.

1-4 結論

微粒子の振動がメスバウアー効果に及ぼす影響について,次のようなことが理論的に予想される. $\Omega \gg 1/\tau$ の振動は無反跳分率を小さくするが吸収線の幅には影響しない. 一方, $\Omega \approx 1/\tau$ の振動は吸収線の幅を広くするが無反跳分率には影響しない.

これらのことを確かめるため,平均粒径130,500,1000,2500Åの鉄微粒子 をそれぞれ密度0.05~0.7 g/cm³の範囲で圧縮した多くの試料について,メスバ ウアー効果の測定をした. その結果,すべての試料で微粒子の密度が低いほど 無反跳分率は小さく,吸収線の半値幅は平均粒径2500Åの微粒子の試料を除くと バルクの値と変らなかった. ただし,平均粒径2500Åの微粒子の試料では温度 の上昇と共に半値幅が増加した.

実験結果をアインシュタイン模型に基づいて解析した結果,平均粒径2500Åの 微粒子の試料を除いた試料における微粒子の振動数 Ω は、⁵⁷Feの第一励起準位の 緩和時間 τ とすると、 $\Omega \gg 1/\tau$ であることがわかった. 一方、平均粒径2500Å の微粒子の試料には、 $\Omega \approx 1/\tau$ (10⁷ sec⁻¹)の振動もあることがわかった. こ れらの実験結果は理論から予想されることと矛盾しない. 異種媒体間の熱伝導の際,その界面では温度分布の不連続性が生ずる. 例え ば,固体と液体ヘリウム間で熱が伝わる時,温度はその境界面で不連続に変る. このような界面熱抵抗は,1941年にKapitza⁴⁾により発見されたのでカピッツア 抵抗と呼ばれる. すなわち,カピッツア抵抗*R*_κは次式で定義される.

 $R_{\rm K} = \Delta T / \Delta \dot{Q} (T) \tag{4.2.1}$

ただし、Δ Tは界面での温度差、ΔQ(T)は液体ヘリウム(温度 T)から固体 (温度 T – Δ T) への熱流密度と固体から液体ヘリウムへの熱流密度の差であ る. 近年,極低温物理学の発展に伴い,系を極低温にするために希釈冷凍機が 用いられるようになったが,その熱交換器に界面の面積を広くしてカピッツア抵 抗を小さくする目的でCuやAgなどの金属微粒子の焼結体が使われている. と ころが,これらのカピッツア抵抗 R_K は予想以上に小さいことが明らかになっ た. 即ち, R_K は温度10m K以下で孤立した金属微粒子のモデルに基づく漸近 形

$$R_{\rm K} \propto \exp(-h\nu_0 / k_{\rm B} T) / T^2$$
(4.2.2)

よりずっと小さくなる(図IV-8参照)⁵). ただし、v。は微粒子のサイズ効果 によるフォノンの最低振動数である. このことについて、Nishiguchi, Nakayama⁶,は微粒子の(全体としての)振動が10m K以下で金属微粒子の焼結 体と液体³Heの間のカピッツア抵抗を下げる効果があることを予想した. そ して、銀微粒子焼結体と液体³Heの間のカピッツア抵抗について、銀微粒子の振 動の特性温度(アインシュタイン温度)を10m Kと推定することにより実験値に 合わせることができた.

本研究においても,¹⁹⁷Auのメスバウアー効果により微粒子焼結体における微 粒子の振動を観測することができたので,次にそのことについて述べる.

図 IV-8 銀微粒子と液体 ³Heのカピッツア抵抗 R_K の温度変化⁵⁾ . ▲は
 半径 R=0.4 µmの汚れた銀微粒子. Oは R=0.55µmの綺麗な銀
 微粒子. 実線は R=0.55µmとした理論曲線. 破線は R=0.250
 µmとした理論曲線.

2-1 金合金微粒子焼結体のメスバウアー効果

線源には,100mg の¹⁹⁶Ptに1時間, 2×10¹³ neutrons/cm² s の中性子線を 照射して,5mCiの¹⁹⁷Ptにしたものを用いた.¹⁹⁷Ptは⁵⁷Coに比べて半減期が非 常に短く約18時間であるので,2日毎に中性子線を照射して線源を新しくした. なお,¹⁹⁷Ptの線源から出るメスバウア-γ線のエネルギーは77.4keV である.

試料は、まず金(純度99.99%)、銀(純度99.99%)、銅(純度99.9%)よりガス蒸発法で3種類の微粒子、すなわち、平均粒径500 Åの金微粒子、平均粒径500 Åの金織合金(Cu-20at.%Au) 微粒子、平均粒径2500Åの金銀合金(Ag-20at.%Au) 微粒子を作った. ただし、作成条件はいずれの微粒子についても同じで、5 TorrのArガス中で約200mg/min の蒸発速度で蒸発させた. また、合金微粒子を作成する場合は、予め均一な合金を作ってからそれを蒸発させた.

これらの微粒子を作った後、金微粒子は、それを圧縮してバルクに対する密度

比(ρ/ρ_b)を 0.031, 0.15, 0.21, 0.51の4つを室温で焼結体とした. な お,ガス蒸発法で作った微粒子は初めから互いに融着しているから,圧縮しない 場合(ρ/ρ_b = 0.031)も焼結体と呼ぶことにする. 金銅合金微粒子と金銀 合金微粒子はそれぞれ4通りに圧縮した後, 220 ℃で45分間真空中で熱して焼結 体を作った. 金銅合金微粒子焼結体のバルクに対する密度比はそれぞれ 0.1, 0.22, 0.32, 0.49, また,金銀合金微粒子焼結体についてはそれぞれ0.09, 0.21, 0.29, 0.54である.

これらの試料はいずれも質量約200mg , 直径15mmの円盤で ¹⁹⁷Auの面密度は金 微粒子焼結体では119.0mg/cm², 金銅合金微粒子焼結体では46.2mg/cm² , 金銀 合金微粒子焼結体では35.5mg/cm² である. なお, 金のフォイルの面密度は 77.8mg/cm² , 金銅合金のフォイルの面密度は92.0mg/cm² , 金銀合金のフォイ ルの面密度は46.2mg/cm² である. また, 測定温度は16Kである.

図IV-9 金微粒子焼結体のメスバウアースペクトル⁷⁾. 図中の数字はバルク に対する密度比 (ρ/ρ_b)を示す.

図 N-9はバックグラウンドで規格化した金微粒子焼結体と金フォイルのメスバ ウアースペクトルである⁷⁾. 密度が低いほどスペクトルの強度は弱くなってい る. しかし,これには注意が必要である. というのは, ¹⁹⁷Ptは⁵⁷Coに比べ て半減期が非常に短く,また,照射の約1時間後に測定を始めたので,メスバウ アーγ線の割合が時間と共に変化する可能性があるからである. そこで,これ を補正するため,図N-10 に示したように,照射後の時間と金フォイルのスペク トルの強度の関係を求めた⁷⁾. 図N-10 からわかることは,照射後6,7 時間は 急激にメスバウアーγ線の割合が増加するということである. 言い換えれば, 照射直後の線源には,半減期6,7 時間以内の短い寿命を持つ別のアイソトープも 同時に存在することを示している. なお,Ptの他のアイソトープは ¹⁹⁷Ptより 半減期が長いので,これは不純物のアイソトープと考えられる.

図IV-10 同一線源を用いた場合の金フォイルに対する規格化した面積強度の時間変化⁷⁾. 横軸は線源の照射直後からの時間である.

表 IV-2 金微粒子焼結体についての規格化した面積強度(観測面積強度 Aobs と補正面積強度 Acor)と半値幅 Γ⁷⁾.

ρ/ρ _υ	A _{obs} (mm/s)	A _{cor} (mm/s)	Γ(mm/s)
foil	0.309	0.309	1.13
0.51	0.428	0.428	1.29
0.21	0.405	0.441	1.30
0.15	0.354	0.441	1.39
0.031	0.237	0.404	1.54

ここで,金微粒子焼結体のスペクトルの観測面積強度 A_{obs} と図 W-10 によっ て補正した面積強度 A_{cor},そして半値幅 Γの値を表 W-2⁷⁾に示す. 表 W-2 より, A_{cor} とρ/ρ_b の間には相関関係が見いだされないが,半値幅 Γとρ/ρ_b の間には明かに負の相関があることがわかる.

図 IV-11 金銅合金微粒子焼結体(a) と金銀合金微粒子焼結体(b) のメスバウア - スペクトル⁷⁾. 図中の数字はバルクに対する密度比(ρ/ρ_ь) を示す.

表 IV-3 金銅合金微粒子焼結体についての規格化した補正面積強度 Acor と半 値幅 Γ⁷⁾.

	$A_{\rm cor}(\rm mm/s)$	<i>Г</i> (m	m/s)
<i>ρ</i> /ρ _b	line 1+line 2	line 1	line 2
0.49	0.298	1.36	1.36
0.32	0.302	1.32	1.34
0.22	0.242	1.43	1.53
0.1	0.281	1.73	1.85

表Ⅳ-4 金銀合金微粒子焼結体についての規格化した補正面積強度Acor と半

a/a	$A_{\rm cor}(\rm mm/s)$	<i>Г</i> (m	m/s)
$p_{I}p_{b}$	line 1+line 2	line 1	line 2
0.54	0.179	1.03	1.02
0.29	0.175	0.981	1.12
0.21	0.182	1.01	1.08
0.09	0.214	1.04	1.07

值幅了").

図IV-12 3種類の焼結体の半値幅 Γと密度比(ρ/ρь)の相関関係.
 ●は金微粒子焼結体,■と口はそれぞれ金銅合金微粒子焼結体の一番
 目と二番目の吸収線,▲と△はそれぞれ金銀合金微粒子焼結体の一番
 目と二番目の吸収線を示す.

図IV-11(a)⁷⁾は金銅合金微粒子焼結体と金銅合金フォイルのスペクトルである. 金銅合金微粒子焼結体のスペクトルが二つのローレンツ形の吸収線に分かれてい るのは,作成した金銅合金微粒子には,金を多く含む微粒子と金を少なく含む微 粒子の2種類が含まれているためと推定される. 原料の合金は均一であるので, このようになった原因は蒸発の際に生じたと考えられる. これらのA_{cor} とΓ の値を表 V-3⁷⁾に示す. 金徴粒子焼結体の場合と同様に, A_{cor} とρ/ρ_b の 間には相関関係が見いだされないが, Γとρ/ρ_b の間には明かに負の相関があ る. 図 N-11(b)⁷⁾は金銀合金微粒子焼結体と金銀合金フォイルのスペクトルで ある. スペクトルは,金銅合金微粒子焼結体の場合と同じ理由で,二つのロー レンツ形の吸収線に分かれている. これらのA_{cor} とΓの値を表 N-4⁷⁾に示 す. 金徴粒子焼結体や金銅合金微粒子焼結体の場合と異なって, いずれにも ρ/ρ_b との間に相関関係はない.

図 IV-12 は3種類の焼結体について, Γとρ/ρьの相関関係を示した図である. 金徴粒子焼結体や金銅合金微粒子焼結体のΓとρ/ρьは比較的低密度の (ρ/ρьの小さい)所で負の相関関係があることがわかる.

2-2 実験結果の解釈

密度の低い試料ほど, 無反跳分率の微粒子の振動による部分 f_a^{c} は小さいはず である. それにもかかわらず, スペクトルの面積強度があまり変らないのは微 粒子の振動の振動数 Ω が¹⁹⁷Auの第一励起準位の緩和時間 τ (1.89nsec)の逆数 (5.29×10⁸ Hz)と同じオーダーであるためと考えられる. すなわち, 第1節 で述べたように, $\Omega \approx 1/\tau$ の場合, 吸収線の半値幅 Γ は広くなるが, 吸収線の面 積強度は変らない. また, 吸収線の半値幅 Γ が密度の低い試料ほど広くなるの は次の理由によると考えられる.

無反跳のγ線によるバルクと同じ半値幅を持つ吸収線と, 微粒子の振動とエネ ルギーを交換したγ線による幅の広い吸収線の強度比は

$$f_{\mathbf{a}}^{L} f_{\mathbf{a}}^{G} : f_{\mathbf{a}}^{L} (1 - f_{\mathbf{a}}^{G}) = f_{\mathbf{a}}^{G} : (1 - f_{\mathbf{a}}^{G})$$
 (4.2.3)

である. $f_a^{\alpha} = \exp(-4\pi^2 \langle x_G^2 \rangle / \lambda^2)$ であることを考慮すると,密度の低い試料ほど微粒子の振動の平均二乗振幅 $\langle x_G^2 \rangle$ が大きいから, f_a^{α} は小さくなり,その結果, 微粒子の振動とエネルギーを交換した γ 線による幅の広い吸収

線の割合が増加する.

以上の考察により,金微粒子焼結体と金銅合金微粒子焼結体では0.5GHzのオー ダーの振動数を持つ微粒子の振動が観測されたことになる. これに対して,金 銀合金微粒子焼結体では微粒子の振動は観測されなかった. しかし,このこと は必ずしも微粒子の振動がないということを意味しない. というのは,本研究 で用いた金銀合金微粒子の粒径が他の試料に比べてずっと大きいためか,または 銀の融点が金や銅に比べて低いことによる微粒子間の融着の程度が大きいため平 均二乗振幅<xa² > が小さく,そのためfa^c が 1に非常に近いという可能性があ るからである.

金微粒子焼結体と金銅合金微粒子焼結体で観測された振動数(0.5GHz)は,温 度に換算すると約23mKであるから、Nishiguchi, Nakayama⁵⁾の予想した振動数 10mKと同じ程度の大きさである. ただし,彼らの予想した値(約10mK)は 粒径 1μmの銀微粒子の焼結体についてであり,本研究における微粒子の粒径と は大きく異なっている. この点は今後に解明すべき問題である.

2-3 結論

金微粒子,金銅合金微粒子,金銀合金微粒子をガス蒸発法で作った. その 後,金微粒子については4通りに圧縮して試料を作った. また,金銅合金微粒 子と金銀合金微粒子についてはそれぞれ4通りに圧縮した後,熱して焼結体の試 料を作った. メスバウアー効果で測定したところ,それぞれの試料に対する補 正面積強度には密度による相違は認められなかった. しかし,金微粒子と金銅 合金微粒子の試料に対する半値幅は,密度が低い試料ほど広くなっている. こ のことは,前節の議論から判断すると,これらの試料にメスバウアー核(¹⁹⁷Au) の第一励起準位の緩和時間の逆数(5.29×10⁸ Hz)程度の振動数を持つ微粒子の 振動があることを示している. この振動数は金属微粒子焼結体と液体へリウム 間のカピッツア抵抗の異常から予想されている振動数とほぼ同じ値である. 参考文献 (Ⅳ)

- 1) F. L. Shapiro: Soviet Physics Usp. 4(1961)881.
- M. Hayashi, I. Tamura, Y. Fukano and S. Kanemaki: Phys. Letters 77A(1980)332.
- M. Hayashi, I. Tamura, Y. Fukano and S. Kanemaki: Surf. Sci. 106(1981)453.
- 4) P. L. Kapitza: J. Phys. (USSR), 4(1941)181.
- 5) N. Nishiguchi and T. Nakayama: Phys. Rev. B25(1982)5720.
- 6) N. Nishiguchi and T. Nakayama: Solid State Commun. 45(1983)877.
- M. Hayashi, I. Tamura and H. Sakai: Japan. J. Appl. Phys. 25(1986)L905.

第V章 微粒子の磁性

第1節 微粒子の磁性の問題点

バルクの磁性体では、磁気エネルギーを減少させるため複磁区(multidomain)構造になっている. ところが、体積が小さくなり、その粒径が数100 Åになると、磁壁を作るためのエネルギーが複磁区構造による磁気エネルギーの 減少より大きくなり、微粒子全体が単磁区(single domain)構造になる.

今,孤立した単磁区構造の強磁性微粒子を考えてみる. もし,この微粒子の 磁気異方性エネルギーが熱エネルギーと同程度かより小さければ,この微粒子の 磁化方向は定まらない. この状態を超常磁性(superparamagnetism)と呼 ぶ. 超常磁性状態では,微粒子の磁化方向がたえず変わるため,微粒子の集団 は無限大のスピンを持つ原子からなる常磁性体と同等になる. 従って,超常磁 性状態にある一様な体積 Vを持つ微粒子の集団の磁化 Mは

 $M = M_0 L (M_0 V H/k_B T)$

(5.1.1)

3

と表される. だだし, M。は温度 Tでの飽和磁化, L() はランジュバン関数, Hは外部磁場である. 互いに相互作用のないほぼ一様な体積を持った微粒子の集団では, (5.1.1) 式が成立することが実験的に確認されている¹⁾.

図 V-1 微粒子の磁化方向とポテンシャルエネルギー

メスバウアー効果では,超常磁性は普通の常磁性体と同様に内部磁場ゼロに相 当するスペクトルとなって観測される. この理由は,直感的に次のように説明 されている. 微粒子の異方性エネルギー *E*(θ) を,一軸異方性定数*K*,微粒 子の体積 *V*を用いて

$$E(\theta) = KV \sin^2 \theta \tag{5.1.2}$$

のように仮定する. Néel²¹によれば,磁化*M*が図 V-1(a)の+z方向と-z方 向の間にある高さ*KV*のポテンシャルの山(図 V-1(b)参照)を緩和時間τで越 えるとすると,τは

$$\tau = \tau_0 \exp(K V/k_{\rm B} T) \tag{5.1.3}$$

で与えられる. ただし、 τ_0 は10⁻⁹~10⁻¹¹ sec のオーダーである.

磁化が反転すれば、メスバウアー核が感じる磁場(内部磁場)も反転する. 従って、磁化が一つの方向に向いている時間(緩和時間) でがメスバウア核のラ ーマー振動数の逆数(歳差運動の周期)よりも短いと、メスバウアー核は磁化の 反転に伴って反転する内部磁場の時間平均を、新たに内部磁場と感じることにな る. 今の場合、二つの極小値の緩和時間は同じであるから、メスバウアー核 は内部磁場を感じないことになる.

この緩和時間がラーマー振動数の逆数程度の場合には,過度現象として非常に 幅の広いピークが観測されるはずである(図A-8の τが10⁻⁹ sec の桁の場合を参 照). しかし,磁化方向の緩和時間 τ はexp(*K V/k*_B *T*) に比例するため,微 粒子の体積のわずかの違いにも τ は大きく影響される. 実際の微粒子試料には 体積分布があるため,過度的な非常に幅の広いピークは普通観測されない. 例えば,図 V-2³,は様々な平均粒径を持つ α-Fe₂0₃ 微粒子の室温のスペクトル であるが,この図によると,平均粒径100 Å以下の微粒子のスペクトルは超常磁 性による二重分裂(doublet) だけであり, 135~180 Åの微粒子のスペクトル はこの二重分裂と6本線の重ね合わせである. また,さらに大きい粒子のスペ

-51-

クトルは6本線だけである. いずれの場合にも過度的な非常に幅の広いピーク は観測されない.

図 V-2 α-Fe₂O₃ 粒子の室温のメスバウアースペクトル³⁾. (a)粒径 100Å 未満,(b) 粒径 135Å,(c) 粒径 150Å,(d) 粒径 180Å,(e) 大きい 粒子.

今, 強磁性微粒子の温度を低温から次第に上げていくと仮定する. するとま ず, 超常磁性の前駆現象として集団磁気励起(collective magnetic excitation⁴⁾)が起る. これは磁化が反転できないような低温で, 図V-1の θ =0 と $\theta = \pi$ の2つのエネルギーの極小値近傍において起きる磁化方向の熱的揺 らぎのことである. この励起のため,内部磁場は減少する. 内部磁場の減少 の割合は揺らぎが少ない場合,次式によって近似できる.

$$\langle \cos \theta \rangle_{T} = \frac{\int_{0}^{\pi/2} \cos \theta \exp[-E(\theta)/k_{\rm B} T] \sin \theta \, d\theta}{\int_{0}^{\pi/2} \exp[-E(\theta)/k_{\rm B} T] \sin \theta \, d\theta}$$
$$\approx 1 - k_{\rm B} T/(\theta^{2} E(0)/\theta^{2})$$
$$= 1 - k_{\rm B} T/2KV \qquad (5.1.4)$$

ただし、 $\langle \cos \theta \rangle_r$ は $\theta \approx 0$ の領域での $\cos \theta$ の熱平均である.

 図 V-3 一軸磁気異方性定数 K= 1.2×10⁵ J/m³,体積 V=10⁻²⁵m³の微粒 子に対するバルクの値で規格化した内部磁場の温度変化. 図中の垂 線(破線,実線,破線)はそれぞれ緩和時間がτ=5.0×10⁻⁹sec, 2.5×10⁻⁹sec, 1.2×10⁻⁹sec になる温度を示す.

OKから温度を上げていくと(5.1.4) 式に従って内部磁場の減少の割合がしだいに大きくなる. 特に,孤立した微粒子では,内部磁場がバルクの値の85~90%になったところで,超常磁性($\tau < 2.5 \times 10^{-9}$ sec)になるため内部磁場がゼロになる. このことを図V-3に示した. 図中の垂線(破線,実線,破線)はそれぞれ緩和時間が $\tau = 5.0 \times 10^{-9}$ sec, 2.5×10^{-9} sec, 1.2×10^{-9} sec になる温度を示す. ただし,一軸磁気異方性定数 $K = 1.2 \times 10^{5}$ J/m³,飽和磁化はマグネタイトの値 $M_s = 0.6$ wb/m²(室温),体積 $V = 10^{-25}$ m³,ジャイロ磁気定数 $\gamma = 2.4 \times 10^{5}$ m/A·s を用いて計算した.

ここで,注意しておかなければならないことは,集団磁気励起と超常磁性は微 粒子内部の磁気秩序をこわす励起とは別のものであるということである. 即 ち,微粒子内の原子のスピンの励起は集団磁気励起や超常磁性の様に全体のスピ ンが揃って揺らぐ励起とバルクにおけるのと同様な磁気秩序をこわすスピンの励 起に分けられる. このことは,前章において微粒子における原子の振動を微粒 子全体としての振動と粒径より短い波長を持つ格子振動に分けたことに対応す る.

それでは、磁気秩序をこわすスピンの励起は微粒子とバルクで異なっているか という問題がある. 即ち、磁性体微粒子の表面では、スピン間の交換あるいは 超交換相互作用の結合の手が切れていることから、表面層の磁気秩序はバルクの 値よりも減少しているということが考えられた⁵⁾. 更に、表面層が磁気秩序の ない層(dead layer⁶⁾)となっている可能性も指摘された. 事実、Koeyら⁷⁾や Yatuyaら¹⁾の実験によると強磁性体やフェリ磁性体を微粒子化すると、飽和磁化 が減少することが認められた. しかし、α-Fe 界面のメスパウアー効果による 研究からはdead layerの存在は認められなかった. 例えば、α-Fe 表面をAgで 覆った界面にあるα-Fe の内部磁場は、温度が50K以下ではバルクよりも大き く、反対に室温付近ではバルクよりも小さい⁸⁾. また、α-Fe のSbとの界面で はすべての温度でバルクの値よりも小さい結果が得られている⁹⁾. その他様々 な物質との界面のデーターがあるが、α-Fe と接する物質の種類や温度によって 異なる. しかし、いずれの場合も、それらのメスパウアースペクトルにdead layerの存在を示唆する内部磁場ゼロのピークは観測されなかった. 従って、

-54-

微粒子化による飽和磁化の減少は表面の酸化¹⁾,吸着⁷⁾,表面原子のスピンが内 部と違う方向に傾いている(spin canting^{7,10,11,12)})などの原因によるもの であると考えられる. ただし,いずれの結果においても表面(界面)の磁気的 異常は内部にほとんど影響を及ぼしていない. 従って,磁気秩序をこわすス ピンの励起は微粒子とバルクでほとんど異なっていないと考えられる.

単磁区微粒子の磁気異方性エネルギーは微粒子の体積に比例するから、小さい 微粒子ほど超常磁性になりやすい. 例えば, 微粒子の磁気異方性定数をバルク の値と同じと仮定すると,鉄微粒子に対するNéel²⁾の計算では室温で粒径約130 A以下の微粒子が超常磁性になる. また, Morrish とYu¹³⁾のマグネタイトに 対する計算では室温で粒径約300 Å以下の微粒子が超常磁性になる. 逆に. 微粒子の磁気異方性定数はその体積がわかっていれば、(5.1.3)、(5.1.4)式を 用いて超常磁性になる温度や集団磁気励起による内部磁場の減少の程度から分か Mørup ら⁴)はこの方法を酸化鉄微粒子に適用し,バルクの結晶磁気異方性 る. より桁違いに大きい磁気異方性定数の値を得た. しかし,これらの計算では微 粒子間の相互作用を考慮していないという問題点がある. というのは、実際の 試料において微粒子間の磁気的相互作用が集団磁気励起と超常磁性に及ぼす影響 は磁気異方性定数より大きい可能性があるからである. TamuraとHayashi¹⁴⁾ は鉄微粒子の内部磁場の研究(第2節の内容)で初めてこの効果を考慮した. この研究とほぼ同時期にMørup ら^{15,16)}も微粒子集合体についての研究を行っ 彼らは微粒子 i が回りの微粒子から接触面を通して受ける交換相互作用エ た。 ネルギーE,を次式で表した.

 $E_{i} = -\sum_{j} K_{ex}^{ij} M_{i} \cdot M_{j}$ (5.1.5)

ここで, M_i と M_j はそれぞれ微粒子 i とその回りの微粒子 j の磁化, K i は微 粒子 i と j の交換結合定数である.

集団磁気励起と超常磁性は微粒子に固有の励起であり,微粒子とバルクの磁気 的性質の違いの大部分はこの二つの励起に基づくと考えられる. 微粒子間相互 作用下でのこれらの励起を,次の3種類の物質についてメスバウア-効果を用い

-55-

て研究した.

まず,第2節では,ガス蒸発法で作成した互いに連なっている鉄微粒子のメス バウアー効果による内部磁場の測定から,それらに集団磁気励起が存在すること を示す. 第3節では,化学的に合成したγ-Fe₂O₃ 微粒子集合体をメスバウア ー効果で測定してそれらのスペクトルの特長を明らかにし,それらを微粒子間の 交換相互作用の下での集団磁気励起と超常磁性により説明する. 第4節では, 室温の近くで幅の広い一つの吸収体になる鉄微粒子表面の酸化層のメスバウアー スペクトルを, 微粒子内部のα-Fe との相互作用の下での集団磁気励起と超常磁 性により説明できることを示す. 1977年にEynattenとBömmel¹⁷⁾ は鉄微粒子の内部磁場が低温でバルクの値より 大きいことを報告している. 図V-4に彼らの実験結果を示した. 図には粒径 70Åから450 Åまでの6種類の鉄微粒子と4種類の厚さのバルク(Fe-foil)の 実験結果が示されている. 実験誤差が大きいが,低温では全ての微粒子の内部 磁場がバルクの値より 1~7kG 大きいことがわかる.

図 V-4 EynattenとBömmel¹⁷⁾ による鉄微粒子とバルクの鉄の内部磁場の温度 依存性.

彼らはこの原因を数100 Å以下の鉄微粒子が単磁区構造になっているためと考 えた. 即ち,単磁区構造の鉄微粒子は反磁場 H_{dem} を生じ,その方向はFe核が 感じる磁場(内部磁場) H_{in} の方向と同じである. その大きさは鉄微粒子を球 形と仮定すると $H_{dem} = M_s$ / $3\mu_0$ である. ここで, M_s はバルクの鉄の飽和 磁化であるが,室温の値2.145Wb/m² を代入すると $H_{dem} = 7.15$ k0e (5.690× 10^5 Å/m)になり,絶対0度では $H_{dem} = 7.29$ k0e になると推定される. 微粒子 の内部磁場は H_{dem} の他,周りの微粒子からの双極子磁場 H_{dip} の影響を受ける.

-57-

ただし、 H_{dip} の方向は、一般に H_{dem} や H_{in} の方向と逆である。 例えば、 同じ粒径を持つ鉄球が3個一直線に並んで接触しているとする。 3個とも並ん でいる方向に飽和磁化 M_s = 2.145Wb/m² で磁化しているとすると、真中の鉄球 の中心における双極子磁場は体積(粒径)によらず3.58k0e (2.85 × 10⁵ A/m)に なる. この方向は内部磁場や反磁場と反対方向であるから、 $H_{dem} - H_{dip}$ は約3.6k0eになる. この値は、低温における内部磁場の増加量にほぼ等しい.

なお,双極子磁場は距離をrとするとr⁻³に比例しているから,本来なら遠く の微粒子からの双極子磁場も考慮せねばならないが,鉄微粒子の平均密度はバル クの密度に比べて一桁低いため,遠くの微粒子からの双極子磁場は無視できると 考えられるので彼らの考えは正しい.

しかし,彼らの実験結果は誤差が大きいため,鉄微粒子の内部磁場の温度依存 性と粒径依存性がわからない. そこで,TamuraとHayashi¹⁴⁾は鉄微粒子の内 部磁場に関して詳しく調べ,それらの温度依存性を体系的に説明した. 本節で はこのことについて述べる.

2-1 実験とその結果

試料は平均粒径66,84,190,470,2500Åの5種類の鉄微粒子をガス蒸発法 で作成し、それぞれをマトリックス(シアノアクレリック系接着剤)に埋め込ん で作った. 電顕写真(図Ⅱ-3参照)によると、平均粒径100 Å以上の試料にお ける鉄微粒子は絡み合ったクサリ状に配置しているが、平均粒径100 Å以下の試 料における鉄微粒子は互いに乱雑にくっついていることが多い.

これらの試料の内,平均粒径190 Åの微粒子のメスバウアースペクトルを例と してその内部磁場の求め方を示す. 図V-5はその78Kと298 Kでのメスバウア ースペクトルと298 Kでのバルクのスペクトルである. また,図の実線は6本 のローレンツ型ピークとして最小2乗法で解析した曲線である. だだし,弱い 酸化層のピークは無視した.

図 V-5 平均粒径190 Åの鉄微粒子とバルク鉄のメスバウアースペクトル. 実線は6本のローレンツ型ピークとして最小2乗法で解析した曲線で ある.

表 V-1 図 V-5の超微細分裂の解析結果(チャンネル数).

	6番目-1番目	6番目-2番目	5番目-1番目
バルク(298K) 微粒子(298K) 微粒子(78K)	192.4947 ± 0.0375 193.2371 ± 0.0913 198.7921 ± 0.1453	151.9857 ± 0.0445 152.5367 ± 0.1010 157.2780 ± 0.1603	151.8973 ± 0.0445 152.5713 ± 0.1010 157.4795 ± 0.1604

バルクの鉄の内部磁場は既にNMRの実験¹⁸⁾ やメスバウアー効果の実験¹⁹⁾ でわかっているから,鉄微粒子の内部磁場はそのスペクトルの6本線の間隔(内 部磁場に比例している)をバルクの6本線の間隔と比較して求めることができ る. 表 V-1に室温(298 K)と78Kでの粒径190 Åの鉄微粒子の超微細分裂の 解析結果と室温のバルクの値を示した. 粒径190 Åの鉄微粒子の超微細分裂は 室温でも明かに誤差の範囲を越えてバルクの値より大きいことがわかる.

それぞれの試料とバルクの鉄に対して,このようにして得られた内部磁場の温 度変化を図 V-6¹⁴⁾ に示す. ただし,実験精度は線源の速度の誤差が0.1 %, 線源と試料(吸収体)とカウンターの位置関係が一直線上からずれていることに よる誤差が0.1 %以下と見積もった. 解析による誤差はこれらに比べて小さく 0.05%以下である. 従って,鉄微粒子の内部磁場の誤差は±0.9k0e以下と見積 もられる. また,すべての試料のスペクトルに対して,その6本線の中心はバ ルクのそれと誤差(±0.02mm/s)の範囲で一致する.

図 V-6に示した実験結果を粒径の大きい順に見ていく. まず,平均粒径2500 Åの鉄微粒子の内部磁場は測定した全温度範囲でバルクの値とほとんど等しい. 470 Åのそれは僅かに2500Åやバルクの内部磁場より大きい. 平均粒径190, 84,66Åの鉄微粒子の内部磁場は78Kでバルクの値より約3k0e大きい. しか し,温度が上昇するにつれて,平均粒径の小さい微粒子ほど急激に内部磁場が減 少する. 特に平均粒径66Åの鉄微粒子では,内部磁場が室温でバルクの値とほ とんど同じになる.

-60-

 図 V-6 鉄微粒子の内部磁場¹⁴⁾. (O)は平均粒径66Å, (▲)は平均粒径84Å, (□)は平均粒径190Å, (×)は平均粒径470Å, (Δ) は平均粒径2500Åの鉄微粒子の内部磁場. (●)はバルクの鉄の内部磁場. 測定誤差は微粒子試料に対しては±0.9 k0e 以下, バルクに対しては±0.6 k0e 以下である. 破線(----), (---), (----)はそれぞれ平均粒径66, 84, 190Åの微粒子に対する理論 曲線. 実線はバルクの鉄の値に合わせた曲線.

2-2 理論と解析結果

平均粒径470 Åと2500Åの鉄微粒子の内部磁場がバルクのそれとあまり異なら ないのは、これらの微粒子が複磁区(multidomain)構造になっているためと考 えられる. というのは、鎖状に並んだ鉄微粒子についての単磁区構造と複磁区 構造の境界粒径は約450 Åであることが次の計算によりわかるからである.

単磁区構造の場合の静磁エネルギー Us は次式で書ける.

$$U_{s} = -\frac{1}{2} \iiint M_{s} \cdot (H_{dem} + H_{dip}) dv$$
$$= +\frac{1}{2} M_{s} (H_{dem} - H_{dip}) (4/3) \pi R^{3}$$
(5.2.1)

ただし, Rは微粒子の半径である.

図 V-7 エネルギーが最小になる微粒子の複磁区 (multidomain)構造²⁰⁾.

また,図V-7に示したような複磁区(multidomain)構造²⁰⁾を仮定すると, 磁壁のエネルギー U_m は次式で書ける.

$$U_{\rm m} = \left(\frac{2JS^2\pi^2}{Ra} + K_{\rm u}R\right)(\pi R^2)$$

$$\simeq \frac{2JS^2\pi^3}{R} \tag{5.2.2}$$

ただし, aは鉄の格子定数である. また, Ku は鉄の磁気異方性定数である が,磁壁のエネルギーに比べて小さいので省略した.

境界粒径は U_s = U_m とおくことにより次式で得られる.

$$R = \pi \sqrt{3} A_{\rm s} / 2 M_{\rm s} (H_{\rm dem} - H_{\rm dip}) \tag{5.2.3}$$

ここで、 A_s は交換スティフネス定数で体心立方格子の場合、 $A_s = 2J S^2/a$ で定義される. (5.2.3) 式に $A_s = 1 \times 10^{-11} J/m$, $M_s = 2.15 Wb/m^2$, $(H_{dem} - H_{dip}) = 2.8 \times 10^5 A/m$ を代入するとR (境界粒径)の値は約450 Åが 得られる.

平均粒径470 Aの鉄微粒子の内部磁場がバルクの値よりも少し大きい理由は, この試料には粒径分布により450 A以下の単磁区構造の微粒子も含まれているか らである(図V-8参照).

図 V-8 平均粒径470 Åの鉄微粒子の粒径分布.

単磁区構造の鉄微粒子の内部磁場はEynattenとBömmel¹⁷⁾ によれば,バルクの 鉄の内部磁場をHinとすると鉄微粒子の内部磁場Hinは次式で書ける.

$$H_{in}(T) = H'_{in}(T) + H_{dem}(T) - H_{dip}(T)$$
(5.2.4)

上式に基づく $H_{in}(T)$ の温度変化はバルクの飽和磁化の温度変化や $H'_{in}(T)$ の温 度変化と同じになる. というのは、 $H'_{in}(T)$, $H_{dem}(T)$, $H_{dip}(T)$ はいずれも バルクの飽和磁化に比例しているからである. 従って、(5.2.4) 式が正しいと すれば、室温以下の温度範囲で $H_{in}(T) - H'_{in}(T) \approx 3k0eが成立つことになる.$

しかし,粒径450 &以下の微粒子の内,粒径の小さい微粒子ほどこの式に合わない. 即ち,粒径の小さい微粒子ほど Hin(T)の温度変化が Hin(T)の温度変化より大きい. このことを説明するため,集団磁気励起による内部磁場の減少を考慮する.

今,鉄微粒子が直線的に並んでいて,それらの磁化も直線方向に向いていると 仮定する. 磁気エネルギーが極小値をとる方向(今の場合,微粒子が並んだ直 線方向)と微粒子の磁化方向のなす角をθとするとHinは次式で書ける.

$$H_{in}(T) = \langle \cos \theta \rangle_T \left[H'_{in}(T) + H_{dem}(T) - H_{dip}(T) \right]$$
(5.2.5)

ここで、 $\langle \cos \theta \rangle_r$ は $\cos \theta$ の温度 Tでの熱平均であり、次式で与えられる.

$$\langle \cos \theta \rangle_{T} = \frac{\int_{0}^{\pi} \cos \theta \exp[-E(\theta)/k_{\rm B} T] \sin \theta \, d\theta}{\int_{0}^{\pi} \exp[-E(\theta)/k_{\rm B} T] \sin \theta \, d\theta}$$
(5.2.6)

ただし, E(θ) は微粒子の磁気エネルギーで次の様に近似できる. 今,注目 する微粒子 i の磁気エネルギーを

$$E_i = -v M_i \cdot H_{dip} - \sum_j K_{ex}^{ij} M_i \cdot M_j$$
(5.2.7)

と書く. ただし, (5.2.7) 式右辺第1項は体積 v, 磁化 M_iを持つ微粒子が周 りの微粒子から受ける双極子磁場 H_{dip} に対する位置エネルギーを意味する. 右辺第2項は微粒子間の融着面から受けるエネルギーで次のような意味を持つ. M_j は微粒子 i と融着している微粒子 j の磁化, K i はそれらの交換結合定数で ある. そこでこのエネルギーを交換異方性エネルギーと名付ける. なお,磁 気異方性エネルギーは第一項と比べてはるかに小さいから省略した.

図 V-9 鉄微粒子の融着面を中心として描いた模式図.

ここで,図V-9のように微粒子が一直線上に並んでいると仮定すると, E_iは M_iが直線と成す角θを用いて次式で近似できる.

$$E(\theta) = -v M(T) H_{dip}(T) \cos \theta - K_{ex} M(T)^2 \cos \theta \qquad (5.2.8)$$

ただし, $K_{ex} = \sum_{j} K_{ex}^{ij}$, $M(T) = |M_{i}| = |M_{j}|$ である. どの試料に対しても室温以下では $\langle \cos \theta \rangle_{T}$ が1に近いから $k_{\rm B} T \ll [v M(T) H_{\rm dip}(T) + K_{\rm ex} M(T)^2]$

が満たされているはずである. 従って、 $\langle \cos \theta \rangle_r$ は次式で近似できる.

$$\langle \cos \theta \rangle_T \simeq 1 - k_B T / [v M(T) H_{dip}(T) + K_{ex} M(T)^2]$$
 (5.2.9)

今, *H*'_{in}, *H*_{dem}, *H*_{dip}, *M*に対し, バルクの磁化の温度依存性を用いると *H*_{in}は次式で書ける.

$$H_{in} = \langle \cos \theta \rangle_T [H'_{in}(0) + H_{dem}(0) - H_{dip}(0)] \\ \times (1 - A T^{3/2} - B T^{5/2})$$
(5.2.10)

ここで, Aは Kittel の本²¹⁾ より $A = 3.4 \times 10^{-5} \text{ deg}^{-3/2}$ として, $H'_{in}(t)$ = $H'_{in}(0) (1 - A T^{3/2} - B T^{5/2})$ をバルクの鉄の実験値に合わせると $H'_{in}(0)$ = 338.3 kOe , $B = 5.5 \times 10^{-9} \text{ deg}^{-5/2}$ が得られる. また, $H_{dem}(0)$ は鉄微 粒子を球形と仮定すると7.29 kOeが得られる.

表 V-2 単磁区構造の鉄微粒子に対する H_{dip}(0), K_{ex} M(0)², Nの値¹⁴⁾.

粒径(Å)	H _{dip} (0) (kOe)	K _{ex} M(0) ² (J)	N
66 84	3.7 3.7	3.1×10^{-19} 5.0×10^{-19}	20 33
190	4.5	0	0

(5.2.10)式を66,84,190 Åの鉄微粒子の実験値に合わせることによって得ら れた*Haip*(0)と*Kex M*(0)² を表 V-2に示した. また,(5.2.10)式に基づく66, 84,190 Åの鉄微粒子とバルクの鉄に対する理論曲線は図 V-6に示した. な お, K_{ex} M(0)² の値から,一つの融着面に N個の原子があり,バルクと同じハ イゼンベルクの交換相互作用をしていると仮定して得られた Nの値も表 V-2¹⁴⁾ に示した. これらの値から66,84Åの鉄微粒子は融着を考えなければ説明でき ないが,190 Åの鉄微粒子は融着を考えなくても説明可能であることがわかる. 融着を考慮することの重要性を示すため,図 V-10 に66Åの鉄微粒子の内部磁場 に対し,融着を無視(K_{ex} M(0)² = 0)した理論曲線(破線)とそれを考慮し た理論曲線(実線)を実験値と比較した.

図 V-10 66Åの鉄微粒子の内部磁場について融着を無視した理論曲線(破線) とそれを考慮した理論曲線(実線)と実験値(O)の比較.

2-3 結論

ガス蒸発法で作った鉄微粒子の内部磁場の温度変化をメスバウアー効果で調べた。その結果,粒径2500Åの微粒子の内部磁場はバルクの値と同じであるので
複磁区構造であると考えられる. 粒径470 Åの微粒子の内部磁場はバルクの値 より僅かに大きいが,このことは鉄微粒子が単磁区構造から複磁区構造へ移る境 界粒径が約450 Åであることを示している. 粒径450 Å以下の単磁区構造の鉄 微粒子の内部磁場については,低温でバルクの値より約3k0e大きいという結果が 得られた. この結果はEynattenとBömmelの実験結果と矛盾しない. この他新 たに,単磁区構造の鉄微粒子の内部磁場は温度が上昇すると粒径が小さい微粒子 ほど急に減少する傾向があることがわかった. これらの実験結果の内,低温で の内部磁場は主としてEynattenとBömmelが考えた鉄微粒子の反磁場と双極子磁場 により説明でき,その温度変化は微粒子間の融着を考慮した集団磁気励起を考え ることにより説明できる. 前節において,鉄微粒子の内部磁場を説明するためには微粒子間の境界面(接触面)を通した交換相互作用を考える必要があった. 鉄微粒子の磁化方向の揺ぎは室温でも小さいから低温近似で十分よい近似になっている. しかし,磁化 方向の揺ぎが大きい場合,互いに接触した微粒子のメスパウアースペクトルは孤 立した磁粒子のスペクトルと比べてどの様な特長を持つかということはたいへん 興味深いことである. そこで,本節の実験は,互いに接触した γ-Fe2O3 微粒子 のメスバウアースペクトルについて,孤立した微粒子のスペクトルとの違いを明 かにすることを目的として行った.

3-1 実験

本研究で用いた試料の作成方法は次のような原理である²²⁾. シクロヘキサ ン中の界面活性剤の逆ミセル内で, Fe²⁺ + 2Fe³⁺ + 80H⁻ → Fe₃O₄ + 4H₂O の反 応で Fe₃O₄ (マグネタイト)を合成すると, Fe₃O₄ は界面活性剤の逆ミセルに 邪魔されて大きく成長することが出来ない. 従って, 微粒子の粒径は界面活性 剤の量により調節出来る.

具体的には, (a) アエロゾルOTの20%の濃度のシクロヘキサン溶液 2mlに 1.4 mol/1のFeCl₃ 水溶液 2mlを可溶化する. (b) アエロゾルOTの20%の 濃度のシクロヘキサン溶液 2mlに26%の濃度のアンモニア水 2mlを可溶化する. (c) トリトンX-100 の10%の濃度のシクロヘキサン溶液 1mlに1.4mol/1のFeCl₂ 水溶液 1mlを可溶化する. これらの3種類の溶液を作ってから,まず, (a) と(b)を混ぜる. これに(c)を激しくかき混ぜながら加えると,黒褐色の 不透明なコロイドができる. 磁石を近付けると,このコロイドは磁石に引寄せ られるのが観測される. 従って,これは磁性流体であることがわかる. この コロイド微粒子が粒径 20 ~30Åの Fe₃04 微粒子である. このコロイドを数 日間空気中に放置しておくと,赤褐色の沈殿が出来る. この沈殿がγ-Fe₂03 微粒子の集合体である(試料1). γ-Fe₂03 微粒子であることは,電子線回 折パターン(図V-11 参照)とメスバウアースペクトルからわかった.

-69-

もし, Fe₃0₄ 微粒子の表面が完全に界面活性剤に覆われていたなら, 沈殿が 出来ることはなく, 酸化してγ-Fe₂0₃ になることもなかったと考えられる. 現に, 同じ原理で作成された磁性流体は少なくとも2, 3年は安定であることが わかっている²²⁾. 従って,本研究で作った微粒子は表面が完全には界面活性 剤に覆われていないことを示している.

また, (a) (b) (c) でアエロゾルOTとトリトンX-100 の濃度をそれぞ れ 1%と0.5 %にすると, 粒径30~150 Åの範囲に分布する γ-Fe₂O₃ 微粒子が 得られる (試料2).

電子顕微鏡写真(図V-12²³⁾参照)から,試料1と試料2の微粒子はそれぞ れ粒径20~70Åと30~150 Åの範囲に分布するが,どちらの試料においても最も 小さい粒径に分布の山があることがわかった.

メスバウアー効果の測定は63Kから室温の範囲で行った. 磁場は永久磁石を クライオスタットの中に入れ, γ線の進行方向に垂直にかけた. また,比較の ためバルクのγ-Fe₂O₃ も測定した. これには粒径 5μm のオーダーの粒子か らなる粉体を用いた.

a

Ь

図 V-11 試料1と2の電子線回折像。 aは試料1, bは試料2を示す.

図 V-12 試料1と2の電子顕微鏡写真²¹⁾. aは試料1, bは試料2を示

す.

3-2 実験結果

バルクのγ-Fe₂O₃ のメスバウアースペクトルはα-Fe のスペクトルと同じ ような6本線である. ただし,内部磁場はα-Fe の値より大きく,78Kで4.18 ×10⁷ A/m (52.5T),285 Kで3.97×10⁷ A/m (49.9T)である. そのスペ クトルの中心は室温のα-Fe のそれと比べて78Kで0.440 mm/s,285 Kで0.327 mm/sエネルギーの高い方へずれている. 6本線の各ピークの半値幅は0.35~ 0.29mm/sで外側のピークほど広い.

試料1のメスバウアースペクトルを図V-13~15²³⁾ に示した. 図V-13は外 部磁場のない場合に温度を変えたスペクトルである. 図V-14 は室温で外部磁 場を変えたスペクトルである. 図V-15 は外部磁場 7.0×10⁴ A/m (0.088T) と 2.7×10⁵ A/m (0.34T)の下で温度を変えた場合のスペクトルである. こ れらのスペクトルにおいて中心にある二重分裂(doublet)は超常磁性によるピ ークである. 温度が低いほど,外部磁場が強いほど二重分裂のピークが小さく なるのに反して,内部磁場により分裂したピーク(6本線)は大きくなる. た だし,分裂した6本線の幅はバルクの値より広く,中には6本線が重なって幅の 広い吸収体を形成しているスペクトルもある.

試料2のメスバウアースペクトルを図V-16 ~18²³⁾ に示した. 図V-16 は 外部磁場のない場合に温度を変えたスペクトルである. 図V-17 は室温で外部 磁場を変えたスペクトルである. 図V-18 は外部磁場 3.5~3.9 ×10⁴ A/m

(0.044 ~0.050 T)の下で温度を変えた場合のスペクトルである. 試料2と 試料1の外部磁場がない場合のスペクトル(図V-13 と図V-16)を比較する と,試料2は試料1より微粒子の粒径が大きいことに対応して二重分裂のピーク が小さく,内部磁場により分裂したピーク(6本線)が大きいことがわかる. また,温度が低く外部磁場が強いほど二重分裂のピークが小さくなるのに反し て,内部磁場により分裂したピーク(6本線)が大きくなるのは試料1と同様で ある. なお,これらのスペクトルの中心位置はバルクのそれと同じである.

外部磁場 (≳ 3.9×10⁴ A/m) をかけた試料2のスペクトルでは,6本線の強 度比がおおよそ3:4:1:1:4:3 になっている. このことは微粒子の時間平均磁化 が外部磁場に平行になっていることを示している. 一方,外部磁場をかけない

-72-

場合のスペクトルの6本線の強度比はおおよそ3:2:1:1:2:3 であるから, 微粒子 の磁化は乱雑な方向を向いていることがわかる(付録第3節参照). 試料1の スペクトルでは, 6本線が明確でないので, その強度比を正確に知ることはでき ないが, 試料2のスペクトルと同様であるとしても矛盾しない.

両方の試料について、スペクトルの超常磁性による二重分裂の間隔から、四極 子分裂は0.75mm/sであることがわかる. しかし、6本線については内側の4本と 外側の2本の位置はずれていない(図A-6、7 参照). このことはEFG(電 場勾配)テンソルの向きが乱雑であることを示している(付録第3節参照).

図 V-13 外部磁場のない場合に温度を変えた試料1のスペクトル²³⁾. 実線 は理論スペクトルを示す.

図 V-14 室温で外部磁場を変えた試料1のスペクトル²³⁾. 実線は理論スペ クトルを示す.

図 V-15 外部磁場 7.0×10⁴ A/m (0.088 T) と 2.7×10⁵ A/m (0.34T)の 下で温度を変えた試料1のスペクトル²³⁾. 実線は理論スペクトル を示す.

図 V-16 外部磁場のない場合に温度を変えた試料2のスペクトル²³⁾. 実線 は理論スペクトルを示す.

図 V-17 室温で外部磁場を変えた試料2のスペクトル²³⁾. 実線は理論スペ クトルを示す.

図 V-18 外部磁場 3.5~3.9 ×10⁴ A/m (0.044 ~0.050 T)の下で温度を変 えた試料2のスペクトル²³⁾. 実線は理論スペクトルを示す.

3-3 実験結果の解析

外部磁場をかけない場合のメスバウアースペクトルの温度変化は,孤立した (微粒子間の相互作用エネルギーが磁気異方性エネルギーよりはるかに小さい) 微粒子の温度変化と異なる. 即ち,もし孤立した微粒子であれば,その内部磁 場の温度変化は図 V-3のように超常磁性が起る温度で不連続な変化をする(第1 節参照). これに対して本試料の内部磁場(図 V-13 と図 V-16 参照)はも っと滑らかな温度変化をしている. このことは, 微粒子間の相互作用が重要で あることを示している.

従って, 微粒子 iの磁気エネルギーを次式で書く.

$$E_i = K_i V_i \sin^2 \theta - V_i M_i \cdot (H_i + H_a)$$
(5.3.1)

ここで, K_i と V_i はそれぞれ微粒子 iの磁気異方性定数と体積である. また, H_i は微粒子 i にかかる周りの微粒子からの有効磁場, H_a は外部磁場, θ は磁化ベクトルが磁化容易軸となす角度である. なお, (5.3.1) 式では一軸磁 気異方性を仮定した.

本試料の微粒子の表面は界面活性剤で完全に覆われているわけではないから, 微粒子は互いに接触して交換相互作用をしている可能性がある. また, γ-Fe₂O₃ はフェリ磁性体であるから, 微粒子間に磁気双極子相互作用がある. 従って, 有効磁場 H_i は交換相互作用による部分 H^{ex}と磁気双極子相互作用によ る部分 H^{dip} の和で書ける.

$$H_i = H_i^{\text{ex}} + H_i^{\text{dip}} \tag{5.3.2}$$

ここで, Hst は次式で書ける.

$$H_i^{\mathbf{ex}} = \frac{1}{V_i} \sum_{\mathbf{j}} K_{\mathbf{ex}}^{ij} M_j$$
(5.3.3)

ただし, *j*についての和は微粒子*i*と接触しているすべての微粒子についてとる. また, *H*^{qip} は次式で書ける.

$$H_{i}^{di\,p} = \frac{1}{4\,\pi\,\mu_{0}} \sum_{j} \frac{V_{i}}{r_{i\,j}^{3}} \left(-M_{j} + 3 \,\frac{r_{i\,j} \cdot M_{j}}{r_{i\,j}^{3}} \,r_{i\,j} \right) \tag{5.3.4}$$

ただし, *r*_{ij}は微粒子 i の中心から微粒子 j の中心へ向う位置ベクトルである. また, j についての和は微粒子 i と磁気双極子相互作用をしているすべての微粒 子(試料内のすべての微粒子) についてとる.

以上をまとめると,外部磁場がないときに集団磁気励起と超常磁性を支配する のは磁気異方性と微粒子間の交換相互作用と磁気双極子相互作用の3つの要素で ある. 次に,これらの要素の大きさを見積もる.

まず, 微粒子間の交換相互作用のみを考慮する. 従って, 磁気異方性エネ ルギー, 即ち(5.3.1) 式の右辺第一項は省略し, 第二項の H_i として(5.3.3) 式 の H^{gx}を取る. 微粒子の磁化が外部磁場とだいたい平行である(3-3 実験結果 参照) ことから, 有効磁場 H_i も外部磁場 H_a とだいたい平行であると考えられ る. 従って, (5.3.1) 式は次式で書ける.

$$E_i = V_i M_i (H_i^{ex} + H_a) \cos \theta$$
(5.3.5)

ここで、 θ は M_i が H_a となす角度である. もし、微粒子間の相互作用がなければ($H_i^{ss} = 0$ であれば) 微粒子 iの熱平均磁化< M_i > は次式で書ける.

$$\langle M_i \rangle / M_0 = L \left(\frac{V_i M_0 H_a}{k_B T} \right)$$
 (5.3.6)

ただし、< > は熱平均、体積 V_i は微粒子 i の体積、 M_o はバルクの磁化である. 集団磁気励起の振動数が超常磁性の臨界緩和時間 ($\tau_c \approx 2.5 \times 10^{-9}$ sec)の逆数よりずっと大きければ (一般にこの条件は満たされている) 微粒子 i の内

部磁場 Hobs, i は次式により与えられる.

 $H_{obs,i} / H_0 = (\langle M_i \rangle / M_0)^{1/2}$ (5.3.7)

今,上の2式を微粒子間の相互作用を含む様に拡張しなけらばならない。 微粒子は乱雑に接触しているので,Southernの乱雑な磁性体に対する平均場理論²⁴⁾に添って以下の式に拡張する.

$$m_{i} = (2\pi)^{-1/2} \int_{-\infty}^{\infty} d\alpha \exp(-\frac{\alpha^{2}}{2})$$

$$\times L \left[\frac{V_{i} M_{0}}{k_{B} T} \left(\sqrt{z_{i}} \frac{K_{ex,i}^{d}}{V_{i}} M_{0} q_{i}^{1/2} \alpha + z_{i} \frac{K_{ex,i}^{0}}{V_{i}} M_{0} m_{i} + H_{a} \right) \right]$$
(5.3.8)

$$q_{i} = (2\pi)^{-1/2} \int_{-\infty}^{\infty} d\alpha \exp\left(-\frac{\alpha^{2}}{2}\right)$$

$$\times L^{2} \left[\frac{V_{i}M_{0}}{k_{B}T} \left(\sqrt{z_{i}} \frac{K_{ex,i}^{d}}{V_{i}} M_{0} q_{i}^{1/2} \alpha + z_{i} \frac{K_{ex,i}^{0}}{V_{i}} M_{0} m_{i} + H_{a}\right)\right]$$
(5.3.9)

ここで,

$$m_i = \langle \langle M_i \rangle \rangle_c / M_0 \tag{5.3.10}$$

$$q_i = \langle \langle M_i \rangle^2 \rangle_c / M_0^2$$
(5.3.11)

$$z_i K_{\text{ex}, i}^0 = \sum_j \langle K_{\text{ex}}^{ij} \rangle_c$$
(5.3.12)

$$z_{i}(K_{ex}^{d}, i)^{2} = \sum_{j} \left[\langle (K_{ex}^{ij})^{2} \rangle_{c} - \langle K_{ex}^{ij} \rangle_{c}^{2} \right]$$
(5.3.13)

である. ただし、く >。は交換相互作用 K_{ex}^{i} に対する平均(例えば、 K_{ex}^{i} の確率分布関数を $P(K_{ex}^{i})$ とすると $\langle A \rangle_{e} = \int A P(K_{ex}^{i}) dK_{ex}^{i}$ と書ける.), z_{i} は微粒子 iの回りの微粒子 jの数の平均値を表す. なお、 $P(K_{ex}^{i})$ は平均値 $K_{ex,i}^{0}$, 標準偏差値 $K_{ex,i}^{0}$ のガウス分布を仮定した.

(5.3.8) 式と(5.3.9) 式の連立積分方程式を解くことにより*m_i*と*q_i*が得られる. すると, 微粒子*i*に対する平均内部磁場*H_{obs}*, *i* は次式により与えられる.

 $H_{obs,i} / H_0 = q_i^{1/2}$ (5.3.14)

(5.3.8) ~(5.3.14)式が(5.3.6)式と(5.3.7)式の拡張した式であることは、 K⁰_{ex}, i = K^d_{ex}, i = 0とおくと(5.3.6)式と(5.3.7)式に一致することから明かで ある. これらの式の具体的意味は次の様に言える. 試料を多くの部分系にわ け,同じ部分系に属する微粒子の体積は同じと仮定する. そして,それぞれの 部分系に乱雑な磁性体に対する平均場理論を古典的なスピンの場合に拡張し,微 粒子の磁化を古典的なスピンとみなして適用したことに相当する.

なお,このことに関連して最近のスピングラスにおけるフラストレーションの 理論²⁴⁾ によると,スピングラスではフラストレーションのため磁気的相互作用 が伝わり難い多くの境界面を持ち,このため事実上磁気的に独立な多くの部分系 (クラスター) に分かれていると考えることができるということである.

次にこれらの式に基づいて微粒子間相互作用の大きさを見積る. まず, K_{ex}^{id} の値は大まかには微粒子の体積に比例していると推定されるから, 簡単のた め $\sqrt{z_i}K_{ex,i}^{d}/V_i$ と $z_iK_{ex,i}^{o}/V_i$ は試料内のすべての部分系で一定の値をと ると仮定する. メスバウアースペクトルから内部磁場の分布が得られるが, こ の分布を(5.3.8~14)式より得た $H_{obs,i}$ の分布と一致するとみなす. ただ し, $H_{obs,i}$ は体積 V_i の微粒子の平均内部磁場の意味であるから, $H_{obs,i}$ の iに対する分布が得られたとしても,それがスペクトルの内部磁場の分布に等し いというわけではない. しかし,近似的には等しいと考えられる. これは次 の理由による. 体積 V_i の微粒子の内部磁場の分布の標準偏差は,その規格化

-80-

した平均値(H_{obs,i}/H_o)が1と0に近い所では小さく,これらの中間の値 に対しては比較的大きいと予想される. そして,中間の値を持つ平均内部磁場 はスペクトルの幅の広い吸収体の部分に寄与するだけであるから,それに対する 分布の標準偏差の大小はスペクトルの形にあまり影響しない.

次に、実験結果に合わせるため、 M_0 の値を決める. γ -Fe₂O₃の室温での 磁化の値は測定者によって多少異なっているが、いずれも0.5Wb/m² 程であるか ら、室温では $M_0 = 0.5$ Wb/m² とする. 他の温度(低温)での M_0 はその温度 変化が γ -Fe₂O₃の内部磁場の温度変化に等しいと考えて計算する. 体積分布 は次のようにして決めた. 外部磁場 H_a が最も大きい場合(0.71T)のスペク トルでは(5.3.9)式の $K_{ex,i}^d$ とな合む項は H_a に比べて小さいと考えられ るから、これらの項を無視する. すると、体積(V_I の)分布だけがスペクト ルの形(内部磁場の分布)を決定するパラメーターになるので、実験値(スペク トル)に合う体積分布は容易に得られる. 次に、無視した二つのパラメーター $\sqrt{Z_I}K_{ex,i}^d/V_I と Z_IK_{ex,i}^d/V_I$ は弱い外部磁場におけるスペクトルに合うよ うに試行錯誤で求める. 次に、これらのパラメーターの値を用いて、再び H_a が最も大きい場合(0.71T)のスペクトルに V_I の分布を少し修正することによ り合わせる. 以上のことを繰り返し、すべてのパラメーターを決定した. な お、 $H_{obs,i}/H_0$ が0.08以下の場合には超常磁性状態と見なして、二重分裂と した.

このようにして得られた試料 1 と 2 における V_i の分布をそれぞれ図 V-19(a) と (b)²³⁾ に,また, $\sqrt{Z_i} K_{ex,i}^d / V_i$ と $Z_i K_{ex,i}^o / V_i$,及びこれらの比 $\sqrt{Z_i} K_{ex,i}^o / K_{ex,i}^d$ を表 V-3に示す.理論スペクトルを図 V-13 ~18に実線で 示した.図 V-20²³⁾ と21²³⁾ はそれぞれ試料 1 と 2 のスペクトルの内部磁場 の分布を表した図である.図中の点線の棒グラフは実験結果を示し,実線の棒 グラフは理論値を示す.図 V-22 に試料 2 のパラメーターを用いて体積 $V_i =$ 10^{-25} m³ の微粒子の規格化した内部磁場の温度変化を示す.図 V-3に示した 孤立した微粒子の場合と比較して温度変化が滑らかであることがわかる.しか し,平均場近似を用いているので相転移が起きるため,低温から転移温度に近 づくと急激に内部磁場がゼロになる.この点が試料 2 の室温のスペクトル(図

-81-

Ⅴ-16)が理論曲線からずれる原因である.

図 V-19 試料1における微粒子の体積 V_iの分布の理論値(a)と, 試料2にお ける微粒子の体積 V_iの分布の理論値(b)²³⁾.

表 V−3 ₁	/ Z i K ^d ex, i/	V_i	$\mathcal{L}_{Z_i} K^0_{ex}$,	$_{i}/V_{i}$,	及びその比√	$\overline{Z_i} K_{ex,i}^0$	$K_{ex,i}^{d}$.
---------	-----------------------------	-------	--------------------------------	----------------	--------	-----------------------------	------------------

	$\sqrt{Z_i} K_{ex,i}^d / V_i$	z ; K ^o _{ex} , ;/ V ;	$\sqrt{Z_i} K_{\mathrm{ex},i}^0 / K_{\mathrm{ex},i}^\mathrm{d}$
試料1	$7.0 \times 10^{5} \text{ A}^{2} \text{s}^{2}/\text{kgm}$	$3.0 \times 10^{5} \text{ A}^{2} \text{s}^{2}/\text{kgm}$	0.43
試料2	4.0×10 ⁵ Å ² s ² /kgm	1.5×10 ⁵ A ² s ² /kgm	0.38

図 V-20 試料1の(バルクの値で規格化した)内部磁場の分布²³⁾. 図中の 点線の棒グラフは実験結果を示し,実線の棒グラフは理論値を示す.

図 V-21 試料2の(バルクの値で規格化した)内部磁場の分布²³⁾. 図中の 点線の棒グラフは実験結果を示し,実線の棒グラフは理論値を示す.

図 V-22 試料2のパラメーターを用いた体積 V_i = 10⁻²⁵ m³ の微粒子に対す るバルクの値で規格化した内部磁場の温度変化.

次にこのようにして得られた値(表 V-3参照)が合理的であるかどうか検討する. スピネル構造を持つ酸化物では,一般にAサイトとBサイトの鉄イオン間の交換積分Jの値は-20ka程度である. 従って, 微粒子 *i* と *j*の間の交換エネルギ-E野はSI単位で次のように近似できる.

 $E_{JJ}^{ex} \approx 2\zeta \ n \ J \ S^2 \approx 1 \times 10^{-20} \ n$ (5.3.15)

ここで, nは微粒子間の境界面にある鉄原子数である. また,スピンSは5/2 を、くは境界面を横切る交換相互作用(あるいは超交換相互作用)の数で3 を仮 定した.

また, E野は次のようにも近似できる.

 $E_{ij}^{ex} \approx K_{ex,i}^{d} M_{0}^{2} = \left(\sqrt{z_{i}} K_{ex,i}^{d} / V_{i}\right) M_{0}^{2} V_{i} / \sqrt{z_{i}}$ (5.3.16)

-84-

従って, 試料1では $E_{22}^{53} \approx 2 \times 10^{-20} / \sqrt{Z_i}$, 試料2では $E_{22}^{53} \approx 4 \times 10^{-20} / \sqrt{Z_i}$ となる. ただし, $\sqrt{Z_i} K_{ex,i}^d / V_i$ は本研究でそれぞれの試料について 得られた値(表 V-3参照)を, V_i はそれぞれの試料について得られたおおよそ の平均体積, 即ち試料1については 1×10^{-25} m³, 試料2については 4×10^{-25} m³ を代入した. どちらの試料についても z_i は2~8程と考えられるから, (5.3.15)式と比較するとnは1程度である. このことは, 微粒子間の境界面に ある鉄原子数が1程度であるか, または, 微粒子間の交換相互作用が内部の鉄原 子間のそれに比べて弱いことを示している.

次に本実験結果が微粒子間の磁気双極子相互作用だけで説明がつかないか試し てみる. H^{qi} は(5.3.4)式を変形すると次式で書ける.

$$H_i^{\text{dip}} = H_i^{\text{dem}} + H_i^{\text{L}}$$

$$+\frac{1}{4\pi\mu_{0}}\sum_{j}'\frac{V_{i}}{r_{ij}^{3}}\left(-M_{j}+3\frac{r_{ij}\cdot M_{j}}{r_{ij}^{3}}-r_{ij}\right)$$
(5.3.17)

ここで, H^{gem} と H_i^L はそれぞれ微粒子 i にかかる試料の反磁場とローレンツ 磁場である. また, Σ'はローレンツ球内部の微粒子についての和を表す. (5.3.24)式の右辺第1項と第2項の和の大きさは次の程度と見積もられる.

$$|H_{i}^{dem} + H_{i}^{L}| \leq \frac{1}{3\mu_{0}} \rho \langle M \rangle_{s}$$
 (5.3.18)

ここで、ρと < M>s はそれぞれ試料における微粒子の平均体積密度と平均磁化 である. (5.3.17)式の右辺第3項を概算することは難しい. しかし、ローレ ンツ球内部の微粒子がほぼ均一に分布していると仮定すると、ρ < M>s /3μo とあまりかわらないか、または小さいと予想される. すると、試料のρは小さ い (0.2 以下と見積もられる)から、H^{4ip} を無視してよいことになる. しか しながら、微粒子の位置が乱雑な場合には、ある程度以上離れた微粒子からの双 極子磁場は無視できても、すぐ傍の微粒子からの双極子磁場は打ち消されない. 従って,その大きさ如何によっては,本研究の結果が微粒子間の交換双極子相互 作用の代わりに磁気双極子相互作用でも説明がつく可能性があることになる. そこで,すぐ傍の微粒子からの双極子磁場の大きさを見積もる.

まず, *M*_j || *H*_a とすると, すぐ傍の微粒子 j からの双極子磁場 *L*_{ij}は *r*_{ij} || *H*_a と *r*_{ij} ⊥ *H*_a の場合, それぞれ次式で与えられる.

$$h_{ij} = \frac{1}{12\,\mu_0} \, M_j \tag{5.3.19}$$

$$h_{ij} = \frac{1}{24\,\mu_0} \, M_j \tag{5.3.20}$$

ただし, 微粒子 *i* と *j*は同体積の球形を仮定し, 互いに接触しているとして計算 した. (5.3.19)式と(5.3.20)式を(5.3.3) 式を比較すると, 同じ形をしてい るのがわかる. そこで, すぐ傍の微粒子との磁気双極子相互作用の強さを *K*⁰_{ex}, *i* / *Vi* と *K*^d_{ex}, *i* / *Vi* に換算すると, その大きさは次のように見積もられ る.

$$\frac{K_{\rm ex,i}^{0}}{V_{i}} \approx \frac{K_{\rm ex,i}^{\rm d}}{V_{i}} \approx \frac{1}{24\,\mu_{0}} \approx 3 \times 10^{4} \,\,{\rm A}^{2} \,{\rm s}^{2}/{\rm kgm}$$
(5.3.21)

この値は本研究の解析結果(表 V-3参照)に比べて一桁小さい. 従って, 微粒 子間の磁気双極子相互作用だけでは実験結果を説明できないことがわかる.

次に磁気異方性エネルギーの大きさを見積もる. 弱い外部磁場(H_a =0.047 T)をかけても微粒子の(時間平均)磁化が外部磁場とほとんど平行に なる(3-3 実験結果参照). それぞれの微粒子の磁気異方性軸の向きは微粒子 の向きと同様に乱雑であるから,大部分の微粒子の磁化は磁気異方性軸の向きに 反して外部磁場の方向に向いていると考えられる. 従って,磁気異方性エネル ギー $K_i V_i$ の値は $V_i M_0 H_a \approx 2 \times 10^4 V_i$ (SI単位)以下であることがわ かる.

一方,本研究で得られた交換相互作用エネルギー(| $\sum_{i} K_{ex}^{i} M_{i} \cdot M_{j}$ |) はそれぞれの試料に対して $\sqrt{z_{i}}$ [(K_{ex}^{d} , i)² + (K_{ex}^{0} , i)²]^{1/2} $M_{0}^{2} \approx$ 1.9×10⁵ V_{i} (試料1)と≈ 1.1×10⁵ V_{i} (試料2)である. 従って,磁 気異方性エネルギーは交換相互作用エネルギーに比べて一桁小さいことがわか る.

3-4 結論

互いに接触した y-Fe₂O₃ 微粒子集合体の試料に,0~0.71Tの範囲で外部磁 場をかけたり温度を変えたりすることによるメスバウアースペクトルの変化を測 定した. これらのスペクトルは,孤立した微粒子のスペクトルと同じく超常磁 性による二重分裂(内部磁場0に対応するピーク)は試料の温度が高い程,平均 粒径が小さい程,そして試料にかかる外部磁場が弱い程大きい.

孤立した微粒子のスペクトルと比較して最も大きく違うところは,温度が上昇 すると内部磁場による超微細分裂(6本線)が小さい方へ分布していくため,6 本線と超常磁性による二重分裂との境が連続しているということである. この ことは互いに接触した微粒子では温度の上昇に伴って集団磁気励起から超常磁性 へ緩やかに(連続的に)移行するということを示している. また,粒径が減少 する場合も同じである. この温度変化を説明するための微粒子間相互作用の原 因は, 微粒子間の磁気双極子相互作用では小さすぎるので, 微粒子間の融着面を 通した交換相互作用であると考えられる. バルクの鉄は非常に酸化しやすいにもかかわらず、ゆっくりと表面を酸化させ た鉄微粒子は室温の空気中でも酸化がほとんど進行しない. このことについて FeitknechtとDurtschi²⁶, は、その酸化層は化学的に安定であると述べている. このように、表面酸化層は金属の腐食に関連して非常に興味深い性質がある. そこで、HanedaとMorrish^{27,28)}は鉄微粒子の表面酸化層をX線回折とメスパウ アー効果で調べた. その結果、鉄微粒子の表面酸化層の構造はFe₃0₄ と γ -Fe₂0₃ が混合した微結晶であると結論した.

本研究においても第Ⅲ章で平均粒径130 Åの鉄微粒子の表面酸化層は1,2層 の厚さのマグネタイトに近い酸化鉄であることを述べた(図Ⅲ-6参照). 図Ⅲ -6のように,低温で表面酸化層のスペクトルはマグネタイトに近い形を示すが, 温度の上昇に従って急速に弱くなる. このことから,表面酸化層は非常にソフ ト化していると結論した²⁹⁾. しかし,詳しい実験により,温度が上昇するに つれて表面酸化層のピークの高さが低くなる一方でその幅が広くなっていき,室 温で幅の広い吸収帯になることがわかった.

この幅の広い吸収帯は,鉄薄膜表面の酸化層のメスバウアー効果の実験³⁰⁾ に おいても室温のスペクトルで観測された. 超常磁性(superparamagnetism)の 緩和時間が 2.5×10⁻⁹sec 程度の場合にはスペクトルが幅の広い吸収帯(図A-8 参照)になるので,Shinjoら³⁰⁾ は表面酸化層も室温でこのような状態になって いると考えた.

この考えに対して, Mørup³¹⁾ は次のような説明を与えている. 酸化微結晶 間の磁気的相互作用が磁気異方性エネルギーより悠かに大きい場合, 微結晶の体 積が適当な値を中心とした適当な範囲に分布していれば室温における微結晶の磁 化方向の熱的揺らぎの大きさは広く分布する. 従って, 室温における内部磁場 も広く分布する結果, スペクトルは幅の広い吸収帯になる. この模型が該当す る例は, 前節で述べた試料2の外部磁場をかけない場合のメスバウアースペクト ルの温度変化(図V-16)がある.

しかし、TamuraとHayashi³²⁾は表面酸化層を構成する酸化微結晶について,

酸化微結晶間の相互作用より鉄微粒子内部のα-Fe との相互作用の方が重要であ ると考えた. 本節では鉄微粒子の表面酸化層をメスバウアー効果で詳しく調べ た結果を示し,この考え方に基づいてそのスペクトルを説明する.

4-1 実験とその結果

鉄磁粒子は高純度(99.9985%)の鉄線をHeガス1Torr中で蒸発させて作った. 蒸発させた後,次の3通りの方法で微粒子を採集し,試料を作成した. (1)Heガスの中で一日放置しておいた後,蒸発室に空気を入れてハケで集めシアノアクレリック系接着剤に埋め込む. (2)予め蒸発室の下のほうにパラフィンを置いておき,その上に落ちた微粒子をパラフィンを溶かすことによって埋め込んだ後,蒸発室に空気を入れて微粒子が埋め込まれたパラフィンを取り出す. (3)予め蒸発室の下のほうにシリコン油を入れた容器を置き,シリコン油の中に落ちた微粒子を蒸発室に空気を入れてその容器を取り出し,シリコン油の中の微粒子を集める. その後,その微粒子をシアノアクレリック系接着剤に埋め込む.

これらの微粒子の平均粒径は電子顕微鏡写真(図 V-23(a)参照)により66Åで あることがわかった. また,電子線回折(図 V-23(b)参照)によれば表面酸化 層はFe₃0₄ として矛盾しないことがわった.

図 V-24³¹⁾ は4つの温度における(1)の試料のメスバウアースペクトルあ る. (2), (3)の試料のスペクトルも,これと同じであった. 従って, (2), (3)の試料のように直接空気にさらさなくても(1)の試料と同じ 程度に酸化すると言える. 室温のスペクトルには鉄の6本線の他に幅の広い吸 収帯が現われている. この吸収帯は低温に行くに従ってマグネタイトのスペク トルに似ていく.

78Kでの鉄の6本線と酸化鉄のスペクトルの面積比から,この微粒子の酸化の 割合は55-60 %と推定される. これらのスペクトルから鉄の6本線を引くと, 図V-25³²⁾ に示したようなスペクトルが得られた. ただし,実線は理論スペ クトル,点線は理論スペクトルを作るときに酸化層の理論スペクトルと重ね合わ せた弱い6本線を示す. この6本線の間隔(内部磁場)はバルクの鉄の6本線 より約8%大きいが,重心の位置はバルクの鉄と同じである. Shinjoら³⁰⁾ は,酸化層と接した鉄薄膜の内部磁場はバルクの鉄に比べて約3%大きいことを 見いだしている. この事実に基づくと,本研究で見いだされた弱い6本線もま た,表面酸化層と接した鉄の部分のスペクトルであると考えることができる. しかし,彼らが得た鉄薄膜の内部磁場は酸化層との接触面より約8Åの深さ迄の 平均値である. 本実験では,酸化層との接触面第1層のみのスペクトルである

と解釈すると、この内部磁場が彼らの結果より大きいことを理解できる。

ここで, Ito ら³³⁾のマグネタイトのメスバウアースペクトルとマグネタイト とγ-Fe₂O₃の中間的な物質のスペクトルを図V-26に示す. いずれも室温の スペクトルである. マグネタイトの高温相(Verway転移温度以上)のスペク トルはスピネル構造のAサイトとBサイトに対応するそれぞれにつき6本の合計 12本のピークよりなる. また, Aサイトのスペクトルの面積強度はBサイト の半分であり, Aサイトのピーク幅のほうがBサイトのピーク幅より狭い. し かし,中間的な物質の場合はAサイトとBサイトの面積強度がほぼ同じくらいで ある. というのは, γ-Fe₂O₃のスペクトルはマグネタイトのAサイトの6本 線にほぼ重なるからである.

マグネタイトのスペクトルはVerway転移温度(119 K)を境として大きく異なるが³³⁾,中間的な物質の場合は低温から高温へ連続的にBサイトのピーク幅が狭くその高さが高くなっていく. 従って,転移温度は定義できない.

図 V-27 に図 V-25 の78Kでのスペクトルから更に弱い6本線を引いたスペク トル(a)と、同じ温度でのマグネタイトと Y-Fe₂0₃ の中間的な物質のスペク トル(b)を比較した. 表面酸化層のスペクトルは超微細分裂の大きさ(内部 磁場)がマグネタイトと Y-Fe₂0₃ の中間的な物質の値より約4%小さいことを 除けば非常によく似ている. 従って、表面酸化層はマグネタイトと Y-Fe₂0₃ の中間的な物質であると推定できる. そして、温度が上昇すると表面酸化層の 内部磁場はますます小さい方へ広がり、室温では一つの幅の広い吸収帯になった と考えることができる.

(a)

(ь)

図 V-23 平均粒径66Åの鉄微粒子の電子顕微鏡写真(a)と電子線回折像(b).

図 V-24 四つの温度における平均粒径66Åの鉄微粒子のメスバウア-スペクト ル³²⁾・

図 V-25 図 V-24のスペクトルから鉄の6本線を差し引いたスペクトル³²⁾. 点線(弱い6本線)は微粒子内部の鉄が表面酸化層と接する部分のス ペクトル. 実線は理論スペクトル.

図 V-26 マグネタイトの室温(300K)でのメスバウアースペクトル(a)³³? とマグネタイトとγ-Fe₂O₃の中間的な物質の室温(295K)でのスペ クトル(b). AとBはそれぞれAサイトとBサイトのピーク位置 を示す.

図 V-27 図 V-24 の78Kのスペクトルから鉄の6本線と弱い6本線を引いたスペクトル(a)と、同じ温度でのマグネタイトとγ-Fe₂0₃ の中間的 な物質のスペクトル(b).

4-2 理論

すでに述べたように,超常磁性の緩和時間 τ が 2.5×10⁻⁹ sec 程度の場合にス ペクトルは幅の広い吸収帯になる(図A-8参照). しかし,図V-28のように 表面酸化層は多くの酸化鉄の微結晶からなっていて,それぞれの微結晶の体積は 異なっていると考えるのが自然であるから,この緩和時間を持つ酸化鉄微結晶は 全体からみればわずかと思われる. 従って,酸化鉄微結晶に体積分布がある場 合でもまた,スペクトルが幅の広い吸収帯になることを示す必要がある.

図 V-28 鉄微粒子の表面酸化層の推定図. 図中の矢印は磁化方向を示す.

これまでは,超常磁性を議論するのに磁化方向の二つの極小値(θ=0とθ= π)のエネルギーが等しいと仮定した. しかし,磁場などの一方向異方性エネ ルギーが加わるとこの仮定は成立しない. この場合は磁化方向の緩和時間がθ =0とθ=πで異なる. 従って,二つの緩和時間の差はゼロではないから,超 常磁性の場合でもメスバウアー核が感じる平均化された内部磁場はゼロではな い. しかも,酸化鉄微結晶に体積分布があれば,この時間的に平均化された内 部磁場も分布する. このことが室温で表面酸化層のスペクトルが幅の広い吸収 帯になった原因であると考えてスペクトルを解析する. 表面酸化層が鉄の部分と接しているなら,強磁性体である鉄より交換相互作用 や双極子相互作用により,表面酸化層に一方向異方性エネルギーが加わると考え られる. これを有効磁場 Heff で表すと,表面酸化鉄微結晶の磁気異方性エネ ルギーは次式で書ける.

$$E(\theta) = K V^{2} \sin \theta - H_{eff} M_{s} V \cos \theta \qquad (5.4.1)$$

ただし, K, V, M_sはそれぞれ酸化鉄微結晶の一軸磁気異方性定数,体積,飽 和磁化である. なお,磁化容易軸方向と有効磁場の方向が同じとは限らない が,ここでは同じであると仮定した.

今,0 < H_{eff} < K/M_s と仮定する. 即ち,(5.4.1) 式の右辺第一項が第 二項より大きいと仮定する. この場合, $E(\theta)$ は $\theta = 0$ と $\theta = \pi$ の二つの極 小値を持つ. また,室温以下で $k_B T \ll KV$ を仮定すると,磁化方向は大部分の 時間この二つの極小値近傍にある. 従って,磁化方向の $\theta \approx 0$ の領域に対する 緩和時間を τ_0 , $\theta \approx \pi$ の領域に対する緩和時間を τ_{π} とすると,磁化方向が θ ≈ 0 の領域にある確率は τ_0 /($\tau_0 + \tau_{\pi}$), $\theta \approx \pi$ の領域にある確率は τ_{π} /($\tau_0 + \tau_{\pi}$) と書ける. ここで, $\tau_0 \ge \tau_{\pi}$ はブラウンの理論³⁴⁾ により計 算すると,次のような結果になる³⁵⁾.

$$\tau_{\pi} = \frac{M_{s} \pi^{1/2}}{K \gamma} \alpha^{-1/2} (1 - h^{2})^{-1} (1 \pm h)^{-1} \exp[\alpha (1 \pm h)^{2}]$$
 (5.4.2)

ただし、 $h = H_{eff} M_s / 2K$, $\alpha = K V / k_B T$, γ はジャイロ磁気定数である.

低温では,緩和時間がメスバウアー核のラーマー振動数の逆数より大きいか ら,磁化の反転はメスバウアースペクトルに影響しない. しかし,このような 低温においても集団磁気励起により内部磁場が減少する(第1節参照). この ことが,表面酸化層の内部磁場が78Kでバルクのマグネタイトの内部磁場より約 4%少ない原因と考えられる. 温度の上昇に伴って集団磁気励起が大きくなる ため内部磁場が小さくなり,それとともに酸化微結晶の磁化の反転の頻度も大き くなるが,反転の振動数がメスバウアー核のラーマー振動数を越えるとメスバウ アー核は時間的に平均化された内部磁場を感じるようになる. 従って,この 場合の内部磁場 Hin は次式で書ける.

$$H_{in}(T) = \frac{\tau_0 - \tau_{\pi}}{\tau_0 + \tau_{\pi}} H_0(T)$$
 (5.4.3)

ここで、 H_0 は磁化の反転を考えない(集団磁気励起は考える)場合の内部磁場 である. バルクの値で規格化した内部磁場の温度変化を図 V-29 に示した. ただし、 $K=1.2 \times 10^5$ J/m³ 、体積 $V=10^{-25}$ m³ 、飽和磁化はマグネタイト と同じ値(室温で $M_s = 0.6$ Wb/m²)、h=0.1、 $\gamma = 2.4 \times 10^5$ m/A·s を用い て計算した. 図 V-3や図 V 22 と比較すると、この図の最も大きな特長は超常 磁性になっても内部磁場が無くならないことであることがわかる.

図 V-29 一軸磁気異方性定数 K= 1.2×10⁵ J/m³,体積 V=10⁻²⁵m³, h=
 0.1 の微粒子に対するバルクの値で規格化した内部磁場の温度変化.
 図中の垂線(破線,実線,破線)はそれぞれ緩和時間 τ 。が τ 。=5.0×10⁻⁹ sec, 2.5×10⁻⁹ sec, 1.2×10⁻⁹ sec になる温度を示す.

緩和時間は,(5.4.2)式より体積や有効磁場に依存する. 従って,メスバウ アー核の感じる磁場(内部磁場)は表面の酸化鉄微結晶ごとに異なるから,その 微結晶の集合体である表面層のメスバウアースペクトルは,幅の広い吸収帯にな る. 次に厳密な計算を試みる.

今, 微結晶の磁化方向が $\theta \approx 0$ の領域にあると仮定する. マグネタイトのA サイトの6本線についてエネルギーの低い順に番号をつけ, 微結晶の温度 Tでの *j*番めのピーク位置を δ ^(T)と表す. また, これに対応するバルクのマグネ タイトのピーク位置を Δ ^(T)と表す. 集団磁気励起の効果を考慮すると, δ ^(T)は Δ ^(T)を用いて次のように表せる.

$$\delta_{\mathbf{i}}(T) = \left[\Delta_{\mathbf{i}}(T) - \frac{\Delta_{\mathbf{i}}(T) + \Delta_{\mathbf{7}-\mathbf{i}}(T)}{2}\right] \langle \cos \theta \rangle_{T}$$

$$+ \frac{\Delta_{j}^{A}(T) + \Delta_{7-j}^{A}(T)}{2}$$
(5.4.4)

ここで、 $\langle \cos \theta \rangle_r$ は温度 Tにおける $\cos \theta$ の熱平均で、次式で書ける.

$$\langle \cos \theta \rangle_{T} = \frac{\int_{0}^{\pi/2} \cos \theta \, \exp[-E(\theta)/k_{\rm B} \, T] \sin \theta \, d\theta}{\int_{0}^{\pi/2} \exp[-E(\theta)/k_{\rm B} \, T] \sin \theta \, d\theta}$$
(5.4.5)

また, 微結晶の磁化方向が $\theta \approx \pi$ の領域にある場合, δ (*T*) に対応するピー ク位置を δ (*f*) とすると δ (*T*) と同様な式が成り立つ. ただし, < $\cos \theta >_{r}$ を求める式は(5.4.5) 式と積分範囲だけが異なり, $\pi/2 \sim \pi$ になる. 一般的な場合, Aサイトの *j*番目のピーク I(ω , *T*)は次式で与えられる (付録第5節参照).

 $I_{j}^{A}(\omega, T) = \operatorname{Re}[WA_{j}(T)^{-1}1]$ (5.4.6)

ここで, W, A;(T), 1は次式である.

$$W = \begin{bmatrix} \frac{\tau_{0}}{\tau_{0} + \tau_{\pi}}, & \frac{\tau_{\pi}}{\tau_{0} + \tau_{\pi}} \end{bmatrix}$$

$$A_{j}(T) = \begin{bmatrix} i[-\omega + \delta_{j}^{A}(T)] - \frac{1}{\tau_{j}^{A}} - \frac{1}{\tau_{0}} & \frac{1}{\tau_{0}} \\ \frac{1}{\tau_{\pi}} & i[-\omega + \delta_{j}^{A}(T)] - \frac{1}{\tau_{j}^{A}} - \frac{1}{\tau_{\pi}} \end{bmatrix}$$

$$1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(5.4.7)

ただし, 2/τ な緩和時間 τ 。とτπ が無限大のときの I (ω, T)の半値幅で ある. Bサイトの j 番目のピーク I_j(ω, T) も同様に得られるから, 全スペ クトルは j 番目のピークの重み w_j を掛けてすべてのピークの和をとった次式 で与えられる.

$$I(\omega, T) = \sum_{j=1}^{6} w_{j} [I_{j}^{A}(\omega, T) + I_{j}(\omega, T)]$$
(5.4.8)

4-3 議論

以上の理論に基づき表面酸化層のスペクトルを再現することができる. Mørup とTopsøe⁴)は粒径120 ~60Åのマグネタイト微粒子の内部磁場の温度依存性を集 団磁気励起の理論に基づいて解析した結果,これらの微粒子の磁気異方性定数 Kは $0.9 \times 10^5 ~ 1.41 \times 10^5 J/m^3$ と結論した. 今,表面酸化微結晶の磁気異方 性定数 Kはこれらの値の平均値 $K = 1.2 \times 10^5 J/m^3$,磁化 M_s とジャイロ磁気 定数 γ はそれぞれバルクのマグネタイトの値, 0.6 Wb/m² と 2.4×10^5 m/A·s を 採用する. また, w₁: w₂: w₃: w₄: w₅: w₅ = 2.7: 2: 1.3:

-98-

1.3:2:2.7 と置く. 磁気異方性定数の値を決めると,表面酸化微結晶の平 均体積の概算値は,78Kでの表面酸化層の内部磁場がバルクのマグネタイトの値 より約4%小さいことを集団磁気励起の理論((5.1.4)式参照)に当てはめるこ とにより得ることができる.

以上の値と本研究の理論式に基づいて,体積と有効磁場の分布を実験値に合う ように試行錯誤で求めた. その結果を図 $V-30^{32}$ に示す. このようにして 得られた理論曲線と弱い6本線の和は図V-25 に実線で示した. これらの値は 最初に仮定した条件,即ち $0 < H_{eff} < K/M_s$ と $k_B T < KV$ に矛盾しないこと がわかる.

図 V-30 実験結果に合うように仮定した表面酸化微結晶の体積 Vと有効磁場 Herr の分布³²⁾.

本研究では表面酸化鉄微結晶間の相互作用を無視した. Mørup³¹⁾ が示唆し たように,この相互作用エネルギーが磁気異方性エネルギーや一方向異方性エネ ルギーより大きい(次節参照)と仮定しても,鉄の表面酸化層のスペクトルを説 明出来る可能性がある. しかし,本研究の理論はMørup³¹⁾ やShinjoら³⁰⁾ の 考え方に比べて条件がゆるい. 例えば,異方性定数*K*,体積*V*,有効磁場 *H*err に関して本研究で用いた値と全く異なった値を用いたとしても,実験結果 の説明が可能であると考えられる. これらのことは今後の研究課題である.

-99-

4-4 結論

本研究での結果は,鉄微粒子の表面酸化層が γ-Fe₂0₄ とFe₃0₄ との混合物 (中間的な物質)の微結晶であるというHanedaとMorrish^{27,28)}の結論と矛盾し ない. しかし,その内部磁場は低温でも集団磁気励起のためバルクの値より小 さい. これらの微結晶は微粒子内部の鉄の部分から一方向異方性エネルギーを 受けているため,室温になると磁化方向の反転の確率が非対称な超常磁性にな る. 微結晶がこのような状態にあるとき,メスバウアー核の感じる内部磁場は 微結晶の体積や有効磁場の分布により広く分布する. このため表面酸化層のメ スバウアースペクトルは幅の広い吸収帯になっていると考えられる. これらの ことを考え合わせることにより,鉄微粒子の表面酸化層のメスバウアースペクト ルが説明できる. 参考文献(V)

- S. Yatsuya, T. Hayashi, H. Akoh, E. Nakamura and A. Tasaki: Japan J. Appl. Phys. 17(1978)355.
- 2) L. Néel: Ann. Geophys. 5(1949)99.
- W. Kundig, H. Bömmel, G. Constabaris and R. H. Lindquist: Phys. Rev. 142(1966)327.
- 4) S. Mørup and H. Topsøe: Appl. Phys. 11(1976)63.
- 5) K. Binder and P. C. Hohenberg: Phys. Rev. B9(1974)2194.
- L. N. Liebermann, J. Clinton, D. M. Edwards and J. Mathon: Phys. Rev. Lett. 25(1970)232.
- 7) J. M. Coey and D. Khalafalla: Phys. Stat. Sol. (a) 11(1972)229.
- 8) A. H. Owens, C. L. Walker: J. Physique Suppl. (1979)C2-74.
- S. Hine, T. Shigematu, T. Shinjo and T. Takada:
 J. Physique Suppl. (1979)C2-84.
- 10) K. Haneda and A. H. Morrish: Physics Letters 64A(1977)259.
- A. Ochi, K. Watanabe, M. Kiyama, T. Shinjo, Y. Bando and T. Takada: J. Phys. Soc. Japan. 50(1981)2777.
- 12) T. Okada, H. Sekizawa, F. Ambe, S. Ambe and T. Yamadaya:J. Mag. and Mag. Mat. 31-34(1983)903.
- 13) A. H. Morrish and S. P. Yu: J. Appl. Phys. 26(1955)1049.
- 14) I. Tamura and M. Hayashi: J. Mag. and Mag. Mat. 31-34(1983)945.
- 15) S. Mørup: J. Mag. and Mag. Mat. 37(1983)39.
- 16) S. Mørup, M. Bo Madsen and J. Frank:
 - J. Mag. and Mag. Mat. 40(1983)163.
- 17) G. von Eynatten and H. E. Bömmel: Appl. Phys. 14(1977)415.
- 18) Y. Koy, A. Tsujimura, T. Hihara and T. Kushida: J. Phys. Soc. Japan 16(1961)1040.
- 19) R. S. Preston, S. S. Hanna and J. Heberle: Phys. Rev. 128(1962)2207.
- 20) 太田恵造: 磁気工学の基礎II (共立出版,東京,1973) p.281

- 21) C. Kittel: Introduction to Solid State Physics(John Wiley, New York, 1976)p.465
- 22) 北原文雄: コロイドの話し(倍風館, 東京, 1984) p.65
- 23) I. Tamura and M. Hayashi: J. Mag. and Mag. Mat. 72(1988)285.
- 24) B. W. Southern: J. Phys. C9(1976)4011.
- 25) S. Miyashita and M. Suzuki: J. Phys. Soc. Japan 50(1981)1840.
- 26) W. Feitknecht and A. Durtschi: Helv. Chim. Acta 47(1964)174.
- 27) K. Haneda and A. H. Morrish: Surface Sci. 77(1978)584.
- 28) K. Haneda and A. H. Morrish: Nature 282(1979)186.
- 29) M. Hayashi, I. Tamura, Y. Fukano, S. Kanemaki and Y. Fujio: J. Phys. C, 13(1980)681.
- 30) T. Shinjo, T. Shigematu, N. Hosoito, T. Iwasaki and T. Takada: Japp J. Appl. Phys. 21(1982)L220.
- 31) S. Mørup: J. Mag. and Mag. Mat. 37(1983)39.
- 32) I. Tamura and M. Hayashi: Surface Sci. 146(1984)501.
- 33) A. Ito, K. Ono and Y. Ishikawa: J. Phys. Soc. Japan 18(1963)1465.
- 34) W. F. Brown, Jr.: Phys. Rev. 130(1963)1677.
- 35) S. Mørup, J. A. Dumestic and H. Topsøe: Applications of Mössbauer Spectroscopy, Vol. II, Ed. R. L. Cohen (Academic Press, New York, 1980)p.12.

第Ⅵ章 総括

第I章は微粒子に関する研究の歴史とメスバウアー効果で何がわかるかについ て述べた章である.

第II 章は微粒子の作成について一般的な方法と本研究で行った方法を述べた章 である。

第Ⅲ章第1節では,これまでに行われた微粒子の格子振動に関する理論的研究 やX線回折による研究などについて述べた。

第2節では,ガス蒸発法で作った鉄微粒子(粒径130 Å,66Å)がソフト化し ているかどうかをメスバウアー効果で調べたことを述べた. 鉄微粒子の表面酸 化層とα鉄表面の一原子層を除いた部分の無反跳分率とその温度変化は,微粒子 の振動を抑えてしまえばバルクの鉄の値と異ならない. 従って,鉄微粒子の表 面酸化層とα鉄表面の一原子層を除いた部分はソフト化していないと結論でき る.

第Ⅳ章第1節では、微粒子の振動がメスバウアー効果に及ぼす影響を述べた. 微粒子の振動数がメスバウアー核の第一励起準位の緩和時間の逆数と同じ程度の 大きさの場合には、振動がないときに比べてスペクトルの吸収線の幅が広くなる がその面積強度(無反跳分率)は変わらない. また、微粒子の振動数がこの緩 和時間の逆数よりはるかに高い場合には、無反跳分率は小さくなるがスペクトル の吸収線の幅は変わらない.

第2節では,第1節で述べたことから,金微粒子と金合金微粒子焼結体に ¹⁹⁷Auの第一励起準位の緩和時間の逆数(5.29×10⁸ Hz)と同じ程度の大きさの 振動数を持つ微粒子の振動を見いだしたことを述べた. この振動数が金属微粒 子焼結体と液体ヘリウム間のカピッツア抵抗の異常から予想されている値と同じ 程度の大きさであるということは興味深い.

第V章第1節では, 微粒子の磁性とそのメスバウアースペクトルの特長などに ついて述べた.

第2節では、メスバウアー効果で調べた鉄微粒子の内部磁場とその温度依存性
を述べた. 単磁区構造の鉄磁粒子の内部磁場は低温でバルクの値より約 3k0e 大きく,温度が上昇すると粒径が小さい微粒子ほど急に減少する. これらの実 験結果は,鉄磁粒子の反磁場と双極子磁場とともに集団磁気励起を考えるこ と により説明できる. 特に,粒径100 Å以下の鉄磁粒子の集団磁気励起では,微 粒子間の融着の効果が重要であることがわかった. また,小さい粒径を持つ鉄 微粒子の内部磁場と大きい粒径を持つ鉄磁粒子の内部磁場を比較することによ り,互いに連なった鉄微粒子に対する単磁区構造と複磁区構造との境界粒径は, 約450 Åであることを確認した.

第3節では,互いに接触したγ-Fe₂O₃ 微粒子集合体の試料に,0~0.71Tの範 囲で外部磁場をかけたり,温度を変えたりすることによるメスバウアースペクト ルの変化について述べた. これらのスペクトルの超常磁性による二重分裂(内 部磁場0に対応するピーク)の強度は,試料の温度が高い程,平均粒径が小さい 程,そして試料にかかる外部磁場が弱い程大きいことは孤立した微粒子のスペク トルと同様である. しかし,詳しく見るとスペクトルの温度変化の様子がかな り異なっている. これらのスペクトルから判断すると,互いに接触した微粒子 集合体では温度の上昇とともに集団磁気励起から連続的に超常磁性になると考え られる.

第4節では,鉄微粒子の表面酸化層をメスバウアー効果で調べたことを中心と して述べた. 鉄微粒子の表面酸化層はγ-Fe₂0₄ とFe₃0₄ との混合物(中間的 な物質)の微結晶である. しかし,その内部磁場は低温でも集団磁気励起のた めバルクの値より小さい. これらの微結晶は微粒子内部の鉄の部分から一方向 異方性エネルギーを受けているため,室温になると磁化方向の反転の確率が非対 称な超常磁性になる. 微結晶がこのような状態にあるとき,メスバウアー核の 感じる内部磁場は微結晶の体積や有効磁場の分布により広く分布する. このた め表面酸化層のメスバウアースペクトルは幅の広い吸収帯になっていると考えら れる.

以上の結果から, 微粒子をどの程度小さくするとその本質的な物性がバルクの それと異なってくるかという問題に対しては, ある程度の答えが得られた.本 研究で行なった最も小さい微粒子は, 格子振動に関しては平均粒径66Åの鉄微粒 子であり,磁性に関しては粒径20~30Åのγ-Fe203 微粒子である. これらの 結果が示す所によれば,格子振動と磁性に関する限り,微粒子の物性はバルクの 物性と本質的には異なっていないと考えられる. 例えば,微粒子とバルク の無反跳分率の値の違いのすべては,微粒子全体としての振動に原因があると考 えられるし,磁気的性質(メスバウアースペクトルの形)の違いに関しても,集 団磁気励起と超常磁性を考えることにより,すべて説明がつく. 表面効果は表 面第一層目だけか,多くても二層目迄で,それより内部には及ばないと考えられ る. しかし,実際に作成される微粒子の大部分は,周りの微粒子や他の物質と 相互作用しているから,本研究のもう一つのテーマである微粒子の全体としての 振動や磁化方向の揺らぎ,そして,微粒子の集合体としての性質もまた重要であ る. 訪 辞

終わりに臨み,本研究に際し終始懇切な御指導と御鞭撻を賜りました富山医科 薬科大学 林光彦教授に,謹んで感謝の意を表します.

本論文をまとめるにあたり,終始貴重な御助言と御高見を賜りました名古屋大 学工学部 原田仁平教授に,謹んで感謝の意を表します.

本研究を遂行するにあたり,ガス蒸発法による微粒子の作成に関して適切な御 助言と御協力をいただきました名古屋大学教養部 深野泰茂教授ならびに鐘巻修 一助手に厚く御礼申しあげます. また,¹⁹⁷Auのメスバウアー効果に関して御 協力をいただきました京都大学原子炉実験所 酒井宏博士(現在 広島大学理学 部)に厚く御礼申しあげます. 付録: メスバウアー効果

第1節 メスバウアー効果の原理

γ線は光子のエネルギーが大きいため,気体の原子では核によるγ線の放射や 吸収の際,反跳エネルギーが大きくなり共鳴吸収が観測されない. 例えば,気 体の原子(原子核)からγ線が放出されるとき,運動量保存則により原子の反跳 エネルギー *E*_R は

$$E_{\rm R} = \frac{E_{\rm Y}^{2}}{2Mc^{2}} \tag{A.1.1}$$

となる. ただし, *M*は原子の質量, *E*γ はγ線のエネルギー, *c* は光の速度で ある. 吸収されるときも,同様にして原子の反跳エネルギーは*E*R になる. 従って. γ線のエネルギーは2*E*R 不足しているため共鳴吸収が起きない.

しかし,固体の場合には原子は互いに強く結合しているので,反跳エネルギー は固体全体で受け止められる. 従って,(A.1.1)式の*M*として固体全体の質量 を代入すればよいから,*E*^Rは無視出来る. これが無反跳核 γ 線共鳴,即ちメ スバウアー効果が起きる原因である.

メスバウアー核には, ⁵⁷Fe, ¹¹⁹Sn, ¹⁹⁷Au, ----など多数あるが, 最もよく 用いられるのは⁵⁷Feである. そこで, 具体例として⁵⁷Feについて述べる.

図A-1 ⁵⁷Feの崩壊図式¹⁾

⁵⁷Feの親核種として用いられるのは⁵⁷Coである. ⁵⁷Coは図A-1に示したよう に 270日の半減期で大部分は軌道電子捕獲(EC)壊変により⁵⁷Feの第二励起準位に なる. この第二励起準位の 9%は直接基底準位に遷移するが,残りの91%は第 一励起準位に遷移した後,約 10⁻⁷sec の平均寿命で基底準位に遷移する. メ スパウアー効果に用いられるγ線は,この第一励起準位から基底準位に遷移する ときに放出される14.4keV のγ線である. ただし,この遷移の際,γ線が放出 される確率は,内部転換のためγ線の替わりに核外電子が放出される確率よりず っと小さい. この遷移に対するγ線の放出の割合を 1/(1 + α) と書く. ここで,αは内部転換係数とよばれる.

図A-2 メスバウアー装置の模式図.

図A-2はメスバウアー装置の模式図である. ただし,吸収体には線源と同じ メスバウアー核種がなければならない. 線源の部分に,吸収体に対して速度が 連続的に変わるような往復運動をさせることにより,放出される y 線のエネルギ ーをドップラーシフトさせる. そして,吸収体を通過してきた y 線を検出器 (プロポーショナルカウンターなど)で検出する. 検出器で光子のエネルギー をパルスの高さに変換した後,増幅器でパルスの高さを増幅する. 線源からは メスバウアー用 y 線 (⁵⁷Feでは14.4keV) 以外の放射線も出ているから,シング ルチャンネルアナライザー(SCA)でメスバウアー用 y 線に対応した高さのパ ルスのみ検出する. シングルチャンネルアナライザーからのパルスをマルチチ ャンネルアナライザーのMCSモード(一定の速度でチャンネル番号が進行し, パルスの数がそれぞれの時刻に従って各チャンネルに記憶されるモード)で,線 源の速度に対応した番号のチャンネルに加算して行くとスペクトルが得られる. なお,線源を動かす波形には正弦波駆動,放物線駆動,三角波駆動,ノコギリ波 駆動などがあるが,図A-2に示したような三角波駆動が最も多く用いられる. 次にこのような装置で得られる一本のスペクトルの形について述べる.

図A-3 γ線による原子核の共鳴吸収。

図A-3において, E。とE。はそれぞれ線源の励起状態と基底状態のエネルギー準位, E。'とE。'はそれぞれ吸収体の励起状態と基底状態のエネルギー準 位である. 速度 v で動いている線源から無反跳で放出された y 線のエネルギー Ey'はドップラーシフトしているから次式で書ける.

 $E_{\gamma}' = (E_{e} - E_{g})(1 + v/c)$ (A.1.2)

ドップラーシフトした放出 y 線のスペクトル $I_s(E)$ は E_y 'を中心とするローレンツ形, 即ち

-109-

$$I_{\rm s}(E) \propto \frac{\Gamma^2 / 4}{(E - E_{\rm Y}')^2 + (\Gamma/2)^2}$$
 (A.1.3)

である. ただし, Γは自然幅である.

エネルギー Eのγ線と吸収体のメスバウアー核が相互作用して共鳴吸収する断 面積σ(E)は、吸収体のメスバウアー核も線源と同じ核種であるから、同じ半 値幅Γのローレンツ形で次式で書ける.

$$\sigma(E) = \frac{\sigma_0 \Gamma^2 / 4}{(E - E_0)^2 + (\Gamma / 2)^2}$$
(A.1.4)

ここで、 $E_0 = E_e' - E_g'$ と定義した. また、 σ_o は

$$\sigma_{0} = 2\pi \lambda^{2} \frac{2I_{e} + 1}{2I_{e} + 1} \frac{1}{1 + \alpha}$$
(A.1.5)

である. ただし, *I* と *I* はそれぞれ励起状態と基底状態の核スピン, λは γ線の波長, αは内部転換係数である.

 $\epsilon \epsilon \epsilon = E_{y}' - E_{o}$ と定義すると、 ϵ は線源の速度vと

 $\varepsilon = (E_e - E_s) v/c + \text{Constant}$ (A.1.6)

の関係がある. 吸収体を通過してきた γ 線の ϵ についてのスペクトルの形を $R(\epsilon)$ とすると、 $R(\epsilon)$ は(A.1.3)式と(A.1.4)式を用いて次式で書ける.

$$R(\epsilon) = -\int_{-\infty}^{\infty} \{\exp(-\frac{T_{a} \Gamma^{2} / 4}{E^{2} + \Gamma^{2} / 4})\} \frac{\Gamma^{2} / 4}{(E - \epsilon)^{2} + \Gamma^{2} / 4} dE \quad (A.1.7)$$

ただし, T。は吸収体の有効厚みで, σ。とメスバウア-核のγ線透過方向に垂

-110-

直な単位面積当たりの存在量na と吸収体での核の無反跳分率faを用いて

$$T_{\mathbf{a}} = \sigma_{\mathbf{0}} \quad n_{\mathbf{a}} \quad f_{\mathbf{a}} \tag{A.1.8}$$

と定義した. (A.1.7)式は、ドップラーシフトしたローレンツ形のスペクトル *I*_s(*E*)を持つ放出γ線が有効厚み*T*_aの吸収体を通過する際、同じ半値幅*Γ* を持つローレンツ形の吸収体の核の励起準位との重なりの程度に応じて、指数関 数的に吸収される割合を、全エネルギー領域について積分したものである.

(A.1.7) 式を計算すると、 $R(\epsilon)$ は $T_a \leq 10$ の場合、ローレンツ形に極め て近いことがわかる²⁾. 従って、そのスペクトルの半値幅を Γ_{exp} とすると次 式で書ける.

$$R(\varepsilon) \propto \frac{(\Gamma_{exp}/2)^2}{\varepsilon^2 + (\Gamma_{exp}/2)^2}$$
(A.1.9)

ただし, Γ_{exp} は $T_a \leq 5$ のとき

$$\Gamma_{\rm exp} = 2\Gamma + 0.27\Gamma T_{\rm a} , \qquad (A.1.10)$$

 $4 \leq T_a \leq 10$ のとき

 $\Gamma_{exp} = 2.02 \Gamma + 0.29 \Gamma T_{a} + 0.005 \Gamma T_{a}^{2}$ (A.1.11)

と近似できる²⁾.

このように,理想的な場合の吸収曲線はローレンツ形になる. また,吸収線 が複数の場合には,各々の吸収曲線がローレンツ形になる. しかし,実際の場 合には,線源や吸収体のメスバウアー核のおかれた物理化学的環境が均一でなか ったり,装置の誤差などのためガウス形に近い吸収曲線になることもある. 第2節 無反跳分率

吸収体が固体の場合, γ線とフォノンが相互にエネルギーをやりとりする. エネルギーをやりとりしない確率を無反跳分率 faと定義する. γ線の波数を k, 核(原子)の変位のγ線の進行方向の成分をx と表すと, γ線(光子)と核の相 互作用ハミルトニアンはe^{i kx} に比例している. 従って, faは次のように書け る^{3,4)}.

 $f_{\mathbf{a}} = \langle |\langle L_i | e^{i k \times} |L_i \rangle|^2 \rangle_T$

$$= \exp\left(-4\pi^{2} \langle x^{2} \rangle_{T} / \lambda^{2}\right)$$
(A.2.1)

ただし、 $|L_i \rangle$ は格子の振動状態、 $\langle \rangle_{T}$ は温度 *T*での熱平均、 λ は γ 線の波 長を表す. ここで、 $k=2\pi/\lambda$ の関係を用いた. なお、(A.2.1) 式は X線 回折におけるデバイワーラーの温度因子と同じ形である.

 $\langle x^2 \rangle_r$ はアインシュタイン模型では次式で書ける.

$$\langle X^2 \rangle_T = \frac{\hbar}{M \,\omega_E} \left\{ \frac{1}{2} + \frac{1}{\exp(\hbar \,\omega_E / k_B T) - 1} \right\}$$
 (A.2.2)

ただし、 k_{B} はボルツマン定数、 ω_{E} と \hbar はそれぞれアインシュタイン振動数 ν_{E} とプランク定数 \hbar を用いて ω_{E} = $2\pi \nu_{E}$, \hbar = $\hbar/2\pi$ と定義される. (A.2.2) 式を(A.2.1) 式に代入すると f_{a} は

$$f_{a} = \exp\{-\frac{2E_{R}}{k_{B} \Theta_{E}} \left(\frac{1}{2} + \frac{1}{e^{\Theta_{E}/T} - 1}\right)\}$$
(A.2.3)

となる^{4,5)}. ただし, $\Theta_{\rm E}$ は $\Theta_{\rm E} = \hbar \omega_{\rm E} / k_{\rm B}$ で定義されるアインシュタインの特性温度である.

また,同様にしてデバイ模型では

$$f_{a} = \exp\left[-\frac{3E_{R}}{2k_{B}\Theta_{D}}\left\{1 + 4\left(\frac{T}{\Theta_{D}}\right)^{2} \int_{0}^{\Theta_{D}} \frac{T - udu}{e^{u} - 1}\right\}\right]$$
(A.2.4)

となる^{4,5)}. ただし, 𝒫₀はデバイ温度である. 従って, いずれの模型で も, 無反跳分率は 𝒫₅や 𝒫₀が大きいほど, 温度 Tが低いほど, そして原子の反跳 エネルギー 𝗛 が小さいほど大きくなる.

無反跳分率の算出には線幅法と面積法があるが、線幅は一般に誤差が大きいの で線幅法は特殊な場合以外用いられない. 一方、面積法はよく用いられ、スペ クトルが一本のローレンツ形の場合には、

$$A = \frac{\pi}{2} f_{\rm s} \Gamma L (T_{\rm a}) \tag{A.2.5}$$

の関係と(A.1.8)式から試料(吸収体)の無反跳分率faが求まる⁶⁾. ただし, Aはスペクトルの面積,fsは線源の無反跳分率, 「は理想的には自然幅を表し, Taは吸収体の有効厚み,L()は図A-4で示した飽和関数である. 図A-4か らわかるように,Taが約 0.5以下ならばL(Ta)をTaで置き換えるという近 似をしてもよい場合が多い. 従って,この場合には,スペクトルの面積は吸収 体の無反跳分率に比例するとしてよい.

図A-4 有効厚みT。と飽和関数L(T。)の関係⁶⁾.

スペクトルが複数のローレンツ形のピークからなる場合には, 無反跳分率は (A.2.5) 式を一般化した次の関係によって求まる⁶⁾.

$$A_{i} = \frac{\pi}{2} f_{s} \Gamma_{i} L_{i} (T_{i})$$
 (A.2.6)

ただし, A_i はスペクトルの i番目のピークの面積, f_s は線源の無反跳分率, Γ_i は理想的には自然幅をあらわし, T_i は吸収体の有効厚み T_a に i番目のピ ークの示すべき割合をかけたものである. 即ち, $T_a = \sum_i T_i$ となる. 一本の場合と同様な理由で, T_i が約 0.5以下ならば, スペクトルの面積は吸収 体の無反跳分率に比例するとしてよい場合が多い. 第3節 スペクトルの超微細構造

3-1 異性体シフト (Isomer Shift)

メスバウアー核の位置で、核と電子との静電気相互作用が線源の場合と吸収体の場合で異なるため、アイソマーシフトδが生ずる. 四極子分裂やZeeman分裂がない場合には、δは図A-3において、

$$\delta = (E_{e}' - E_{g}') - (E_{e} - E_{g})$$
(A.3.1)

によって定義される. (A.3.1)式は,原子核の領域内に正電荷が均一に分布していると仮定すると,

$$\delta = -\frac{2}{5}\pi Z e^{2} (Re^{2} - Rg^{2}) \{ |\psi_{A}(0)|^{2} - |\psi_{S}(0)|^{2} \}$$
(A.3.2)

と計算される⁷⁾. ただし, e は素電荷, Zは核の原子番号, R_{e} と R_{s} はそれ ぞれ励起状態と基底状態の核半径, $| \phi_{s}(0) |^{2}$ と $| \phi_{A}(0) |^{2}$ はそれぞれ線源 と吸収体の核の位置での電子密度である.

3-2 四極子分裂

メスバウアー核の回りの電荷分布に偏りがあると電場勾配が出来るから,核と 電場勾配とが四極子相互作用(Quadrupole Interaction)を行なう. 核の四極子 相互作用のHamiltonian H_Qは

$$\hat{H}_{Q} = \frac{eQV_{zz}}{4I(2I-1)} \left[3\hat{I}_{z}^{2} - \hat{I}^{2} + \eta \left(\hat{I}_{+}^{2} + \hat{I}_{-}^{2}\right)/2\right]$$
(A.3.3)

となる⁸⁾. ここで eQは核の電気四極子モーメント、 V_{zz} は電場勾配のz成 分、 \hat{I} は核のスピン、 \hat{I}_z は核のスピンの z成分の演算子、 \hat{I}^2 は核のスピンの 2乗の演算子、 \hat{I}_z と \hat{L} は核のスピンの昇降演算子である. また、 η は

$$\eta = (V_{xx} - V_{yy}) / V_{zz}$$
(A.3.4)

である. ただし, *x*,*y*,*z* 方向は電場勾配テンソル(EFG tensor)の主軸方 向で,

 $|V_{xx}| \ge |V_{yy}|, |V_{xx}| \ge |V_{xx}|$ (A.3.5)

となるように定義される.

具体例として,⁵⁷Feでは電場勾配があるとき図A-5(a) に示すように,励起状態 (*I* = 3/2) は二つのエネルギー準位に分裂し,基底状態 (*I* = 1/2)は分裂しない. 従って,図A-5(b)⁷⁾に示すように二重分裂のスペクトルが得られる.

図A-5 四極子分裂とメスバウアースペクトル⁷⁾.

3-3 磁気双極子分裂

核の位置での磁場により、核のエネルギー準位は Zeeman 分裂する. スピン *I*,磁気量子数*M*の核のエネルギー準位を*E*_{IM}とすると次式で書ける.

$$E_{IN} = -g_N \beta_N H M \tag{A.3.6}$$

ただし、 g_N は核の g因子、 β_N は核磁子、Hは磁場である. 5^7 Feの場合には、図A-6(a)のように励起状態が4つ、基底状態が2つに分裂する. しか

し,*M*の変化が 0または±1 という選択則によって6つの遷移のみが許される. 従って,メスバウア-スペクトルは図A-6(b)⁷⁾のように6本線となる.

図A-6 磁気双極子分裂とメスバウアースペクトル").

図A-7 磁気双極子分裂と四極子分裂が共存する場合のメスバウアースペクト ル⁷⁾.

Zeeman分裂と電気四極子分裂が共存する場合,一般的に内部磁場によるZeeman

分裂は電気四極子分裂よりも大きく、その場合、磁場Hと電場勾配主軸 ($eq = V_{xx}$)とのなす角を θ とするとエネルギー準位は

$$E_{IM} = -g_N \beta_N H M + (-1)^{|M|+1/2} \frac{e^2 q Q}{4} \frac{3\cos^2 \theta - 1}{2}$$
(A.3.7)

となる(図A-7(a)参照). 従って,この場合には,一般的に内側の4本と外側の2本の位置がずれる. この様子を図A-7(b)⁷⁾に示した.

3-4 偏極効果(Polarization Effect)

電場勾配や磁場があって原子核からγ線が放射吸収される場合,その強度には 方向依存性がある. すなわち,それぞれの遷移における磁気量子数の変化によ って,γ線が放射吸収されやすい方向がある. 例えば吸収される場合,吸収体 の磁化方向とγ線の進む方向が同じz軸方向とすると,光子のスピンはz軸方向 に対して±1 *h* であるから,角運動量保存則より核の磁気双極子モーメントの*z* 成分の変化を伴う吸収だけが起きる. すなわち,核の磁気量子数が±1/2 ⇒± 3/2,±1/2 ⇒∓1/2 の遷移だけが起き,±1/2 ⇒±1/2 の遷移は起きない. 従って,スペクトルの6本線は,最も外側の2本と最も内側の2本の4本線とな る.

より詳しい理論⁹⁾によれば、 y 線の進む方向が磁場となす角度を θ とすると、 6本線の強度比は 3:4/(1 + cot² θ):1:1:4/(1 + cot² θ):3 となる. 従っ て,吸収体が y 線と平行に磁化している場合,6本線の強度比は3:0:1:1:0:3 で あり,垂直に磁化している場合の強度比は 3:4:1:1:4:3である. また,吸収体 の磁区の磁化方向が完全に乱れている場合の強度比は 3:2:1:1:2:3である. 第4節 2次のドップラーシフト

相対性理論を考慮したドップラー効果では,ドップラーシフトした γ 線のエネ ルギー *E*, , は

$$E_r = \frac{E_r}{\sqrt{1 - (v/c)^2}} \{1 + (v/c)\}$$

 $= E_r \{1 + (v/c) + (1/2)(v/c)^2 + \dots \}$ (A.4.1)

となる. ただし, E_r はドップラーシフトする前の γ 線のエネルギーである. (A.4.1) 式の 2 次以上の項は, メスバウアー装置の線源の駆動速度に対しては無 視できるが, 格子振動では無視できない. 格子振動の場合, 核の励起状態の寿 命の間に (A.4.1) 式の 1 次の項は平均化されてゼロになるが, 2 次の項はシフト を与える. これを 2 次のドップラーシフトという. 従って, 2 次のドップラ ーシフト ΔE_p は次式で書ける^{10,11)}.

$$\Delta E_{\rm D} = \frac{E_r}{2} \frac{\langle v^2 \rangle}{c^2} \tag{A.4.2}$$

ただし、 <v² > は核の励起状態の寿命の間にわたって原子の速度の二乗を平均 したものである. (A.4.2) 式より2次のドップラーシフトは、原子の運動エ ネルギーの平均値に比例するので、温度が上昇するにつれて増加し、高温では一 般的にアイソマーシフトと同じ程度になる. 第5節 緩和現象とメスバウアースペクトル

核の歳差運動の周期τ_Lに比べて磁場の方向の変動がきわめて速い場合には, 核は時間的に平均化された磁場を感じる. 例えば,常磁性体では電子スピンに よる有効磁場の時間平均がゼロであるので磁気的分裂がない. その逆に磁場 方向の緩和時間τがτ_Lよりはるかに大きい場合には,核は静止磁場と感じるの で,スペクトルは磁場の大きさに比例して分裂する. また,緩和時間がτ_Lの 程度の場合には,核は不完全に平均化された磁場を感じるので,スペクトルの吸 収線の幅が広くなる. これらの現象はNMRにおける motional narrowing, 即ち2本のローレンツ形の吸収曲線が緩和時間の減少とともにその中心で1本の 吸収曲線になる現象と同等である.

ここで、メスバウアースペクトルの6本線の内、磁場の反転で対称な任意の2本(例えば、最も外側の2本)について考察する. 核にかかる磁場の正方向の緩和時間を τ_1 、負方向の緩和時間を τ_2 とし、磁場が正方向に向いて静止しているときのそれぞれの吸収線の位置を $\omega = \pm \delta$ とする. このとき $\omega = \delta$ の位置にあった吸収線を $I_{-\delta}(\omega)$ とすると, $I_{+\delta}(\omega)$ は次式で書ける¹²⁾.

$$I_{+\delta}(\omega) = \operatorname{Re}\{WA^{-1}1\}$$
 (A.5.1)

ただし, W, A, 1は

$$W = (W_1, W_2) = (\frac{\tau_1}{\tau_1 + \tau_2}, \frac{\tau_2}{\tau_1 + \tau_2})$$

$$A = \begin{bmatrix} i(-\omega + \delta) - \Gamma/2 - 1/\tau_{1} & 1/\tau_{1} \\ 1/\tau_{2} & -i(\omega + \delta) - \Gamma/2 - 1/\tau_{2} \end{bmatrix}$$

$$1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
(A.5.2)

である. ここで, W₁ と W₂は, それぞれ磁場が正と負の方向を向く確率, *Г* は自然幅である. (A.5.2)式の関係を(A.5.1)式に代入すると

$$I_{+\delta}(\omega) \propto \operatorname{Re} \left\{ \frac{2i(\omega'+\eta \,\delta) + 4/\tau}{(\delta^2 - \omega'^2) + 2i(\omega'-\eta \,\delta)/\tau} \right\}$$
(A.5.3)

となる. ただし、 $\omega' = \omega - i\Gamma/2$,また、

 $\eta = (W_1 - W_2) / (W_1 + W_2) = (\tau_1 - \tau_2) / (\tau_1 + \tau_2),$

 $\frac{2}{\tau} = \frac{1}{\tau_{1}} + \frac{1}{\tau_{2}}$

である. (A.5.3)式によれば $\tau \ll \delta$ の場合には, $I_{+\delta}(\omega)$ は $\omega = \eta \delta$ の 位置 で 1 本の吸収線になる. また, $I_{-\delta}(\omega)$ も同様にして, $\omega = -\eta \delta$ の 位置で 1 本の吸収線になる. 結局 $\omega = \pm \eta \delta$ の 位置に 2 本の吸収線ができる. この ことは 直感的にいえば, 核にかかる 磁場 Hが η Hに減少したのと同等である. 特 に, $\tau_1 = \tau_2$ の 場合には, $\omega = 0$ の 位置で 1 本の吸収線になる. この 場合 は 磁場 が ないの と同等である.

これらのことの具体例として,核(57 Fe)にかかる磁場(H = 550k0e)が正負 同じ緩和時間の場合,様々な大きさの緩和時間についてのメスバウアースペクト ルを図A-8¹³⁾に示す. この図によれば, $\tau \gg \tau_L \sim 10^{-8}$ sec で普通の6本 のローレンツ曲線であるが, $\tau \approx \tau_L$ で幅の広い6本線となり, $\tau \ll \tau_L$ で内部 磁場ゼロに相当するローレンツ形の一本線になっている. また,一本線への変 化は中心に近いピークから先に起きることがわかる.

図A-8 核(⁵⁷Fe)にかかる磁場 H= 550k0e が正負同じ緩和時間の場合,様 々な大きさの緩和時間についてのメスバウアースペクトル(各成分ピ ークと全スペクトル)¹³⁾.

第6節 本研究で用いたメスバウアー装置

本研究で主に用いたメスバウアー装置はエルシント社のAME-50 である. AME-50 はMASTER FUNCTION GENERATOR MODULE (MFG-N5), DRIVER/GENERATOR MODULE (MDF-N-5), トランスデューサー(MVT-3) で構成されている. また, マルチチャンネルアナライザー (MCA) もエルシント社のプロメダで, これに はシングルチャンネルアナライザー(SCA) も内蔵されている.

図A-9 本研究で用いたメスバウアー装置(Elscint社)の模式図.

図A-9に示したのは本研究で用いたメスバウアー装置の模式図である. MFG-N5は波形を発生し,それをMDF-N5に入れると共に,線源の速度にプロメダの M C S モードでのチャンネル番号を対応させるため,パルスを数え始める合図の start 信号とチャンネル番号を進めるclock 信号をプロメダに送る. MDF-N5 は,MFG-N5で発生した波形に従ってMVT-3 の線源の部分を動かす. 従って,線源から放出される y 線のエネルギーは,線源の速度に対応したドップラーシフ トをしている.

吸収体(試料)を通過してきた γ線は検出器(プロポーショナルカウンター) で検出される. 検出器では,光子のエネルギーをパルスの高さに変換する. 検出器からのパルスは二つの増幅器(PREAMP.と MAIN AMP.)で増幅された後, プロメダに入る. プロメダにはシングルチャンネルアナライザーも内蔵されて いるので, PHAモード(パルスの高さを,その高さに比例したチャンネル番号 に記憶させるモード)で予めメスバウアー用 y 線(⁵⁷Feでは14.4 keV)に対応し た高さを持つパルスのみを数えるように設定しておく. そのパルスの数をMC Sモードで線源の速度に対応した番号のチャンネルに加算していく. このと き,各チャンネルに蓄積されたカウント数が多いほどS/N 比の高いスペクトルが 得られる. その後,プロメダに貯えられたデーター(各チャンネルに蓄積され たカウント数)をパーソナルコンピュータを通じてフロッピイディスクに入れ る.

なお,線源を動かす波形は,本研究の初期には別の装置(島津製作所)でノコ ギリ波を用いたことがあるが,この装置では三角波を用いた. また,実験デー ターの解析は主に大型コンピュータで行なった. 図A-10 はこれらの装置の写 真である.

図A-10 本研究で用いたメスバウアー装置.

第7節 実験データの解析方法

本節ではメスパウアー効果の測定値の解析方法について鉄を例として具体的に 述べる. ここで用いた鉄はNENから購入したメスパウアー効果用標準鉄フォ イルで、⁵⁷Feの面積密度が0.1mg/cm²のものである. 測定は前節で述べたよう にエルシント社のAME-50 で行った. 測定値の解析は最小2乗法を用いて 6本のローレンツ曲線に合わせる. このためのプログラムは多数あるが、図A -11 に示すのは「MSB2B」¹⁴⁾ と名付けられたプログラムを用いた室温での 測定値の解析結果の一部である.

PARAMETER NUMBERの1番はバックグラウンドのカウント数,2~4番はピーク の面積,5~7番はピークの半値幅,8~13番がチャンネル番号で表したピー クの位置, INTENSITY がそれぞれのピークの高さである. ただし,鉄のスペ クトルの6本線の高さと半値幅に関して,1番目と6番目,2番目と5番目,3 番目と4番目のピークの高さと半値幅がそれぞれ等しいという条件を入れて解析 した. これらの誤差に関してはそれぞれのSTANDARD DEVIATIONに示されている ように,ピークの位置の誤差は面積のそれに比べて極めて小さい. 従って,解 析によるピークの位置の誤差は無視してよい. ピークの位置に誤差が生づるの は,線源を動かす速度の誤差と,線源と吸収体の中心を結ぶ線が線源の運動軸に 完全には平行になっていないためである. また,INTENSITY の比は3:2:1:1:2: 3 からずれているが,これは主に飽和効果によるものである.

試料の無反跳分率やデバイ温度については相対面積強度(面積をバックグラウンドで割った値)の温度変化から得るのが最も簡単で確実な方法である. 例えば上記の鉄について,最も誤差の少ない外側のピークを用いてデバイ温度を求めてみる.

温度 *T*での1番目のピークの相対面積 *A*₁ (*T*) は(A.2.6) 式から次式が成立 つ.

$$\frac{A_1(T)}{A_1(78)} = \frac{L(T_1(T))}{L(T_1(78))}$$
(A.7.1)

,

CHANNEL NUMBER

CHANNEL NUMBER OF THE WORST DATA POINT IS 214 CHI-SQUARED FOR 500 CHANNELS AND 13 PARAMETERS IS 1.0810589 THE PROBABILITY FOR WHICH CAN BE CALCULATED BY USING AR= 0.1256267E+01

PARAMETER NUMBER	PAR	AMETER		STANDARD	DEVIATION	
1	0.15011	29E+06		0.2	216477E+02	
2	-0.19050	17E+06		0.1	757131E+04	
3	-0.13294	68E+06		0.1	744360E+04	
4	-0.77207	15E+05		0.16	593335E+04	
5	0.27341	21E+01		0.3	388699E-01	
6	0.27028	36E+01		0.48	300434E-01	
7	0.27837	13E+01		0.8-	111768E-01	
8	0.15945	61E+03		0.32	222882E-01	
9	0.19991	01E+03		0.46	506072E-01	
10	0.24053	62E+03		0.84	16181E-01	
· 11	0.27113	95E+03		0.84	20679E-01	
. 12	0.31182	82E+03		0.46	509248E-01	
13	0.35237	44E+03		0.32	223923E-01	
TOTAL AREA	STAN	DARD D	EVIATION			
-0.8013113E+06		0.648	4870E+04			
LINE NUMBER	INT	ENSITY		STANDARD	DEVIATION	
1	-0.22178	46E+05		0.18	314448E+03	
2	-0.15656	98E+05		0.18	364683E+03	
3	-0.88284	23E+04		0.18	81090E+03	
4	-0.88284	23E+04		0.18	81090E+03	
5	-0.15656	98E+05		0.18	64683E+03	
6	-0.22178	46E+05		0.18	14448E+03	
LINE NUM. POSITION	ERROR LI	NE NUM	. POSITION	ERROR	DIFFERENCE	ERROR
1 159.4561	0.0322	2	199.9101	0.0461	-40.4539	0.0562
1 159.4561	0.0322	3	240.5362	0.0842	-81.0801	0.0901
1 159.4561	0.0322	4	271.1395	0.0842	-111.6834	0.0902
1 159.4561	0.0322	5	311.8282	0.0461	-152.3721	0.0562
1 159.4561	0.0322	6	352.3744	0.0322	-192.9183	0.0456
2 199.9101	0.0461	3	240.5362	0.0842	-40.6262	0.0959
2 199.9101	0.0461	4	271.1395	0.0842	-71.2295	0.0960
2 199.9101	0.0461	5	311.8282	0.0461	-111.9181	0.0652
2 199.9101	0.0461	6	352.3744	0.0322	-152.4643	0.0562
3 240.5362	0.0842	4	271.1395	0.0842	-30.6033	0.1189
3 240.5362	0.0842	5	311.8282	0.0461	-71.2920	0.0960
3 240.5362	0.0842	6	352.3744	0.0322	-111.8381	0.0901
4 271.1395	0.0842	5	311.8282	0.0461	-40.6887	0.0960
4 271.1395	0.0842	6	352.3744	0.0322	-81.2349	0.0902
5 311.8282	0.0461	6	352.3744	0.0322	-40.5462	0.0562

図A-11 「MSB2B」による室温(298 K)の鉄フォイルの解析結果. グラフの点線は実験値,実線は理論曲線である. 吸収体の有効厚みはTaは(A.1.8)式で書けるからT1は

$$T_{1} = T_{a} \neq 4$$

= ($\sigma_{0} \quad n_{a} \neq 4$) f_{a}
= 0.676 f_{a} (A.7.2)

となる. ただし, σ₀ = 2.56×10⁻¹⁸ cm², n_a = 1.0565×10¹⁸/cm² を代入 した. ここで, 飽和関数は次式で近似する.

$$L (T_1) = 0.968 T_1 - 0.154 T_1^2 - 0.012 T_1^3$$
(A.7.3)

また, $f_a(T)$ はデバイ模型では(A.2.4)式で表されるから,デバイ温度 Θ_D は (A.7.1)式右辺を直接検索法(Θ_D を小刻みに変えて実験値との誤差が最小にな る Θ_D を探すプログラム)で実験値と合わせることにより得ることができる. 鉄フォイルについて, $A_1(T) / A_1$ (78)の実験値を表A-1に示した.

表A-1 A1(T)/A1(78)の各温度での値.

温度	78 K	125 K	177 K	222 K	298 K
$A_{1}(T)/A_{1}(78)$	1.000	0.980	0.955	0.934	0.889

これらの値から直接検索法を用いて得られた結果を図A-12 に示した. デバ イ温度は1度刻みで変えて求めた(図のOKURI とITERATION 参照). だだし, A(1)はデバイ温度,F はそのときの誤差を示す. 誤差が最小になるのは,デバ イ温度 Θ_D の値が437 Kのときであることがわかる(図のSOLUTION参照). こ の値は熱伝導度の測定から得られた値470 K¹⁵⁾ に近い. また,図のFA(0) は O Kにおける鉄の無反跳分率 f_a(0)の値である. 他の温度における無反跳分率 f_a(T)の値は, (A.2.4)式に Ø_D の値を代入すると容易に得られる. 表A-1 の値とそれに対する理論曲線は図中にグラフで示した.

 図A-12 表A-1の値を用いた直接検索法のプログラムによる鉄のデバイ温度の 解析結果. (O)と実線はそれぞれ表A-1の値と Ø_D = 437 Kに対 する理論曲線.

参考文献(A)

- 1) 佐野博敏:メスバウアー分光学 (講談社,東京, 1972) p.41
- 2) 佐野博敏:メスバウアー分光学 (講談社,東京,1972)p.99.
- 3) 佐野博敏:メスバウア-分光学 (講談社,東京,1972)p.289.
- V. I. Goldanskii and E. F. Makarov: Chemical Applications of Mössbauer Spectroscopy, eds. V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968)p.24.
- 5) 佐野博敏:メスバウアー分光学 (講談社,東京,1972)p.82.
- 6) G. Lang: Nucl. Instr. Methods, 24(1963)425.
- 7) 佐野博敏:メスバウアー分光学概論 (講談社,東京,1975)p.39.
- 8) 佐野博敏:メスバウア-分光学 (講談社,東京,1972)p.118.
- 9) V. I. Goldanskii and E. F. Makarov: Chemical Applications of Mössbauer Spectroscopy, eds. V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968)p.74.
- 10) R. V. Pound and G. A. Rebka, Jr.: Phys. Rev. Letters, 4(1960)274.
- 11) B. D. Josephson: Phys. Rev. Letters, 4(1960)341.
- 12) R. A. Sack: Mol. Phys. 1(1958)163.
- 13) H. W. Wickmann and G. K. Wertheim:Chemical Applications of Mössbauer Spectroscopy, ed. V. I. Goldanskii and R. H. Herber (Academic Press, New York, 1968)p.582.
- 14) B. L. Chrisman and T. A. Tumolillo: COMPUTER ANALYSIS OF MÖSSBAUER SPECTRA (Technical Report No.178,1969)
- 15) C. Kittel: Introduction to Solid State Physics (John Wiley, New York, 1976) p.126

発表論文

- M. Hayashi, <u>I. Tamura</u>, Y. Fukano, S. Kanemaki and Y. Fujio: Mössbauer effect study of lattice vibration of fine particles of iron.
 - J. de Physique, Suppl. (1979)C2-661 C2-662
- M. Hayashi, <u>I. Tamura</u>, Y. Fukano, S. Kanemaki and Y. Fujio: Mössbauer effect study of lattice vibration of small iron particles.
 - J. Phys. C, 13(1980)681-688
- 3) M. Hayashi, <u>I. Tamura</u>, Y. Fukano and S. Kanemaki: Effect of the motion of particles on the Mössbauer effect in small iron particles. Physics Letters, 77A(1980)332-334
- M. Hayashi, <u>I. Tamura</u>, Y. Fukano and S. Kanemaki: Mössbauer effect in small iron particles. Surface Science, 106(1981)453-458
- 5) <u>I. Tamura</u> and M. Hayashi: Mössbauer effect study of internal magnetic field in small iron particles. J. Mag. and Mag. Mat., 31-34(1983)945-946
- 6) <u>I. Tamura</u> and M. Hayashi: Mössbauer effect in the oxide surface layer on iron microcrystals and an interpretation of the spectrum. Surface Science, 146(1984)501-510

7) M. Hayashi, <u>I. Tamura</u> and H. Sakai:

Low frequency vibrational modes in sintered small metal particles studied by Mössbauer spectroscopy. Japanese J. of Appl. Phys., 25(1986)L905-L908

- 8) M. Hayashi, <u>I. Tamura</u>, O. Shimomura, H. Sawamoto and H. Kawamura: Antiferromagnetic transition of fayalite under high pressure studied by Mössbauer spectroscopy. Phys. Chem. Minerals, 14(1987)341-344
- 9) <u>I. Tamura</u> and M. Hayashi: Magnetic interactions among closely packed γ-Fe₂O₃ microcrystals studied by Mössbauer spectroscopy. J. Mag. and Mag. Mat., 72(1988)285-294