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Chapter 1. Background

The Kyoto Protocol and small-footprint airborne LiDAR
remote sensing

The Kyoto Protocol was adopted at the Third Conference Of the
Parties (COP3) of the United Nations Framework Convention on
Climate Change (UNFCCC) in 1997. The protocol calls for Annex
I Parties (industrialized countries who have historically
contributed the most to climate change) to limit or reduce their
carbon equivalent emissions of greenhouse gases (GHGs) by 5.2%
of their 1990 levels in the first commitment period (2008-2012)
(Yamagata et al. 2001; Peter 2004; Gundimeda 2004). In the
protocol, Japan committed itself to decreasing mean average
carbon dioxide (CO.) emission levels to 1.155 billion tons, a 6%
decrease from the 1.229 billion tons CO. emitted in 1990
(Fyjisawa 2004). During the COP7 conference, UNFCCC allowed
Japan to sink 13 million tons carbon (or 47.67 million tons COs, 3.9
% of the gross emission rate in 1999) in forest; a percentage
second only to that of Canada among Annex I states (Yamagata et
al. 2002). Although the Kyoto Protocol permits signatories to
employ carbon sinks, that is Article 3.3 and 3.4 activities, to
achieve their respective emission reduction targets during this
period, Annex I Parties are required to report emission by source
and removal by sinks of GHGs resulting from land use, and land-
use change and forestry (LULUCF) activities under Article 3.3
(afforestation (A), reforestation (R) and deforestation (D)), as well
as selected human-induced activities under Article 3.4 (forest
management (FM), revegetation (R), cropland management (CM),
and grazing land management (GM)) that have occurred since
1990 (IPCC 2004). Although one of the largest allocations for
carbon sink activities (3.9%) was endorsed to enable Japan to
achieve the proposed reduction targets (6%), there are still
numerous issues that need to be addressed regarding
implementation of mechanisms necessary to meet this challenge.
These include expanding the scope of FM, development of a
carbon accounting system that considers ARD activities as they
relate to FM activities and that can account for the amount of
carbon in carbon sinks, and to verify the efficiency of carbon sinks
(Yamagata ef al. 2002; Matsumoto 2005).

In the protocol, FM is defined as a system of practices for the
stewardship and use of forest land and is aimed at fulfilling the
relevant ecological (including biological diversity), economic and
social functions of a forest in a sustainable manner (IPCC 2004).
Consequently, the number of properly managed forests capable of
meeting these demands must be increased urgently in order to
secure a large carbon sink (Matsumoto 2005). The identification of
areas suitable for ARD and FM activities in a carbon accounting
system is likely to involve the application of remote sensing
techniques in carbon sink assessment. Such a system would have
to meet the needs of the Kyoto Protocol and beyond, since the

Kyoto Protocol mandates each country to report data on the
monitoring of carbon sink activities in a transparent and verifiable
manner for (Yamagata ef al. 2001). Peter (2004) states that recent
developments in remote sensing technology have increased the
potential of this tool to monitor and assess the earth’s surface, and
that satellite or airborne remote sensing, with increased
capabilities in terms of spatial, temporal and spectral resolution,
allow more efficient and reliable monitoring of the environment
over time at global, regional and local scales. Moreover,
Rosenqvist ef al. (2003) suggested that remote sensing is well
suited to quantify changes in the environment in relation to
LULUCF activities, and that a major benefit of applying remote
sensing data to calculations of emissions is that many systematic
observation systems are available and historical data archives
exist that can be augmented through current and future data
acquisitions.

To better facilitate the accounting of carbon sinks under
Article 3.3 and 3.4 in Japan, Matsumoto (2005) recommended
extensive use of forest registers and forest planning maps. This is
because Japan does not have much space to implement AR
activities and will thus have to depend mainly upon FM activities
as described in Article 3.4, instead of ARD activities under Article
3.3, to sink 13 million tons of carbon (Yamagata and Ishii 2001;
Matsumoto 2005). Consequently, detailed monitoring of FM
activities is likely to be dependent on the compilation of accurate
forest registers. Since forest registers and planning maps contain
information on the attributes and geographic location of individual
forest stands for the entire country, supplementing them with
information contained in management records has the potential
for accurate carbon sink assessments.

The development of a system for verifying the efficiency of
the carbon sink is one of the most significant issues that need to
be addressed. The Good Practice Guidance (GPG) for LULUCF
state that monitoring requires that provisions be made for quality
assurance (QA) and that quality control (QC) needs to be
implemented by means of a QA/QC plan. The plan should form
part of project documentation and cover the following procedures:
(1) collecting reliable field measurements; (2) verifying methods
used to collect field data; (3) verifying data entry and analysis
techniques; and (4) data maintenance and archiving. If after
implementing the QA/QC plan it is found that the targeted
precision level is not met, then additional field measurements
need to be conducted until the targeted precision level achieved. If
Japan implements carbon sink accounting relying principally on
the data contained in forest registers and planning maps, there
exists the likelihood of large uncertainties in estimates of
accounted carbon in the sink because of disparities between field
and forest register (Encyclopedia of Forest and Forestry 2001).
Therefore, especially for Japan, the verification system will need
to be both objective and accurate in accordance with QA/QC plan.
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Regarding the format of such a verification system, the GPG state
that remote sensing is useful for verifying both changes in living
biomass, and land use and land-use changes (IPCC 2004).

The two types of optical remote sensing sensors are currently
in use are passive and active optical sensors. The former records
naturally occurring electromagnetic radiation that is reflected or
emitted from the objects of interest, while the latter bathes the
objects in man-made electromagnetic energy and then records the
amount of radiant flux returning to the sensor system (Jensen
1996). The passive optical remote sensing sensors, such as
Landsat Thematic Mapper (TM) and Multi-Spectral Sensor
(MSS), and SPOT High Resolution Visible (HRV) are most
frequently used. Although a comprehensive discussion of remote
sensing instruments appears in Jensen (1996), optical remotely
sensed data from passive optical sensors are generally a result of a
complex series of interactions between the electromagnetic
radiation emitted by the sun that is reflected off the earth’s
surface and received by a sensor. In a forestry context, this
complex series of interactions is affected by factors such as optical
properties of the stand, spatial resolution (scale), stand object
relationship to scale and spatial aggregation (Wulder 1998).
Typically, passive optical sensors are only capable of providing
detailed 2-D spatial data in the horizontal plane distributions as
digital (or analog) optical imagery. This data, however, is not well
suited to the representation of vertical data such as the vertical
distribution of vegetation in forests. Wulder (1998) reviewed
various passive optical remote sensing systems and techniques for
the purposes of forest inventory and assessment of biophysical
parameters in detail. Lefsky ef al. (2001) evaluated alternate
remote sensing products for forest inventory and monitoring.
Although Leckie (1990) and Leckie e¢f al. (1995) stated that, while
current technological developments have facilitated greater
spectral and spatial resolution on a variety of platforms and that
this has enabled remote measurement of forest inventory
parameters, the collection of detailed and accurate information of
vertically distributed forest attributes, such as stand height and
volume, acquired with passive optical sensors is limited by the
technical capabilities of extant remote sensing instruments (St-
Onge et al. 2003). Consequently, passive optical remote sensing
techniques are considered most suitable for assessments of
specific forest areas and to manage ARD activities (Sekine of al.
2002) provided that ground reference data is available (IPCC
2004).

On the other hand, remote sensing techniques that generate
both horizontal and vertical (3-D) data is a promising and fast
growing field, and some techniques have proved more accurate
than spectral remote sensing for certain applications (Hyyppi ef
al. 2000; Lefsky et al. 2001). In recent years, the Light Detection
And Ranging (LiDAR) remote sensing technique, an active remote
sensing technique, has recently received considerable interest

owing to its ability to accurately measure the shape and height of
objects with a high special resolution. LiDAR is capable of
providing both horizontal and vertical information with feasible
sampling density that is dependent on the types and
configurations of LiDAR system (Lim ef @l. 2003). The most
remarkable attribute of LIDAR is that it does not receive the
reflectance spectra of objects as produced using passive optical
sensors, but rather, data is presented as the three coordinates (X,
Y, Z) of the objects of interest directly, accurately and precisely.
Particularly important is the ability of LiDAR to measure the
height of an object more accurately than is possible using passive
optical sensors (Kraus and Pfeifer 1998).

A LiDAR system typically consists of a platform (e.g.,
helicopter or aircraft) and a scanning laser sensor that measures
the roundtrip time for a pulse of energy to travel between the
sensor and a target. The elapsed time from when a laser is
emitted to when it intercepts with an object and then is registered
by the sensor can be measured using either (1) pulsed ranging,
where the travel time of laser pulse from a sensor to a target
object is recorded; or (2) continuous wave ranging, where the
phase change in a transmitted sinusoidal signal produced by a
continuously emitting laser is converted into travel time (Lim ef
al. 2003). The former and the later systems are referred to as
small-footprint and large-footprint LiDAR, respectively (Fig 1-1).
Here, footprint means the circular area on the surface of an object
that is covered by the laser at a moment in time and is
represented in Fig 1-1. Most modern small-footprint systems

small-footprint LiDAR

laser beam l

large-footprint LIDAR

>

1% pulse
2% pujse

3¢ pulse -

T 40 pulse -

footprint

5% pulse =

Fig 1-1. Differences between discrete return (small-footprint) and
waveform (large-footprint) vertical sampling. The 1* to 5
pulse points refer to the returning pulse. This figure is a
modification from Lim et al. (2003).
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(typically with a diameter less than 1 m) can discriminate between
multiple laser returns from the same laser pulse based on the
intensity and time of arrival (Hodgson ef al. 2003). Such discrete
LiDAR systems typically only record the occurrence of the first
and last returns from a series of returns corresponding to discrete
surfaces along the slant angle (St-Onge et al. 2003). The first and
last laser returns from the same laser pulse are referred to as the
first pulse and the last pulse, respectively. Knowledge of the
position of the sensor from the collected data using an onboard
Global Positioning System (GPS) and Inertial Navigation System
(INS), the distance from the sensor to a target, and the incident
angle of each laser pulse, means that the three coordinates (X, ¥,
Z) of objects reflected within a footprint can be easily calculated.
Small-footprint LiDAR remote sensing techniques have been
anticipated as potentially useful for reducing fieldwork such as for
estimating tree height (Means et al. 2000; Yamagata ef al. 2002).
Unlike the many small-footprint airborne LiDAR systems offered
by commercial operators (Evans ef al. 2001; St-Onge ef al. 2003),
the large-footprint (10-25 m) LiDAR systems that have been used
successfully in studies of forest characteristics (Means ef al.
1999), are only operated by large agencies such NASA and are not
available on a commercial basis.

Small-footprint airborne LiDAR remote sensing techniques
have shown considerable potential for detailed forestry
monitoring. The technique has been used for estimating mean
tree height since the mid 1980s, and has provided accurate canopy
height estimates. Initially, these fast small-footprint LiDAR
systems could only record reflections from a single track along a
flight path (Maclean and Krabill 1986; Nelsson ef al. 1988; Jensen
et al. 1987; Ritchie ef al. 1992, 1993; Rignot ef al. 1994), but the
development of scanning LiDAR sensors meant that both
horizontal and vertical information on forest structure could be
acquired. However, the fast scanning LiDAR systems where only
capable of low sampling rates and this caused large
underestimations of stand height because of failure to sample the
tops of canopy trees (e.g., Nilsson 1996; Naesset 1997a).
Subsequently, the sampling rate of small-footprint airborne LiDAR
systems has progressed enormously and the technology of
platform positioning has also greatly improved. Many of the recent
commercial small-footprint airborne LiDAR systems, as listed in
Baltsavias (1999b), have high sampling rates and the ability to
provide accurate 3-D coordinates (X, Y, Z) of objects and can
measure and estimate individual tree height, crown diameter,
stem diameter and stem volume - all significant factors for
estimating biomass - and can be used to account for carbon stock,
accurately in boreal coniferous forests with flat terrain and low
canopy closure (Hyypp4d and Inkinen 1999; Hyyppi ef al. 2001;
Persson et al. 2002). Consequently, if accurate and detailed forest
measurements and monitoring can be done in Japan by small-
footprint airborne LiDAR, we may be able to apply the technique

to checking the amounts of carbon stock accounted for in sinks on
regional scale in a transparent and verifiable manner in accordance
with QA/QC plan under the Kyoto Protocol. Airborne remote
sensing techniques can also reduce the costs and time associated
with conducting forest inventories compared to if it is done
completely by field crews on regional scale.

However, detailed research on the application of small-
footprint airborne LiDAR to forest measurements in Japan is
limited to the study of Yone ef al. (2002) for middle-aged Japanese
larch (Larix leptolepis) plantations in flat terrain, and Omasa et al.
(2003) for middle-aged sugi (Cryptomeria japonica D. Don)
plantations in flat terrain and low stand density (approximately
873 trees/ha). The forest areas for FM activities under the Kyoto
Protocol in Japan are likely to be mainly coniferous forests rather
than broad-leaved forests, because of the faster growth of the
former (Matsumoto 2001). Approximately 40% (ca. 10 million ha)
of the forested area (25 million ha) in Japan consists of coniferous

"plantations of young to middle-aged sugi and hinoki cypress

(Chamaecyparis obtusa Sieb. et Zucc.) (Japan Forestry Association
2003). In addition, many denser coniferous forests consisting of
these species that have not been adequately thinned and weeded
in mountainous areas exist. The topography of these areas is
likely to be steeper and more complex than that of previously
studied sites. Consequently, if the intended application is for cross-
checking of the carbon stock accounted for, and assessing the
extent of the carbon sink and planning FM activities, then we
must demonstrate the potential of small-footprint airborne LiDAR
to measure and monitor dense mountainous forests because no
detailed research has been conducted in these areas. We therefore
decided to conduct small-footprint airborne LiDAR in mountainous
coniferous forests in this study.

Objective

The goal of this study was the development of a system for forest
measurement in mountainous coniferous forests - mainly middle-
aged sugi and hinoki cypress plantations in Japan - using small-
footprint airborne LiDAR. Particularly, the accurate determination
of tree height was considered particularly important as it is one of
the most significant parameters in forest measurement. It is
widely known that tree height is closely related to site quality and
that this is an important indicator of forest productivity and
fertility. Consequently, accurate tree height estimates can be used
to infer site quality. In addition, tree height is a useful parameter
for estimating the stem volume and the stand volume, both of
which are required to account for carbon stock and sink. However,
the measurement of tree height by field crews is very expensive
and time consuming. It is also difficult to acquire accurate tree
height measurements using field crews on steep slopes in
mountainous areas. There should therefore be considerable
incentive to investigate the potential for application of small-
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footprint airborne LiDAR to estimate tree height as part of
developing a system of forest measurement accurately in
mountainous forests.

Principally, tree height estimates using small-footprint
airborne LiDAR data are calculated by subtracting the estimated
ground elevation from the outer layer of canopy vegetation. Kraus
and Pfeifer (1998) demonstrated the inverse relationship that
exists between large the slope angle decreased accuracy of
LiDAR-derived bare ground height (i.e., Digital terrain Model;
DTM) in Vienna Woods. Given the lack of sufficient evidence into
whether DTMs and tree height can be estimated accurately in
mountainous forests, we shall first examine the possibility of
creating DTMs with accurate tree height estimates within sugi
and hinoki cypress stands in Chapter 2. After considering the
results in Chapter 2, we will then explore useful methods for
forest measurement in hinoki cypress and sugi stands in Chapters
3 and 4, respectively. These methods are then summarized as a
system for forest measurement in mountainous coniferous forests
using small-footprint airborne LiDAR in Chapter 5, where current
issues relating to small-footprint airborne LiDAR applied to forest
measurements and future issues of Kyoto Protocol are also
discussed.

Chapter 2. The penetration rate of laser pulse
transmitted from a smallfootprint airborne LiDAR in
a middle-aged pure sugi (Cryptomeria japonica
D. Don) and hinoki cypress (Chamaecyparis
obtusa Sieb. et Zucc.) plantation

Introduction

Since the mid 1980s, the application of small-footprint airborne
Light Detection And Ranging (LiDAR) remote sensing
techniques, particularly for estimating individual tree height and
stand canopy height have been studied by many researchers. Most
modern small-footprint (typically less than 1 m in diameter)
LiDAR sensors, as listed in Baltsavias (1999b), can discriminate
between multiple laser returns from the same laser pulse based
on the intensity and time of arrival (Hodgson ef al. 2003). The first
and last laser returns from the same laser pulse are referred to as
the first pulse and the last pulse, respectively. Knowledge of the
position of the sensor from the collected data by using an onboard
Global Positioning System (GPS) and Inertial Navigation System
(INS), the difference between the sensor and a target and the
incident angle of each laser pulse, enables easy calculation of the
three coordinates (X, Y, Z) of objects reflected within a circular
laser spot (i.e., footprint).

Previous researches revealed the potential of small-footprint
airborne LiDAR to measure and estimate individual tree height
with an accuracy in the range of one meter in some types of
coniferous forests (e.g., Hyyppi and Inkinen 1999; Hyyppi et al.

2001; Persson ef al. 2002; Yone ef al. 2002; Omasa et al. 2003). In
order to obtain tree heights using small-footprint airborne LiDAR
data (i.e., 3D point clouds), Digital Terrain Model (DTM), which
represents the elevation of bare ground surface is required since
tree height estimation is generally achieved by subtracting a DTM
from a Digital Surface Model (DSM), which represents the
elevation of the outer vegetation layer of a forest canopy. In other
words, since the quality of DTM affects the tree height estimates
(e.g., Hyyppd et al. 2004), the generation of accurate DTM is
important.

Hyyppi ef al. (2004) have suggested that in addition to the
errors caused by applied LiDAR systems, methodology and
algorithms for creating DTM (e.g., Kraus and Pfeifer 1998;
Axelsson 1999; Elmqvist 2000; Brovelli ef al. 2004), the quality of
DTM derived from LiDAR data is
characteristics (e.g., measurement density, first/last pulse, flight

influenced by data

height and scan angle), as well as errors due to characteristics of
the complexity of target, i.e., type of terrain, flatness of terrain,
density of the canopy etc. The factors that can be considered to
influence the quality of the DTM would include the suggestion
mentioned above, the fact that DTM should ideally be derived
from LiDAR pulse data that hits the bare ground surface and the
penetration rates, i.e., the percentage of the pulses that hit the
ground within forests.

Although the details of the study area were not provided (i.e.,
tree species, stand characteristics, etc.), Takeda (2004) suggested
that many LiDAR pulses had not reached the ground surface in
some areas within dense forests in Japan. In Japan, there exist
many dense middle-aged (40-50-year-old) hinoki cypress (Chama-
ecyparis obtusa Sieb. et Zucc.) and sugi (Cryptomeria japonica D.
Don) plantations that have not been adequately thinned.
Therefore, prior to creating a DTM with an algorithm presented
by previous researchers, we should first investigate the number of
LiDAR pulses that can hit the ground in dense forests. In this
study, we have investigated the penetration rates of LiDAR pulses
in the pure middle-aged hinoki cypress and sugi stands that had
not been adequately thinned and have compared the penetration
rates between the two stands.

Materials and methods

Study area

The study area was the Nagoya University experimental forest
located at the Aichi Prefecture in central Japan (lat. 35°12’ N,
long. 137°33” E, 930 m a.s.l.). A middle-aged pure sugi (48-year-
old) and hinoki cypress (46-year-old) stand that had not been
adequately thinned were chosen for this study because they are
representative of several such plantations in Japan. Further, those
areas of sugi and hinoki cypress stands were specifically chosen,
where forest floor was covered with limited understorey
vegetation. The topography of the sugi stand was a gentle slope
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Table 2-1. Summary of plot reference data

Characteristic

Hinoki cypress stand

Sugi stand

Stem density (per ha) 3100
Diameter at breast height (cm)”
Tree height (m)b

Crown base height (m)°
Increments in tree height 1.030
Canopy openness (%)° 43

10 24 (ave’ 16)
12.7 - 15.5 (ave®. 14.0)
80— 9.7 (ave". 8.8)

2500
12 —44 (ave’ 22)
20.4 -25.9 (ave®. 22.6)
122-153 (ave®. 14.1)
1.021

3.9

*For all trees within each plot
®For predominant trees within each plot

“Increments in tree height between 2001 and 2003 for two sample trees within each stand

dave. denotes average

“Grade of canopy openness was computed by hemispherical photography

and included the site, as shown in Takahashi et al. (2000), where
random micro-topographies existed. The terrain of the hinoki
cypress stand was a smoothed gentle slope.

During winter in 2003, i.e., after the growth season had ended,
tree measurements were completed. First, a 10 X 10 m square
plot was established within each stand. The diameter at breast
height (DBH) for all trees was measured with a calliper,
subsequently the tree height and crown base height for the trees
with a larger average DBH were measured using a dendrometer
within an accuracy of 1 cm (Ledha-Geo, Jenoptik laser, Jena,
Germany), within each plot. Since there was an approximate two-
year gap between the acquisition time of the LiDAR data (summer
2001) and the ground truth data, the stem analysis was performed
on two sample trees (dominant and co-dominant trees) for each
sugi and hinoki cypress stand, specifically to ascertain the
increment in tree height during the two-year period. The
arithmetic mean value of the increment in height for the trees was
then deducted from the field measured tree heights and crown
base heights within each stand. The corrected data was defined as
field data and subsequently used for analysis in this study. A
summary of the plot reference data, including the increment in
tree height within each stand, is listed in Table 2-1.

LiDAR pulse data
The LiDAR pulse data acquisition was performed on August 17,
2001, using a helicopter-borne laser scanner operated by
Nakanihon Air Service Co., Ltd., Japan. The pulsed laser beam
moved across the helicopter track controlled by a scanner and
along the track through the forward motion of the helicopter. The
resulting pattern on the ground was thus Z-shaped. In this study,
the position of the reflecting object was determined from only the
first and second pulse. In this study, we considered second pulses
as last pulses. Laser measurements were performed on a single
flight line. The settings of the LiDAR system used in this study
are shown in Table 2-2.

To select the LiDAR pulse data within each stand,

Table 2-2. Settings of the LiDAR system

Parameter Performance
Laser pulse frequency 20,000 Hz
Scan frequency 24 Hz

Scan angle +30°

Beam divergence 0.5 mrad
Flying speed and altitude 43 km/h, 300 m
Footprint diameter 0.15m

Measurement density” 4.76 points/m2

“Theoretical number of transmitted laser pulses per square meter

geometrically corrected digital orthophotography was used in this
study area. Aerial photographs acquired in October 2001 were
converted into orthophotographs by Tamano Consultants Co.,
Ltd., Japan. The stand boundaries of the sugi and hinoki cypress
stand in the study area were delineated on a computer using
Geographic Information System (GIS), subsequently the
delineated image was printed on papers and the boundaries were
checked in the field. Since St-Onge et al. (2003) have mentioned
that in order to maximize LiDAR pulse energy penetration
through vegetation cover to the ground level, it is preferable to
limit incidence angles to 15-20° off nadir, the LiDAR pulse data
having an incidence angle less than approximately 15° within each
stand was selected and used in the analysis. Subsequently, the
stand area used for the analysis was 4,800 m’ for each stand and
the 10 X 10 m plot mentioned above was included within each
area.

Data analysis

In order to calculate the penetration rate, i.e., the percentage of
the number of pulses that hit the ground, the LiDAR pulse data
within each stand was divided into two groups. One was the
LiDAR pulse data that was considered as having hit the ground
and the other was the LiDAR pulse data that was considered as
having hit non-ground, i.e., vegetation. To investigate the number
of pulses that hit.the ground, a referential DTM (DTM..) was first
created as datum surface in order to select these pulses. Since
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Takahashi et al. (2000) suggested that a continuous surface model
passing through the predominant tree tops could reflect the
ground surface at least in a small area, we first created a
continuous surface model (hereafter, referred to as top surface
model in this study) that passed only the LiDAR data that hit the
tree tops within each stand. The procedures for creating the top
surface model were as follows. First, the LiDAR pulse data that
was considered to represent the tree top (i.e., local maxima) was
selected using local maximum filtering that has been used in many
previous studies for identifying tree locations using small-
footprint airborne LIDAR data (e.g., Holmgren et al. 2003a;
Hyvyppi ef al. 2001; Maltamo et al. 2004; McCombs ef al. 2003;
Popescu et al. 2002, 2003; Zimble et al. 2003). In order to avoid
selecting local maxima within canopy gaps, i.e., bare ground area
between tree crowns, our software named LiDAS (LiDAR Data
Analysis System) which has the ability to identify individual
canopy gaps, segment tree crowns, etc., was used for selecting
only the local maxima within tree crowns. The top surface model
was then created by spline interpolation (Magnussen and
Boudewyn 1998; Magnussen ef al. 1999; Riafio et al. 2003; Brovelli
et al. 2004) using only the selected local maxima using GIS.
Subsequently, the DTM.« was created by subtracting the field
mean canopy tree height from the surface model for each stand
(Table 2-1).

Then the difference between the height of each LiDAR pulse
data and the DTM. was calculated. If this difference was small,
the pulse was regarded as having hit the ground. Conversely, if the
difference was large, the pulse was regarded as having hit
vegetation. In order to divide the LiDAR pulse data into two
groups (i.e., ground and vegetation data) in each stand, we
identified a threshold value from the histogram. In order to
determine the threshold value, the mode method of thresholding
was applied (Suematsu and Yamada 2000), i.e., the mode of the
trough between the first and second peak in the histogram of each
stand was selected as the threshold. For the purpose of this study,
the LiDAR pulse data wherein the difference was less than the
threshold value was defined as data for the pulses that hit the
ground, and the LiDAR pulse data wherein difference was more
than the threshold value was defined as the data for the pulses
that hit the vegetation.

Subsequently, the penetration rate (Pis: %) was calculated as
the percentage of pulses that hit the ground for each stand, as
follows.

Nigreg
N

where Ng.., and N; are the number of pulses that hit the ground

Po= } 100 @)

and the transmitted pulses from airborne LiDAR, respectively.
Moreover, since the pulses that hit the ground (V.. included
both the first and second pulse, the penetration rate of the first
pulse (Pr: %) and the second pulse (P : %) that hit the ground was

also calculated for each stand, as follows

N

pfz( N‘ )x1oo @-2)
N

ps=( " )><1oo @3)

where Ny, and N, are the number of the first and second pulse that
hit the ground, respectively. Additionally, the average area
occupied by the data for one pulse that hit the ground was
calculated with Pi. for each stand to discuss the possibility of
creating an accurate DTM. Finally, significant difference between
these penetration rates of sugi and hinoki cypress stands was
investigated by a statistical significance test for the difference
between the two population proportions.

Results

Although, the theoretical number of the transmitted pulses with
the LiDAR settings used in this study was 47,600 points/ha (Table
2-2), the actual number was greater than the theoretical value:
107,427 points/ha (hinoki cypress stand) and 122,883 points/ha
(sugi stand). The threshold values for dividing LiDAR pulse data
into the two groups, i.e., ground hits and vegetation hits were 2.5
m in the hinoki cypress stand and 4.5 m in the sugi stand,
respectively, by the mode method of thresholding (Fig 2-1) and the
penetration rate of the total pulses that hit ground (Ps.) was 1.1 %
and 8.1 % in the hinoki cypress and the sugi stands, respectively
(Table 2-3). Also, the average area occupied by the data for one
pulse that hit the ground was 8.5 m® and 1.0 m’, respectively
(Table 2-3). A sample of the LiDAR pulse data that hit vegetation
and ground for each stand is shown in Fig 2-2. Moreover, the
penetration rate of first the pulses that hit the ground (Py) was one
tenth of that of second pulses (P.) in hinoki cypress stand and
about a half in sugi stand (Table 2-3). According to a statistical
significance test for the difference between the two population
proportions, there was a significant difference for all penetration
rates (i.e., P, P, and P.) between the sugi stand and the hinoki
cypress stand (» < 0.001).

Discussion

In this study, we have investigated the penetration rates, i.e., the
percentage of the number of pulses that were considered as
having hit the ground within an even-aged pure sugi stand and a
hinoki cypress stand. To divide the LiDAR pulse data into ground
data and vegetation data, we used DTM. created by using local
maxima of the LiDAR pulse data and the field mean canopy height.
According to Takahashi ef al. (2000) who had studied a part of the
area used in this study, the elevation of the tops of the
predominant trees within a 30 % 35 m plot was regressed against
the ground elevation of the bottom of the standing trees and the
slope of the regression equation (R* = 0.79, p < 0.01) was 1.02. In
addition, the detected tree tops (i.e., local maxima) obtained from
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Fig 2-1. The histogram of the difference between the height of each
LiDAR pulse data and a referential Digital Terrain Model
(DTM.) within the hinoki cypress (Chamaecyparis obtusa Sieb.
et Zucc.) stand (left) and sugi (Cryptomeria japonica D. Don)
stand (right). The threshold was determined by the mode
method of thresholding and the value was 2.5 m in the hinoki
cypress stand and 4.5 m in the sugi stand. The class interval
was 1 m.
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Fig 2-2. A sample vertical projective plane of LiDAR pulse data within
a 10X10 m area extracted from the hinoki cypress
(Chamaecyparis obtusa Sieb. et Zuce.) stand (left) and the sugi
(Cryptomeria japonica D. Don) stand (right), within this study
area. Black dots and squares denote LiDAR pulse data for hits
on the vegetation and ground, respectively. Y-axis denotes the
difference between the height of each LiDAR pulse data and a
referential Digital Terrain Model (DTM..).

Table 2-3. Number of transmitted laser pulses and the penetration rate

Number of transmitted pulses Penetration rate (%) S mH°
Stand per hectare and per square meter P’ P fb - P Sb
Hinoki cypress 107,427 points/ha (10.7 points/mz) 1.1 0.1 1.0 85
Sugi 122,883 points/ha (12.3 points/mz) 8.1 2.6 5.5 1.0

*Percentage of the number of the pulses that hit the ground

°F and s denote first and second pulse, respectively
“The average area for one pulse that hit the ground

small-footprint airborne LiDAR data by using local maximum
filtering practically would belong to the canopy (i.e., predominant)
trees (e.g., Persson ef al. 2002; Yone et al. 2002), therefore the
procedure for creating the DTM.. presented in this study was
considered to be suitable and the DTM..; was used for dividing the
LiDAR pulse data into ground and vegetation data. Fig 2-2 clearly
shows vegetation data and ground data divided, and similar
vertical projective planes of LiDAR pulse data, which shows
definite vegetation data and ground data, have been presented in
some previous researches (e.g., Brandtberg ef al. 2003; Hirata et
al. 2003; Riado ef al. 2003).

Penetration rate of the first pulse that hit the ground (P in
hinoki cypress stand was much lower than that of sugi stand and
there were significant difference between the two population
proportions (Table 2-3). This indicates that, although the degree of
crown closure was not measured, there might have existed canopy

gaps having sizes larger than the footprint size (i.e., approximately
0.15 m diameter in this study), or more gaps within a sugi stand
than a hinoki cypress stand in this study area since P; refers to the
percentage of the number of the pulses that reached the ground
directly without being prevented by the foliage and branches of
crowns. Moreover, the penetration rate of the second pulse that
hit the ground (P,) in the hinoki cypress stand was only 1.0%.
Considering the fact that light intensity on the floor of unthinned
hinoki cypress plantations is so low that there is scarcely any
understorey vegetation. (e.g., Hattori et al. 1992), the low
penetration rate of LiDAR pulses may be attribute of the dense
hinoki cypress stands.

As a result, the penetration rates of the total pulses that hit
the ground (Pu.) in this study were 1.1% in the hinoki cypress
stand and 8.1% in sugi stand (Table 2-3), moreover, significant
differences existed between the two population proportions. In
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this study, considering the results of the number of transmitted
pulses from airborne LiDAR (N) and P, the average area
occupied by one pulse data that hit the ground was found to be
approximately 8.5 m® in hinoki cypress stand and 1.0 m® in sugi
stand (Table 2-3). This indicates that there is a possibility of
creating a DTM theoretically with spatial resolutions of
approximately 3 m and 1 m. However, as shown in Fig 2-2,
particularly in the case of the hinoki cypress stand, the pulse data
that hit the ground exhibited unevenness. Therefore, the accuracy
of such a theoretical DTM may be considered to be low. Moreover,
although the N; per hectare was approximately twice the
theoretical value (i.e., 47,600 points/ha) for this study area, the
lower sampling density led to a reduced pulse data for the ground
hits, and this has resulted in an inaccurate or low resolution DTM
that cannot be considered reliable enough to estimate tree
heights. Therefore, even if we use methodologies and algorithms
for creating a DTM, as have been presented by previous
researchers (e.g., Kraus and Pfeifer 1998; Axelsson 1999;
Elmqvist 2000; Brovelli e al. 2004), it may be difficult to create an
accurate DTM, especially in dense hinoki cypress stands as is
used in this study, based solely on the information of the poorly
penetrated LiDAR pulses that hit the ground.

Thus, the penetration rate of small-footprint airborne LiDAR
pulses would significantly differ between even-aged improperly
managed hinoki cypress and sugi stands in Japan. According to
previous researches, stand conditions such as the stand age, tree
species distributions, number of stems (Naesset and Bjerknes
2001; Naesset and @kland 2002; Naesset 2002), season, i.e., full-
leaf and leafless season (Hirata et al. 2003) and extent of canopy
closure (Cowen ef al. 2000) could affect the penetration rate of the
LiDAR pulses. Therefore, the penetration rates for various types
and conditions of forests should be investigated in detail in order
to create an accurate DTM and finally achieve accurate tree height
estimation. Moreover, although we used a small-footprint
helicopter-borne LiDAR system with only one setting as shown in
Table 2-2 for the purpose of this study, other LiDAR settings (e.g.,
lower flying altitude and slower flying speed) or systems (e.g.,
smaller footprint, higher measurement density and more intense
pulse energy), need to be investigated as suggested by Hyyppd et
al. (2004), particularly for hinoki cypress stands with different
stand conditions and new methodology and algorithms for creating
accurate DTM will be required for estimating tree heights if the
low penetration rates of LiDAR pulses within hinoki cypress
stands are not improved by trying out other LiDAR settings.

Chapter 3. Forest measurement in hinoki cypress
(Chamaecyparis obtusa Sieb. et Zucc.) plantations
by small-footprint airborne LiDAR: Stand volume
estimation

Introduction

Small-footprint airborne LiDAR has been used for estimating
mean tree height or stand volume since the mid 1980s (Maclean
and Krabill 1986; Nelsson et al. 1988; Jensen ef al. 1987; Ritchie et
al. 1992, 1993; Rignot ef al. 1994) and some useful procedures for
estimating of aboveground biomass or stand volume have been
reported (Nilsson 1996; Naesset 1997b). Recently, Hyyppd and
Inkinen (1999) estimated stand volume using LiDAR-derived
individual tree height and crown area calculated with both first and
last pulse data, and showed stand volume could be estimated with
an R* value of 0.883. Means ef al. (2000) estimated stand volume
using LiDAR-derived predictor variables associated with canopy
height and stand basal area calculated with both first and last pulse
data, and estimated stand volume with R* values of 0.95 and 0.97.
Persson ef al. (2002) estimated stem volumes of 138 trees using
LiDAR-derived individual tree height and LiDAR-estimated stem
diameter calculated with both first and last pulse data, and showed
stem volume could be estimated with 7-value of 0.94.

In most of the studies mentioned above, a Digital Terrain
Model (DTM) was calculated in order to compute the height
above ground of each point as the difference between the first
pulse, i.e., the elevation of canopy surface, and the last pulse, ie.,
the ground surface height. But Kraus and Pfeifer (1998) suggested
that computing a high quality DTM in areas with very low
penetration rate, i.e., where only a small percentage of pulses hit
the bare ground surface, could be difficult. Actually, we found that
the penetration rate of LiDAR pulses within hinoki cypress
(Chamaecyparis obtusa Sieb. et Zucc.) plantations was very low as
shown in Chapter 2. That is, because a DTM cannot always be
generated easily and accurately in every forest stand, a procedure
for estimating stand volume without generating and using the
DTM created by mainly last pulse data should be developed. Such
a procedure would free us from the troublesome post processing
procedures that use last pulse data to generate an accurate DTM.

Therefore in this study, we propose a new single predictor
variable for directly estimating stand volume without estimating
and using the DTM and the tree height. The variable can easily be
extracted using only first pulse data without generating and using
a DTM. We also demonstrate the applicability of this variable by
use of ground truth data of hinoki cypress plantations.

Materials and methods

Study area and ground truth data

The study area was the experimental forest of Tokyo University
located in Aichi prefecture in central Japan (lat. 35°12’ N, long.
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Table 3-1. Summary of plot reference data at Site 1
(plot A-E; 72-year-old hinoki cypress
stand) and Site I (plot F-H; 16-year-old
hinoki cypress stand)

plot plotarea meantree mean stem stand volume
(mz) height (m) diameter (cm) (m’/ha)
A 279 22.02 28.6 549.0
B 333 21.59 29.6 608.1
C 229 21.50 30.1 581.4
D 345 22.25 292 531.3
E 394 21.80 316 675.5
F 130 9.99 11.2 2232
G 208 10.22 1.7 209.0
H 86 10.44 11.2 208.4

137°10° E, 350 m a.s.l). Two pure hinoki cypress plantations, Site I
and Site II, within compartment No.64 of this experimental forest
were chosen for this study. The stand age of Site I and Site Il were
respectively 72-year-old and 16-year-old.

In Site I, fertilization and thinning had been carried out
regularly from 1929 to 1979. There was several understorey
vegetation. Five plots A, B, C, D, and E were established in this
site. Site I faced the northwest and was mostly located on gentle
slope; the one exception, plot E, was near a ridge and had a
steeper slope than the other plots. Site II was a severe pruning
experimental forest and the topography was flat. No evidence of
fertilization or thinning was found. Three plots E G and H were
established at this site. The canopy density of plot F was very
high, so there was few understorey vegetation in this plot. On the
other hand, there was a few understorey vegetation in plots G and
H because of the existence of some canopy gaps, which were
nearly as large as an individual tree crown.

All tree positions (except dead or suppressed trees) within
each plot were surveyed using a laser dendrometer (Ledha-Geo,
Jenoptik laser, Jena, Germany) in the spring, 2001. For all trees
within each plot, tree height was measured three times to the
nearest centimetre and the mean value used for analysis.
Diameter at breast height of all trees was also measured with a
diameter tape to the nearest millimeter A summary of plot
reference data is listed in Table 3-1. The stand volume of each plot
was calculated from the tree height and diameter at breast height
of all trees using a standard two-way volume equation for hinoki
cypress in Toyama, Gifu and Aichi districts (Forestry Agency
1970).

LiDAR data

The small-footprint LiDAR used in this study was a helicopter-
borne laser scanner operated by Nakanihon Air Service Co., Ltd.,
Japan. The settings used are shown in Table 3-2 and accuracy of

Table 3-2. The settings of the LiDAR system used in this study

Parameter Performance

laser pulse frequency 20,000 H,

scan frequency 24 H,

scan angle +30°

beam divergence 2.5 mrad

resolution 50 cm (flight speed 50 km/h, flight height 250 m)
3DGPS output information yaw, roll, pitch, position, velocity, time

out put frequency of data 10H,

positioning method differential method

Table 3-3. Accuracy of the LIDAR system used in this study

Parameter Performance

self position of helicopter +20 cm

posture of heicopter 3DGPS roll, pitch, yaw +£0.2°
measuring distance (maximum) 400 m

measuring distance (minimum) 50 m (for safe)

accuracy of measuring distance +20 cm

accuracy of measuring angle +1 mrad

the LIDAR system is shown in Table 3-3. The LiDAR data used in
this study were only first pulse data, which were acquired on 9th
February 1999. The beam divergence of 2.5 mrad produced a
footprint with a diameter of about 62.5 cm, and the average
distance between footprints was approximately 69 cm along the
scan line and approximately 59 c¢m along the flight line. After post
processing, a Digital Surface Model (DSM) with a spatial
resolution of 50 cm was generated from the first pulse data and
subjected to further analysis.

Single predictor variable for stand volume and the procedures for
calculating Vss

The pixels of a DSM generated from first pulse data would largely
represent the sunny crown. As reported previously (Kajithara
1981a, 1981b, 1982), a close relationship has been found between
crown dimensions and stem volume increment. Kajihara (1981a)
indicated that the sunny crown mantle volume was the crown
dimension variable most closely related with stem volume
increment for hinoki cypress. We therefore analyzed the
relationship between the sum of the sunny crown mantle volume
estimated from LiDAR data (V. : m¥ha) and the observed stand
volume (V : m%ha). In this study, we then developed a procedure

for calculating V., from a DSM using the following procedures.

Determination of the threshold for extracting vertical depth of the
sunny crown mantle from DSM

Because the DSM would be largely composed of pixels
representing pulses reflected by the sunny crown, we calculated
Vi, from the vertical depth of the sunny crown mantle. To
determine the sunny crown mantle depth, we first applied a
minimum filtering to the DSM that the minimum pixel value
within a window of N X N pixels was given to the central pixel
(Jensen 1996). The raster data derived from the N x N minimum
filtering was defined as DSMum (N: filtering window size).
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E

A simple coniferous tree crown model

Fig 3-1. Example of calculating D... (sunny crown depth) using a 3
X3 minimum filtering window. The thin solid line
represents DSM..s and the thick solid represents DSM.
D. is the length of the rectangular areas formed from
the thin and thick lines @i.e., D = DSM — DSMuins).

Assuming that the cross section of a coniferous tree crown is an
isosceles triangle, and that the thickness of the crown mantle is
constant, the raster data (D..) calculated by subtracting DSMuimx
(thin solid line in Fig 3-1) from DSM (thick solid line in Fig 3-1)
could then be regarded as the vertical depth of the sunny crown
mantle. The cross sectional area of D.. (rectangular areas formed
from the thin and thick lines in Fig 3-1) could then be regarded as
an approximation of the cross sectional area of the actual crown
mantle (gray area in Fig 3-1).

In this study, three sizes of minimum filtering window were
used (3 X3 pixels, 5x5 pixels, 7x 7 pixels) to change the

number
of pixels
700

vertical depth of the extracted sunny crown mantle in proportion
to the filtering window size. Because the DSM could include
pixels associated with canopy gaps, we used a histogram of the
pixel values of D, to identify a threshold value (¢h..) for excluding
such ground pixels.

Calculating the sunny crown mantle volume
For the D.. calculated using each filtering window size, the sum of
the sunny crown mantle volume within a plot was estimated as
the sum of all pixel values (/.. : m) less than th.. ( ZI.) multiplied by
the area of each pixel (0.5 m x 0.5 m = 0.25 m®. Then, V., was
calculated as
02521,
s = (—"—A“-' 3-1
where A (ha) is the plot area (Table 3-1) and N is the filtering

window size. We investigated the relationships between V.x and

) X 10000

observed stand volume (V) using regression analysis.

Results

Example histograms of D., data produced using 7 X 7 minimum
filtering (Site I) and 3 X 3 minimum filtering (Site II) are shown in
Fig 3-2. There were two remarkable peaks in all histograms. A
definite second peak existed in all histograms of Site II as shown
in Fig 3-2. The first peak primarily represented the vertical depth
of the sunny crown mantle, while the second peak mainly
represented the distance from the ground to the sunny crown

Site 1
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Fig 3-2. Sample histogram of the pixel value of Drs (Drs=DSM — DSM.us) calculated for
Site I (window size, N=7) and Site II (window size, N=3), respectively. The pixel
values of D., are composed of both the vertical depth of sunny crown mantle and
the distance from the ground to the sunny crown base. DSMuw is raster data
derived from N XN minimum filtering. The class interval is 0.5.
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Table 3-4. Minimum filtering window size and threshold value (th..: m)
used to discriminate pixel value associated with ground
reflections. Regression equations (Egs. a, b, and ¢) are the
relationship between the sum of suuny crown mantle volume
within a stand (V. : m*ha (N: filtering window window size))
and observed stand volume (V : m¥ha) for seven plots (Site I
:plot A, B, C, D, and E in 72-year-old hinoki cypress stand,
Site I : plot EG, and H in 16-year-old hinoki cypress stand).

threshold value (th . )

window size Sl Sel regression equation R® value
3x3 10.5 4 a V= 74.05+0.0327V 5 0.952
5x5 133 3 b V' =155.75+0.0176V 4 0.960
7 x7 13.0 3 c V' =171.35+0.0136V 0.958

base. Therefore, we used the mode method of thresholding
(Suematsu and Yamada 2000), that is, the trough between the first
and second peak was selected as the threshold (th..) and only pixel
values less than #h.. were used for the calculation of V. in Eq. 3-1.
The value of #h. identified for each minimum filtering window is
shown in Table 3-4.

There was a close linear relationship between V and V. for all
three window sizes (Table 3-4). In addition, the intercept for the
relationship between V and V. did not differ significantly from
zero. Finally, the relationship between V.; and V was expressed
statistically as a simple ratio (Fig 3-3) as follows.

V=0.0379V.; (R*=0.922) (3-2

Discussion
Previous researchers have estimated stand volume using the
LiDAR-derived tree height that calculated as the difference
between DSM generated by first pulse data and DTM generated
by last pulse data. However, forests with a low pulse penetration
rate will not allow a DTM to be calculated easily or accurately
(Kraus and Pfeifer 1998). Especially, in the hinoki cypress
plantations, we found that the penetration rate of LiDAR pulses
within was very low as shown in Chapter 2, and therefore LiDAR
pulse penetration of the forest canopy is also considered to be too
low to enable a reliable DTM to be calculated. Then, if a DTM
cannot be generated, tree height, and thus stand volume, cannot
be estimated with the method presented by the previous
researchers (e.g., Kraus and Pfeifer 1998; Axelsson 1999;
Elmgvist 2000; Brovelli ef al. 2004). On the other hand, the
procedure presented in this study used only the DSM that can be
easily generated using first pulse data, and therefore did not
require the calculation of a DTM.

Some researchers (e.g., Maclean and Krabill 1986; Nelson
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Fig 3-3. The relationship between variable associated with sum of
sunny crown mantle volume within a stand (Vi; : m%ha) and
observed stand volume (V : m*ha)

1988) have also reported the procedures for estimating stand
volume using a measure of the canopy profile cross-sectional area
generated by laser profiling data without generating and using a
DTM. However, as suggested by Nasset (1997a), the laser
profiling technique, which records a single line of data directly
beneath the aircraft, would provide a rather more limited sample
than the scanning laser systems used in this study. In particular, in
forest where canopy gaps or non-forested areas are irregularly
distributed, the location of the trace of the laser profiling could
have a considerable influence on the volume estimation. On the
other hand, in our procedure the influence of canopy gaps or non-
forested areas can be excluded prior to volume estimation.
Although we used the mode method to discriminate the pixels of
the sunny crown from those of the ground or non-sunny crown in
this study, #h. could also be estimated automatically using
statistical thresholding, e.g., Otsu’s method (Otsu 1979) or
Niblack’s method (Niblack 1986). We could then automatically
calculate V.x from DSM, because th. was the only value
determined manually in the procedure presented in this study.
Although there was a small time lag between the acquisition of
the LiDAR data and the ground truth data, the ratios between the
stem volumes within a stand would not change much between the
two acquisition times. Therefore, the strong linear relationships
between V and V. shown in Table 3-4 could be considered to be
the same as if V had been surveyed at the same time that the
LiDAR data were acquired. In addition, comparing our results with
those of previous experiments that succeeded in estimating stand
volume using an accurate DTM (Hyyppi and Inkinen 1999; Means
et al. 2000), the R* value of Eq. 3-2 presented in this study was
higher than or nearly equal to those of the previous studies.
Certainly V.. would be easier to calculate than predictor variables
such LiDAR-derived tree height calculated using a DTM.
Therefore, if we want to obtain estimates of stand volume easily,
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quickly and accurately, the procedure presented in this study
would offer a viable alternative to methods that rely on a DTM
generated from last pulse data (e.g., Maltamo ef al. 2004; Means ef
al. 2000; Persson et al. 2002). In addition, combining the DTM-
based methods with the method presented in this study offers the
possibility of reducing unexplained variation, and thus, even more
accurately estimating stand volume, especially for coniferous
forests.

The results of this study indicated that a single predictor
variable (Vi) associated with the sum of the sunny crown mantle
volume within a stand was highly correlated with observed stand
volume (V) in hinoki cypress plantations. In particular, the
relationship between V.n and V was expressed as a simple ratio
when a 3 X 3 minimum filtering window was used. Thus, Vi is
considered to be a useful single predictor variable for estimating
stand volume in hinoki cypress plantations; it is also very simple
and convenient to calculate. Further work is needed to verify the
broader applicability of the regression equations presented in this
study to other stands of hinoki cypress and to investigate whether
the method is just as applicable to other coniferous forests.

Chapter 4. Forest measurement in sugi (Cryptomeria
Jjaponica D. Don) plantations by small-footprint
airborne LiDAR

(4a) Individual tree height estimation

Introduction

Some useful studies have demonstrated that recent commercial
small-footprint airborne LiDAR systems, as listed in Baltsavias
(1999b), could measure individual tree height and estimate stem
volume accurately in boreal coniferous forests (Hyyppi and
Inkinen 1999; Hyyppé ef al. 2001; Persson ef al. 2002). In Japan,
Yone et al. (2002) and Omasa ef al. (2003) showed that small-
footprint airborne LiDAR was capable of precisely measuring and
estimating individual tree characteristics in Japanese larch (Larix
leptolepis) and sugi (Cryptomeria japonica D. Don) plantations,
respectively.

However, for the application of small-footprint airborne LiDAR
to forest monitoring, especially with regard to tree height
estimation, most previous studies appeared to have succeed in
estimating individual tree height accurately only in flat terrain
(e.g., Hyypp4 and Inkinen 1999; Hyyppi ef al. 2001; Persson ef al.
2002; Yone ef al. 2002; Omasa et al. 2003). Principally, tree height
estimates using small-footprint airborne LiDAR data should be
calculated by subtracting the estimated ground elevation value
from the elevation value of the outer vegetation layer of a canopy.
Thereby, the accuracy of the estimated ground elevation would
affect tree height estimates. Kraus and Pfeifer (1998) showed that
in Vienna Woods, the larger the slope angle, the lower is the
accuracy of LiDAR-estimated ground height. Therefore, there is

no account of whether tree height could be estimated accurately
in mountainous forest, the topography of which is likely to be
steeper and more complex than that of previously researched
sites. Though Heurich ef al. (2003) mentioned that LiDAR-derived
tree height estimates must be corrected when the slopes are
steeper than 20°, they did not investigate the accuracy of LiDAR-
derived tree height estimates for different slope angles in detail.
Mountainous forests in Japan have usually steeper (well over 20°) and
more complex topographies; hence a more detailed research is
required with regard to tree height estimation with small-footprint
airborne LiDAR in such mountainous areas.

Since we have already found in Chapter 2 that the penetration
rate of LiDAR pulses that hit the ground in sugi stand was much
higher than that of hinoki cypress stand, and would have a
possibility to create DTM enough to estimate individual tree
height using the methodologies presented by some previous
researchers (e.g., Kraus and Pfeifer 1998; Axelsson 1999;
Elmgqvist 2000; Holmgren ef al. 2003a; Brovelli ef al. 2004). We
therefore investigated the accuracy of LiDAR-derived individual
tree height estimates for different types of topographical features
of even-aged sugi plantations located in a mountainous area. Prior
to estimating individual tree height, we first investigated the
number of detected trees within plots by identifying LiDAR-
detected trees as corresponding field trees. Next, the average
error between LiDAR-derived tree heights and field measured
tree heights was computed to investigate the influences of
topographical features on systematical differences, ie., either
underestimates or overestimates. Subsequently, root mean square
errors between these values were investigated to evaluate the
accuracy of the estimates.

Materials and methods

Ground reference data

The study area was the Nagoya University experimental forest
located in the Aichi Prefecture in central Japan (lat. 35° 12’ N,
long. 137° 33’ E, 930 m asl). Even-aged sugi plantations that had
not been properly managed were chosen for this study because
they are representative of several such sugi plantations in Japan.
One square plot (plot 1: approximately 50 x 50 m) consisted of a
location, the terrain of which had a gentle to steep slope (Fig 4a-
1). Plot 1 mainly consisted of planted sugi (233 trees); however,
planted hinoki cypress (21 trees), akamatsu (Pinus densiflora) (2
trees), urajiromomi (Abies homolepis) (2 trees), and sawara
(Chamaecyparis pisifera) (2 trees) were also mixed in. The forest
floor was covered with litter, and the understorey vegetation that
had not been weeded mainly consisted of kumazasa (Sasa veitchii)
and shiromoji (Lindera triloba) with a height that was less than
approximately 2 m. The other square plot (plot 2: approximately 25
X 25 m) consisted of a gentle slope with a slightly rough surface.
Only sugi (50 trees) existed in plot 2 (Fig 4a-1), and the
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and 2003 for three sample sugi (Cryptomeria japonica D. Don)

1
K % Table 4a-1. Increments of tree height and stem diameter between 2001
plot 1

plot 2 “
i
Fig 4a-1. Location of plot 1 (2500 m® and 2 (625 m®) on the
topographic map of this study area. The contour is

generated using a digital terrain model created with
LiDAR data and the interval is 1 m.

Table 4a-2. Summary of plot reference data (sugi (Cryptomeria japonica D. Don) trees) used
for analysis

Characteristic Range Mean + S.D. Stand level
Steep slope (184 trees)

Slope angle (degree)* 25.0-47.8 37.6+5.8

Tree height (m) 8.7-28.9 189+£29

DBH (c:m)b 9.8-434 248+64

Crown radius (m) 0.4-2.7 1.5£04

Stem volume (m’)° 0.05-1.83 0.49 £ 0.28

Stand density (trees/ha) 1227
Stand volume (m‘}/ha) 504.8

Gentle slope (50 trees )

Slope angle (degree)” 11.4-21.0 15.6+3.7

Tree height (m) 11.9-25.2 2044£29

DBH (cm)® 17.7-47.8 30.7+6.7

Crown radius (m) 1.1-3.4 19+04

Stem volume (m*)* 0.15-1.85 0.75 +0.37

Stand density (trees/ha) 714
Stand volume (ms/ha) 499.6

Gentle yet rough terrain (30 trees )

Slope angle (degree)” 3.3-29.7 16.8+7.8

Tree height (m) 13.5-27.6 223+3.1

DBH (cm) 15.9-40.6 304+68

Crown radius (m) 0.7-2.5 1.5+04

Stem volume (m*)° 0.14-1.56 0.81£0.37

Stand density (trees/ha) 800
Stand volume (ms/ha) 602.9

"Slope angle was computed by a digital terrain model created from LIDAR data.
"DBH denotes diameter at breast height

“Stem volume was calculated by using a standard two-way (tree height and
diameter at breast height) volume equation.

93.D. denotes standard deviation.

\J\x\- trees.
\\ \N Stem1 Stem2 Stem3  Average
‘x\ Tree height increment 1.029 1.012 1.027 1.023
<
= Stem diameter increment 1.028 1.027 1.022 1.026
NS
9}
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understorey vegetation (also unweeded and height less than
approximately 2 m) mainly consisted of shiromoji; some big
stones and litter also existed on this forest floor.

As mentioned above, the terrain of plot 1 consisted of steep
and gentle slopes. To investigate the effect of the different
topographical features on LiDAR-derived tree height, slope angles
within the plots were first computed by a digital elevation model
that had been created using LiDAR data. Next, a regular grid-
covering plot 1 was generated on a computer using GIS. The size
of the individual grid cells was approximately 10 X 10 m. The
topographical features in plot 1 were then divided into two
categories. An area composed of fifteen grid cells (e,
approximately 1500 m®), with a mean slope angle of approximately
38°, was defined as “steep slope.” Another area composed of
seven grid cells (i.e., approximately 700 m®), with a mean slope
angle of approximately 16° was defined as “gentle slope.” The
remaining three grid cells in plot 1 (i.e., approximately 300 m®)
were excluded form this study because only one sugi tree and
many hinoki cypress trees (approximately 76%) existed in these
three grid cells. Contrarily, though the terrain surface in plot 2
was rougher than the “gentle slope” area in plot 1, the mean slope
angle was approximately 17°. Therefore, the entire area of plot 2
(i.e., approximately 625 m®) was defined as “gentle yet rough
terrain,” which was the third topographical category assessed.

During fall and winter of 2003 and 2004, i.e., after the growth
season had ended, tree measurements were completed. Static
GPS surveys were used to determine the accurate position of a
reference point in an open area near the plots; subsequently, the
tree positions were surveyed in relation to the reference point as
follows. The position of the center of all tree stems (except dead
trees) within the two plots was measured using a compass with an
accuracy of 1° and a portable laser distance measurement with an
accuracy of 1 mm (DISTO4, Leica Geosystems, Heerbrugg,
Switzerland), thus making corrections for the stem diameter at
height at which the laser heam is incident. Additionally, the
heights of the trees and their diameters at breast height (1.3 m
above ground level) were measured using a dendrometer with an
accuracy of 1 cm (Ledha-Geo, Jenoptik laser, Jena, Germany) and
a diameter tape, respectively. Subsequently, the projected on-
ground crown radii at a height of 1.3 m above ground level (eight
directions) were measured accurately.

There was approximately a two-year gap between the
acquisition time of the LiDAR data (summer 2001) and the ground
truth data (fall and winter 2003). To ascertain the two-year
increment in tree height and stem diameter, stem analysis was
performed on three sample sugi trees that had been growing near
plot 2 (Table 4a-1). The age of the stands in this study area,
including these three trees, was 48 years. The arithmetic mean
value of the increment for the trees was then deducted from the
ground truth data in plots 1 and 2. The corrected data was defined

as field data and subsequently used for analysis in this study.
However, the crown radius was not corrected; in the analysis in
this study, detecting tree tops and estimating tree height were
performed only for sugi trees. A summary of the plot reference
data (only for sugi) is listed in Table 4a-2.

LiDAR data collection

The laser data acquisition was performed on August 17, 2001
using a helicopter-borne laser scanner operated by Nakanihon Air
Service Co., Ltd., Japan. The pulsed laser beam moves across the
helicopter track controlled by a scanner and along through the
forward motion of the helicopter. The resulting pattern on the
ground is thus Z-shaped. In this study, the position of the
reflecting object was determined from the first and second pulse,
respectively. Laser measurements were made on a single flight
line. The beam divergence was 0.5 mrad, giving a footprint
diameter of approximately 0.15 m. The flight altitude above
ground leve] was approximately 300 m and its speed was 43 km/h.
The scan mirror frequency, laser pulse frequency, and the scan
width were 24 Hz, 20 000 Hz, and =30° respectively. By this
setting, the average distance between footprints was approx-
imately 0.42 m along the scan line and approximately 0.5 m along
the flight line. The elevation depth accuracy of the distance
measured by the LIDAR system used in this study was
approximately 0.1-0.25 m at a flying altitude of 200 m.

Processing LiDAR data and creating a Digital Surface Model
(DSM), Digital Terrain Model (DTM), and Canopy Height Model
(CHM)

No parameter settings were changed during the processing of the
LiDAR data for all topographical features in the study area. The
laser sampling density was theoretically 4.76 points/m® with the
LiDAR settings used in this study; however, the actual laser
sampling density was greater than the theoretical value; 8.80
points/m® (steep slope), 15.60 points/m® (gentle slope), and 11.55
points/m’ (gentle yet rough terrain). Therefore, the unevenly
distributed laser reflection point data was converted into two
raster layers with a pixel size of 1/3 m. The first raster layer,
referred to as DSM..,, was assigned the height value of the highest
laser reflection point within each pixel using only first pulse data.
The second raster layer, referred to as DTM.., was assigned the
lowest laser reflection point within each pixel using both first and
second data.

To create a continuous surface model, that is, a Digital Surface
Model (DSM), the value of the no-data pixels in DSM.. was
interpolated by an inverse distance weighting (IDW) method that
did not change the original value. IDW is a weighted average
interpolator method; the weight given to a particular data point
when calculating a grid node is proportional to the inverse of the
distance of the observation from the grid node (Popescu et al.
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2002). The interpolated DSM.... was defined as DSM.

In this study, DTM... contained several unexplained noise
pixels, the values of which were distinctly below ground level, as
(2003a), along with other
unexplained noise pixels, the values of which were higher than
those of the DSM. Such noise pixels within DTM.. were
removed, and the method used by Holmgren et al. (2003a) was

mentioned by Holmgren et al.

then applied to acquire a Digital Terrain Model (DTM) as follows.
Each center pixel was compared with other pixels within a 4 m
horizontal distance, and if the vertical angle of the neighboring
pixels from the center pixel exceeded 50°, the center pixel was
classified as ground and the neighboring pixels were removed.
Subsequently, those pixels that remained were also referred to as
ground. Finally, a continuous terrain surface model, i.e., DTM was
created by spline interpolation using the pixels that remained
(Magnussen and Boudewyn 1998; Magnussen et al. 1999; Riafio ef
al. 2003).

To estimate individual tree height, first, a Canopy Height
Model (CHM) was computed by subtracting DTM from DSM.
CHM can be used to represent a canopy height raster layer in
wooded areas. In the open areas and gaps between the trees, this
height will be close to zero; thus, representing ground laser hits
(Naesset 2002). Observations with a height value less than 2 m
were excluded to eliminate ground hits and the effect of stones,
shrubs, etc. from CHM (Naesset 1997a, 1997b, 2002; Persson ef al.
2002).

Detecting individual tree tops

Individual tree tops were detected by local maximum filtering, a
common technique used to identify tree locations on high-
resolution optical images (Wulder ef @l. 2000). Local maximum
filtering is used for optical images based on the fact that the
reflectance of a tree crown is typically greatest at its apex. This
operates on the assumption that for LiDAR data the highest laser
elevation value among laser hits of the same tree crown is the
apex (Popescu et al. 2002), and the method has been used in many
previous studies for identifying tree locations using small-
footprint airborne LiDAR data (e.g., Holmgren et al. 2003a;
Hyyppi et al. 2001; Maltamo et al. 2004; McCombs ef al. 2003;
Popescu ef al. 2002, 2003; Zimble et al. 2003). That is, if the
central pixel has the elevation value which is greater than any
other pixel value within a window, the central pixel is regarded as
tree top. In this study, the selected moving window size was 3X3
pixels (Hyyppi et al. 2001, Maltamo ef al. 2004). To delete the
noise in individual tree crowns of CHM before detecting tree tops
in order to make it more likely that each tree has a single height
maxima, a simple convolution Gaussian filter was used for CHM
(Hyyppi et al. 2001; Suematsu and Yamada 2000). Subsequently,
local maximum filtering was performed for the smoothed CHM.

Processing field crown data

GIS produced octagonal crown projections (vector data) with the
eight directional field measured crown radii. Subsequently, each
crown segment (raster data) with a pixel size of 1/3 m was created
by converting the vector data to raster data. Since the viewing of
suppressed or intermediate tree crowns by aerial surveillance in
an actual stand is often difficult, the overlap between crown
segments was assigned to relatively tall trees in GIS.

Evaluation method for detected tree tops and estimates of tree heights
Before evaluating the accuracy of the estimates of individual tree
height, each detected tree top (LiDAR-detected tree top) had to
be identified as the corresponding field stem position within the
crown segment in a two dimensional plane. If one LiDAR-detected
tree top existed within a segment, the detection was correct. If
several LiDAR-detected tree tops existed within a segment, the
field stem position was identified as the pixel with the highest
values, and the remaining unidentified pixels were defined as
commission errors. If any LiDAR-detected tree tops existed
beyond crown segments within a plot, this was also defined as a
commission error. However, if no LiDAR-detected tree top
existed within a segment, this error was defined as an omission
error. Subsequently, tree heights of the detected trees (LiDAR-
derived tree height) were computed as the maximum value of
unsmoothed CHM within the crown segments (Maltamo ef al.
2004).

The relationships between the LiDAR-derived tree height and
the field tree height for the detected trees for each topographical
feature were investigated by regression analysis, in which lines
were fitted to the data using the least-squares method. The mean
difference, i.e., the average error (D) between the LiDAR-derived
tree height A, (m) and the field measured tree height i (m) was
then evaluated to investigate the influences of topographical
features on the systematical differences, i.e., either under-
estimates or overestimates. The statistical significance of the
average error was assessed by means of two-tailed f-tests
(Naesset 1997a). The average error (m) was computed using the
following equation:

D= %; (hL(i)_h/(i))

where £ and i are LiDAR-derived tree heights and the field tree
heights, respectively, for the detected trees. The number of

(4a-1)

detected trees is # and ¢ was the detected tree number.
Subsequently, to evaluate the accuracy of the LiDAR-derived tree
height estimates, Root Mean Square Error (RMSE) (m) was also
computed as follows:

RMSE = ;(hun - hﬂ,))z
T

where hy, hy, n, and i were the same as in Eq. 4a-1. To evaluate the

(4a-2)
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effect of DTM for estimating tree height, the accuracy of the DTM
created in this study was also examined by Eq. 4a-1 and 4a-2.
However, in the examination of the accuracy of the DTM, A, &, #,
and ¢ represented the elevation values of DTM, field-measured
ground elevation for all the tree stems, number of all field-
measured trees, and all field measured tree numbers, respectively,
within plots consisting of not only sugi but also hinoki cypress,
akamatsu, sawara, and urajiromomi.

However, according to previous reports, laser sampling
density could affect the counting of stem numbers (Yone ef al.
2002) and estimates of tree heights (Nzesset and @kland 2002).
Since most previous studies, as well as the present one, have
detected tree tops and estimated individual tree heights using
raster LiDAR data, laser sampling density could be expressed by
using the number of pixels of first pulse raster data in DSMw
within crown segments in this study. Thus, to discuss the effect of
laser sampling density on both the number of detected trees and
the accuracy of the estimates of tree height, the percentage of the
number of pixels with non-null values in DSM... within all tree
crown segments was computed for each topographical feature.

Results

The percentage of laser pulses hitting crowns and the number of
detected trees

The percentage of the number of pixels of first pulse raster data in
DSM... within crown segments was the highest in the gentle yet
rough terrain (67.2%) and the lowest in the gentle slope (50.2%)
(Table 4a-3). In all topographies, commission errors were lower
than omission errors. Omission errors in the steep slope were the
highest among all the topographical features; 74% of the trees
were correctly detected (Table 4a-4). On the other hand, in the
other topographies, particularly in the gentle yet rough terrain,
most trees were correctly detected (Table 4a-4). Otherwise, the
tree heights and crown radii of undetected trees were usually less
than those of the mean value in each topographical feature (Fig 4a-
2).

Estimates of individual tree height and ground elevation
The coefficients of determination (R*) of the regression equations
for LiDAR-derived and field tree heights for the three
topographical features (steep slope, gentle slope, and gentle yet
rough terrain) were 0.857, 0.923, and 0.955, respectively (Fig 4a-
3). The intercepts of all regression equations in Fig 4a-3 did not
significantly differ from zero (» > 0.05), indicating that the
average error of the regression equations was not significant. The
slopes for all regression equations could be statistically regarded
as one (p < 0.01), indicating that the LiDAR-derived tree height
was independent of different tree heights.

The average error of the LiDAR-derived tree height was
highest in the gentle slope and lowest in the gentle yet rough

Table 4a-3. Percentage of the numberof pixels of first pulse

raster data in DSM... within crown segments

Topography Percentage (%)

Steep slope 589

Gentle slope 50.2
Gentle yet rough terrain 67.2

The percentage is calculated by the number of pixels with
non-null values in DSM,,,, within all tree crown segments,
DSM,,,, s a raster layer that is assigned the height value of the
highest laser reflection point within each pixel using only

first pulse data.

crown radius (m)
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Fig 4a-2. Characteristics of detected and undetected trees based on

the relationship between tree height and crown radius.
White circles and black triangles denote detected and
undetected trees, respectively. Vertical and horizontal
dashed lines denote the mean value of tree height and
crown radius, respectively.
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Table 4a-4. Number of detected trees

Number of detected trees

Actual number

Topography

Correct Commission” Omission” of trees
Steep slope 136 (74%) 6 ( 3%) 48 (26%) 184
Gentle slope 43 (86%) 5(10%) 7 (14%) 50
Gentle yet rough terrain 46 (92%) 1( 2%) 4( 8%) 50
“Commission denotes that if several LiDAR-detected tree tops existed within a crown segment,
the field stem was identified as the pixel with the highest values, and the remaining unidentified
pixels were defined as commission errors. If any LiDAR-detected tree top existed out of the
crown segments within a plot, this was also defined as a commission error.
"Omission denotes that if no LiDAR-detected tree top existed within a crown segment,
this error was defined as omission error.
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Fig 4a-3. The relationship between LiDAR-derived and field-measured tree heights.

Table 4a-5. Average error and RMSE between field measured and LiDAR-derived data

Topography Ground elevation (m) Tree height (m)
Average error’ RMSE" Average error” RMSE"
Steep slope -0.199** 0.577 0.227%* 0.901
Gentle slope 0.106* 0.316 -0.473%* 0.846
Gentle yet rough terrain 0.101%* 0.267 -0.183* 0.576

*P <005 % P <0.01

*Average error was computed using Eq.4a-1 in the text.
"RMSE denotes root mean square error and was computed using Eq.4a-2 in the text.

terrain (Table 4a-5). However, the highest RMSEs of tree height
and ground elevation estimates were in the steep slope. The
average error of ground elevation estimates was also the highest
for the steep slope.

Discussion

The main objectives of this study were the investigation of the
number of detected trees and the accuracy of individual tree
height estimates of sugi plantations in a mountainous area for
three types of topographical features. An accurate field survey of
all stem positions and the projected on-ground crown radii within
plots, enabled the accurate identification of LiDAR-detected tree
tops as the corresponding field stem positions within the crown

segments in a two dimensional plane. This correct identification
enabled the evaluation of the estimates of LiDAR-derived
individual tree heights.

Fig 4a-2 shows the characteristics of detected and undetected
trees, taking note of the relationship between tree height and
crown radius, in each topographical feature. Magnussen ef al.
(1999) asserted that in their experience, six to ten laser hits per
tree crown would be needed to clearly distinguish between
individual tree crowns. That is, assuming that the tree crown was
circular in shape and that the crown radius was 1 m, at least two
or three hits per square meter would be needed. Though the
settings of the LIDAR system used in this study would
theoretically produce approximately four laser hits per square
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metey, the results of this study showed that trees with a crown
radius of less than 1 m (thin solid lines denote a 1 m crown radii in
Fig 4a-2) were hardly detected in each topographical feature in
this study. Therefore, a greater laser sampling density might be
needed to detect such small trees with a crown radii less than 1 m.
It is difficult to detect trees with a size smaller than the mean size
(an intersection of vertical and horizontal dashed lines in Fig 4a-
2); however, most canopy trees with sizes larger than the mean
size could be accurately detected in every topographical feature.

Though 49.8% (i.e., 100 - 50.2 %) pixels in DSMa. within
crown segments were interpolated in the gentle slope (Table 4a-
3), 86% of the trees were accurately detected from DSM in the
gentle slope (Table 4a-4). Considering that correct interpolation
for DSM.., was needed to detect individual tree tops from DSM,
this result indicates that fine interpolation that was at least
convenient for local maximum filtering had been performed by
IDW interpolation for DSM... and a Gaussian smoothing for CHM
m this study. This would be applicable to other topographical
features. To identify individual tree crowns from LiDAR data,
some previous researchers have applied a watershed method for
detecting tree crowns (e.g., Yone ef al. 2002). While it is unknown
as to which method would be superior; the local maximum
filtering method can be considered to be a good method for
detecting individual canopy tree tops in sugi plantations in
mountainous areas.

The average errors between LiDAR-derived and field measu-
red tree heights in both the gentle slope and the gentle yet rough
terrain were negative values (Table 4a-5). Even if the influences
of the positive average error of DTM were deducted, the average
error of the LiDAR-derived tree height was still negative, i.e.,
underestimates of tree height. Moreover, underestimates of tree
height in the gentle slope were greater than those in the gentle
yet rough terrain. Persson ef al. (2002) explained that low laser
sampling density caused tree height underestimation in their
study; thus indicating that because the uppermost parts of the
tree tops were not likely to be hit when using small-footprint
airborne LiDAR, the estimates of tree heights would consequently
be underestimates. According to Gaveau and Hill (2003), the
failure to sample tree tops because of an insufficient laser
sampling density is likely to be of greater relevance in coniferous
woodlands where crown shape is more conical than in broadleaf
woodlands where crowns are more rounded. Neesset and @kland
(2002) concluded that the observed standard deviations in tree
height residuals in LiDAR data for a forest dominated by Norway
spruce (Picea abies) could be improved by increasing sampling
density. Considering these reports, the greater underestimates of
tree heights of sugi in the gentle slope than those in the gentle yet
rough terrain in this study were considered to be caused by the
lower percentage of first pulse data in DSM.. within crown
segments in the gentle slope (Table 4a-3). Though a significant

difference between field measured and LiDAR-derived heights
exists, as shown in Table 4a-5, even the highest negative average
error in the gentle slope was only -0.478 m.

The average error of the LiDAR-derived tree height in the
steep slope was conversely a positive value (Table 4a-5). Even if
the influence of the negative average error of DTM was deducted,
the average error of the LiDAR-derived tree height was still
positive, i.e., an overestimate of tree height. The cause was
considered to be the horizontal positional error between the tree
top and stem (Heurich ef al. 2003). This is because even
coniferous tree stems are not always upright in an actual forest
stand and the tops are likely to be tilted to the valley side.
Particularly on a steep slope, the LiDAR-derived tree height
calculated with the distance between the tree top and just below
ground surface would be an overestimate (Hirata 2004). More
detailed research about the overestimation of tree heights on
steep slopes is needed. However, though a significant difference
between field measured and LiDAR-derived heights on steep
slopes exists, the positive average error was only 0.227 m.

The RMSE in every topographical feature was less than 1 m
(Table 4a-5), but the RMSE of LiDAR-derived tree height was
greater than that of the LiDAR-derived ground elevation in each of
the topographical features. The cause could be attributed to the
fact that there was a lag of approximately two years between the
time when the LIDAR data (2001 year) was acquired and the time
when the ground truth data (2003 year) was obtained. Though the
arithmetic mean value of the increment for the trees was
uniformly deducted from the ground truth data in this study, in an
actual stand, the increments of the tree parameters, e.g., height,
stem diameter, crown diameter, and volume differ for each tree.
Therefore, because the true height of trees in 2001 might not
have been accurately estimated by deducting a uniform increment,
the accuracy of the LiDAR-derived tree height estimates would be
lower than the LiDAR-derived ground elevation estimates.
However, the maximum value of the errors in the LiDAR-derived
tree height estimates in every topographical feature was 1 m.

In this study, though significant average errors with positive or
negative values for LiDAR-derived tree heights existed in every
topographical feature, the accuracy of the LiDAR-derived tree
height estimates (RMSE) was in fact less than 1 m in the sugi
plantations included in this study. Moreover, though no parameter
settings were changed during processing of the LiDAR data for all
the topographical features investigated in this study area, the
accuracy of the tree height estimates was still high for every
topographical feature. Therefore, the results of this study
indicated that small-footprint airborne LiDAR will be a useful tool
for accurately estimating individual canopy tree heights in even-
aged sugi plantations in mountainous areas.
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(4b) Estimation of individual stem volume and stand
volume

Introduction
The data acquired from recent commercial small-footprint
airborne LiDAR systems, as listed in Baltsavias (1999b), may
possibly offer three-dimensional information regarding individual
trees, such as tree height, crown area or diameter, and stem
volume, whereas large-footprint LiDAR will contain information
on the forest canopy and multiple forest elements rather than
individual trees (Lim ef al. 2003). In particular, with regard to tree
height estimation, previous researchers showed that individual
tree height was accurately estimated in boreal coniferous forests
with a flat terrain (Hyyppd and Inkinen 1999; Hyyppi ef al. 2001;
Maltamo ef al. 2004; Persson ef al. 2002) and also in Japanese larch
(Larix leptolepis) (Yone et al. 2002) and sugi (Cryptomeria japonica
D. Don) plantations (Omasa ef al. 2003) with a flat terrain in Japan.
In Chapter 4a, we showed that the accuracy of the LiDAR-derived
tree height estimates by root mean square error was less than 1 m
in even-aged sugi plantations located in a mountainous forest in
Japan; the topography of this region is probably steeper and more
complex than that of previously researched sites. Furthermore,
previously, most researchers estimated the individual stem
volume directly or indirectly using LiDAR-derived estimates. A
few researchers (Hyyppd and Inkinen 1999; Hyyppi et al. 2001;
Maltamo ef al. 2004; Persson ef al. 2002) indirectly estimated the
stem volume using a standard two-way volume equation with the
LiDAR-derived tree height and stem diameter at breast height
(DBH) calculated from the LiDAR-derived tree height and crown
area (or diameter). These researchers used the regression
equation of field-measured DBH against field-measured tree
height and crown diameter. On the other hand, Holmgren ef al.
(2003a) directly estimated the stem volumes using the regression
equation of the field-measured stem volume against the LiDAR-
derived tree height together with the LiDAR-derived crown area.
This method would be more useful because the stem volumes can
be directly predicted with variables derived from the LiDAR data
without estimating the DBH. With regard to this method, apart
from the crown area, there may be other useful predictor variables
with respect to the crown properties for individual stem volume
prediction. In Chapter 3, we experimentally determined that there
was a close linear relationship between the stand volume and the
LiDAR-estimated sum of the sunny crown mantle volume within a
plot in hinoki cypress (Chamaecyparis obtusa Sieb. et Zucc.)
plantations. Therefore, it 1s important to investigate which LiDAR-
derived crown properties together with the LiDAR-derived tree
height estimates can be useful in regression models to predict
individual stem volumes.

Stand characteristics, e.g., stem density and statistics of tree
height, DBH, crown radius, and stem volume, differed among the
stands with different topographical features in even-aged sugi

plantations located in a mountainous forest. In Chapter 4a, in the
analysis of LiDAR data, these differences did not affect the
estimation of individual tree height; however, they affected the
detection of individual trees. Since we generally calculate the
stand volume by summing the individual stem volumes, the
differences could potentially affect the estimation of stand volume
using the LiDAR data.

Therefore, in this study, we first investigated which predictor
variables with respect to crown properties, derived from small-
footprint airborne LiDAR data, could be useful in the regression
model to predict individual stem volumes within stands that has
different
features in mountainous forests. Moreover, we compared sum of

stand characteristics with different topographical

field-measured stem volumes with sum of LiDAR-derived stem
volume estimates predicted by the best regression model for
LiDAR-detected trees. Subsequently, the sum of predicted stem
volumes for detected trees were compared with actual stand
volume, i.e., the field-measured total stem volumes for all trees
within each stand.

Materials and methods

Ground reference data and LiDAR data

The study area and the ground reference data are the same as
those reported in Chapter 4a, so please see ‘Materials and
methods’ in Chapter 4a. A summary of the plot reference data is
listed in Table 4a-2 in Chapter 4a. The individual stem volumes
were calculated from the corrected tree height and the DBH in
Chapter 4a using a standard two-way volume equation for sugi in
Toyama, Gifu, and Aichi districts (Forestry Agency 1970).
Moreover, the settings of the LiDAR system are also the same as
those reported in Chapter 4a.

Preprocessing LiDAR data and creating a digital surface model,
digital terrain model, and canopy height model

The methods for preprocessing LiDAR data and creating a digital
surface model (DSM), digital terrain model (DTM), and canopy
height model (CHM) were the same as those reported in Chapter
4a.

Segmentation of individual tree crowns

Individual tree crowns were identified using our software named
LiDAS (LiDAR Data Analysis System), which has the ability to
identify individual canopy gaps, segment tree crowns, etc. In order
to locate trees, the low-pass filtered (i.e., smoothed) DSM was
searched for local maxima, the positions of which were considered
to be tree tops and seed points for crown segmentation, and
subsequently, for seeded region growing segmentation. This
system requires the determination of an important threshold
value, which is the difference between the height of the crown
base within the smoothed DSM and the ground surface height of
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Fig 4b-1. A simple model of single tree and LiDAR-derived crown
properties are shown. CA (m®) denotes LiDAR-measured crown
area, i.e., crown projection area. SCV (m®) and CF (m) denote
LiDAR-estimated sunny crown mantle volume (gray area in
the figure) and crown form were computed using Egs. 4b-5 and
4b-6 in the text, respectively.

canopy gaps within the smoothed DSM. The best threshold value
was determied by trial and error, and 10 m was selected as the
threshold value in this study. A similar algorithm of segmenting
tree crowns was presented by Hyyppi et al. (2001) and Maltamo et
al. (2003). After generating the individual tree crown outlines,
they were laid over both the unsmoothed (i.e., original) DSM and
CHM. Subsequently, the predictor variables pertaining to the
individual tree crown properties and the tree height used to
predict individual stem volumes were calculated from the
unsmoothed DSM and CHM, respectively, as mentioned below.

Calculating predictor variables for individual stem volume

Multiple regression was used for predicting the individual stem
volumes. Multiplicative models were predicted as linear
regressions in the logarithmic variables, because previously,
researchers found such models to be suitable for the prediction of
volume (Holmgren et al. 2003a; Means ef al. 2000; Nzesset 1997).

The multiplicative model was formulated as

V= B.H"CP"” (4b-1)
whereas the linear form used in the equation was
InV = InfB4+ BilnH+ B.AnCP (4b-2)

where V is the field-measured individual stem volume (m®), H is
the LiDAR-derived tree height (m), and CP is the LiDAR-derived
crown property. A simple model of single tree and LiDAR-derived
crown properties as mentioned below is shown in Fig 4b-1.
Moreover, to examine whether the crown properties can
essentially improve the accuracy of the predicted individual stem
volume together with the LiDAR-derived tree height, two
regression models that excluded CP from Egs. 4b-1 and 4b-2 were

also used for the prediction of stem volume as follows:

V=B,H" (4b-3)

InV = IDB() -+ B 11Y1H (4b'4)

The LiDAR-derived tree height (H : m) was computed as the
maximum value of the unsmoothed CHM within the segmented
crown (Maltamo ef al. 2004). Subsequently, we introduced six
predictor variables with respect to the individual crown properties
in order to predict the individual tree stem volumes in this study.
First, the LiDAR-measured crown area (i.e., crown projection
area) (CA: m®) was introduced because previously, some
researchers found this variable to be a good predictor variable of
individual tree stem volumes or stand volume (Holmgren et al.
2003a; Hyyppi et al. 2001; Means et al. 2000; Persson ef al. 2002).
Second, since in Chapter 3 we found that there was a close linear
relationship between the stand volume and the LiDAR-estimated
sum of sunny crown mantle volume within a stand in hinoki
cypress plantations, the LiDAR-estimated sunny crown mantle
volume (SCV: m® for individual trees was also introduced as a

predictor variable. SCV was calculated as

SCV = &l (4b-5)
k=1

where a (m) is the resolution or pixel size of DSM, » is the
number of pixels within the segmented individual tree crowns of
DSM, and . is the estimated vertical depth of the sunny crown
mantle. The value of L. was calculated by subtracting a raster
layer, which was derived by applying 3 X 3 minimum filtering to
the original DSM, from the original DSM (see Fig 3-1 in Chapter
3). N x N minimum filtering is a type of filtration in which the
minimum pixel value within a window of N X N pixels is assigned
to the central pixel (Jensen 1996). Since the segmented crown of
the original DSM might include pixels associated with canopy
gaps, the pixels with /. values greater than 10 m, as mentioned
above, were excluded.

Finally, the other four LiDAR-derived crown properties were
the variables with respect to the tree crown form, as mentioned
below. Let P;; denote a pixel (55) value within a segmented
individual tree crown of the original DSM and P... denote the
maximum value of the P,;. Then, crown form (CF: m) is denoted as

CF = P — Py (4b-6)

Subsequently, statistics of CF were calculated for each segmented
crown. However, since the segmented crown of the original DSM
might include pixels associated with canopy gaps, the pixels with
CF greater than 10 m were excluded. The value of 10 m was
determined by making a decision based on the difference between
the threshold value of [, (10 m) and the field-measured mean tree
height (approximately 19-22 m) in this study (Table 4a-2).
Subsequently, we introduced four predictor variables named CFium,
CFye, CFy, and CF.,, which represent the sum, average, standard
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deviation, and coefficient of variation of CF within a segmented
mdividual tree crown, respectively.

Regression analysis and validation of the regression model

Prior to regression analysis, each segmented crown (LiDAR-
detected crown) had to be identified as the corresponding field
stem. If there was only one field stem within a segment, the stem
was identified as the segmented crown. If several field stems
existed within a crown segment, the stem with the highest tree
height value was identified as the segmented crown. Further, the
remaining unidentified field stems were considered to be
undetected trees using LiDAR data because such trees were
relatively smaller than the identified trees.

In the regression analysis, F-to-enter, the minimum
significance level of a variable to be added, was set at 2.0 and F-to-
exit was also set at 2.0 (Weisberg 1980). In order to avoid
multicollinearity amongst the predictor variables (i.e., between H
and CP), a tolerance limit of the variance inflation factor [VIF =
1/(1 — RH] of 10 (Wetherill 1986) was used, where Rf is the
multiple correlation of the variable with all other predictor
variables in the regression model.

The standard errors of the estimate with original scale
(RMSE.: m®) obtained from Eqgs. 4b-2 and 4b-4 were computed as

follows:

#

2(vi-v)
“ n—K-—1

where V; and V; are the field-measured and predicted individual

(4b-7)

stem volumes (m®), respectively, and # and K are the number of
observations and predictor variables, respectively. In order to
ensure that the regression models were not overfitted, a ratio (Q-
value) used by Holmgren et al. (2003a) was calculated as follows:
the standard deviation of the error with logarithmic scale obtained
from cross-validation was divided by the standard deviation of the
error with logarithmic scale obtained from regression for each
model. For cross-validation, we applied the leave-one-out method

(Racine 2000). In this study, we performed a regression analysis
for each stand and also for the entire site (i.e., three stands were
regarded as one stand). This was done in order to investigate
which LiDAR-derived crown properties together with the LiDAR-
derived tree height estimates can be useful in the regression
models to predict individual stem volumes when the difference in
stand characteristics and topographical features between the three
stands is disregarded.

Results

The number of LiDAR-detected tree crowns that were correctly
identified as the corresponding field stem were 126 (69%) in steep
slope, 43 (86%) in gentle slope, and 43 (86%) in gentle yet rough
terrain (Table 4b-1). Although these percentages of number of
detected trees are slightly different from of the Table 4a-4, this
difference attributed to which raster data, i.e., CHM (Chapter 4a)
and DSM (Chapter 4b), were used for searching local maxima (i.e.,
tree tops). Moreover, since the minimum number of pixels within
crown segments had to be set in LiDAS, this is considered to be
one of that reasons. The regression results for the LiDAR-
detected trees are shown in Table 4b-2. In this table, the
significant level of all regression coefficients except NS (not
significant > 0.05) was <0.001. Significantly, all final regression
models for the individual stem volume comprised H in each stand
and the entire site. All crown properties, except CF., in each stand
and the entire site, significantly improved the accuracy of the
predicted individual stem volume together with H.

The crown properties of the regression models with the
highest adjusted coefficient of determination (adjusted R*) were
SCV in steep slope, gentle slope, and entire site, and CFu. in
gentle yet rough terrain. However, the model with SCV had the
smallest standard error of the estimate with the original scale (m®)
in each stand and the entire site. The standard errors of the
estimate were 0.144 in steep slope, 0.171 in gentle slope, 0.181 in
gentle yet rough terrain, and 0.165 in the entire site. These
correspond to 23.9%, 21.0%, 20.6%, and 23.6%, respectively, of

Table 4b-1. Number of LiDAR-detected trees, sum of observed volumes for detected trees, and sum of
predicted volume for detected trees using regression models with SCV* in each stand

Stand name Detected trees” Sum of observed volumes (11'13)C Sum of predicted volumes (m’})d
Steep slope 126 (69%)" 75.72 (86%) 74.15 (83%)"
Gentle slope 43 (84%)" 34.97 (92%) 34.31 (90%)"
Gentle yet rough terrain 43 (86%) 37.68 (93%) 36.95 (91%)
Entire site® 212 (74%) 148.37 (88%) 144.94 (86%)'

“SCV denotes LIDAR-estimated sunny crown mantle volume calculated using 33 minimum filter.

°Number of LiDAR-detected trees within each stand.

“Sum of observed stem volumes for LiDAR-detected trees within each stand.

4Sum of predicted stem volumes for LIDAR-detected trees within each stand.

“Entire site denotes all stands.

%o denotes the percentage of measures derived from LiDAR against total observed values for all trees within each stand.
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Table 4b-2. Regression results where the dependent variable is the individual stem volume with logarithmic
scale calculated by using a standard two-way (tree height and diameter at breast height) volume

equation

Regression coefficients”

Standard error of
the estimate with

Stand name Regression model” infy B B2 Adjusted R? original scale (m3) Qd
Steep slope InfB+PilnH -10.517 3.304 0.689 0.152 (25.4%)° 1.01
InBe+PlnH +BInC4A 9516 2768 261 0.752 0.145 (24.1%)° 1.03
InBy+BlnH +BInSCY -9382 2738 0206 0.754 0.144 (23.9%)° 1.03
InBo+BnH +BInCr, 9919 2.843 0.138 0.736 0.149 (24.8%)° 1.02
In B+ Byin H + Boln CF,,, -9.655 2919  0.246 0.722 0.151 (25.1%)° 1.02
InBo+PfInH +BInCF; -9998 3078  0.245 0.714 0.151 (25.1%)° 1.01
InBy+BnH +BlnCF,, -10517 3.304 NS 0.689 0.152 (25.4%)° 1.01
Gentle slope In By +Pyin 4 -6.622 2101 0.387 0.272 (33.4%)° 1.03
InBo+PBInH +PdnCA  -5793 1310 0.606 0.686 0.196 (24.1%)° 1.05
InBo+Pin A +BinSCV -7.616 1965 0.431 0.753 0.171 (21.0%)° 1.04
InBy+Byn & + Buoln CF,,, ~6.809 1323 0423 0.674 0.207 (25.5%)° 1.04
In Bo+ ByIn A + Byoln CF ., 6621  1.710  0.871 0.718 0.194 (23.9%)° 1.04
InBo+fnH +PoIn CFy, -7.520 2160 0910 0.580 0.224 (27.5%)° 1.04
InBo+PInH +BnCF, -5616 1578 -1.017 0.543 0.247 (30.3%)° 1.03
Gentle yet In By +Biln H ~-9.573  3.009 0.681 0.225 (25.7%)° 1.01
rough terrain By +PinH +BnC4A  -9.124 2547 0376 0.781 0.191 (21.8%)° 1.03
InBo+BInH +BIn SCV 9616 2770  0.252 0.777 0.181 (20.6%)° 1.04
InBy+Byn A + Boln CF,,, -9.539 2475 0.271 0.786 0.187 (21.3%)° 1.04
In By + ByIn A + Boln CF ., —9.348 2746 0.459 0.774 0.185 (21.1%)° 1.04
InBy+BinH +Boin CF,; ~10.049  3.033  0.537 0.776 0.185(21.1%)° 1.04
InBy+BiIn H +Poin CF,, -9.573  3.009 NS 0.681 0.225 (25.7%)° .01
Entire site InBy+BInH -9.427 2964 0.614 0.207 (29.6%)° 1.0l
InBy+pinH +InC4  -8312 2282 0389 0.734 0.178 (25.5%)° 1.02
InBe+BinH +BInSCY -8634 2411 0301 0.765 0.165 (23.6%)° 1.02
InBo+Biln A +BIn CF,, -8936 2361  0.230 0.713 0.186 (26.6%)° 1.01
InBo+BInH +Boln CF,,, -8.613 2511  0.448 0.711 0.184 (26.4%)° 1.01
InBy+BilnH +BInCF,,; -9.107 2752 0458 0.688 0.189 (27.0%)° 1.01
InBg+Bin H +BoIn CF, —8.948 2729 -0.429 0.635 0.205 (29.3%)° 1.01

*H,CA and SCV denote LiDAR-derived tree height, crown area and estimated sunny crown mantle volume caluculated
using 3x3 mimimum filter. CF denotes crown form expressed by the LiDAR-derived height value and four subscripts

refer to the sum, average, standard deviation, and coefficient of variation, respectively which are calculated with

the LiDAR-derived height value.

bSigniﬁcant level of all regression coefficients was < 0.001 except NS. NS = not significant (> 0.03)

“The percentage corresponds to the error percentage of average individual stem volume.
4Q-value is calculated as the standard deviation of the error for cross-validation divided by the standard deviation of the

error obtained from regression.

the average field-measured stem volume for LiDAR-detected
trees. The Q-values of all regression models were nearly equal to
one, and this indicates that all the models were not overfitted. The
relationship between the field-measured and predicted individual
stem volumes with the smallest standard error of the estimate for
each stand is shown in Fig 4b-2.

Sums of the individual stem volume for detected trees that
were predicted by the regression model with SCV in each stand
and the entire site are shown in Table 4b-2. The sum of the
predicted volumes was slightly underestimated in each stand and
the entire site; however, the differences between the field-
measured volumes and predicted volumes were only 1-3% for the

detected trees. The percentages of the sum of predicted volumes
in each stand and the entire site were greater than the
percentages of the number of detected trees.

Discussion

One of the main objectives of this study was to investigate which
predictor variables with respect to crown properties, derived from
the LiDAR data together with the LiDAR-derived individual tree
height (H) could be useful in regression models to predict the
individual stem volumes of sugi for each stand that has different
stand characteristics with different topographical features in
mountainous forests. Essentially, most crown properties could
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Fig 4b-2. The relationship between field-measured and
predicted individual stem volumes. Black and
white circles and triangles denote the LiDAR-
detected trees in steep and gentle slope, and
gentle yet rough terrain, respectively.

improve the accuracy of the predicted individual stem volume
together with H in each stand and the entire site (Table 4b-2).
Particularly in gentle slope, the adjusted R* value of Eq. 4b-2 was
greatly improved from 0.378 to 0.753, with the highest value
obtained in Eq. 4b-4. The field-measured individual stem volumes
were calculated from a standard two-way volume equation using
the tree height and the DBH. Therefore, the LiDAR-derived
crown properties might significantly explain the stem volumes
instead of the DBH in this study because H used in Egs. 4b-2 and
4b-4 were found to be accurate in each stand in Chapter 4a.

Holmgren et al. (2003a) have shown that tree height and crown
area were the LiDAR-derived predictor variables that proved
significant for predicting the plot level stem volume for coniferous
forests. In this study,  and CA were also significant variables for
predicting the individual stem volume. Moreover, both CA and
SCV and the other three crown properties with respect to the
crown form (CFum, CFu., and CF.) were revealed as significant
predictor variables for predicting the individual stem volume in
each stand and the entire site by regression analysis. In addition,
it was ensured that each model was not overfitted and was
considered to be a stable model because the Q-value of all models
was nearly one. The regression model with the smallest standard
error of the estimate with the original scale was the model with
SCV in each stand and the entire site. Thus, considering all
factors, the model with SCV would be the best of the six models of
each stand and the entire site in this study. This indicates that the
SCV together with H would be able to greatly explain the
individual stem volumes regardless of the different topographical
features and stand characteristics such as stand density, the mean
tree height and crown radius, etc., at least in even-aged sugi
plantations in mountainous areas.

The sums of the individual stem volume for detected trees,
predicted by the regression model with SCV, were slightly

underestimated (1-3%) in each stand and the entire site (Table 4b-
1). Approximately 70-85% of the total number of trees was
correctly detected using the LiDAR data. However, the sum of
stemfvolumes predicted by the regression model with SCV for the
detected trees in this study occupied over 80-90% of the total
field-measured stem volumes for all trees within each stand. The
results in this study indicated that a large portion of the LiDAR-
detected trees had larger individual stem volume than the
undetected trees in each stand and the entire site. The approach
of only summing the predicted individual stem volumes for
LiDAR-detected trees in this study led to underestimation of the
stand volume, similar to that shown by Persson ef al. (2002) and
Yone et al. (2002). This is because small-footprint airborne LiDAR
data offered the possibility to detect most canopy trees and hardly
any sub-canopy trees of smaller height, such as suppressed or
mtermediate trees (Holmgren ef al. 2003a; Maltamo ef al. 2004;
McCombs ef al. 2003; Persson ef al. 2002; Yone et al. 2002). Unlike
the approach to predict stand volume by summing the predicted
individual stem volumes of LiDAR-detected trees, other
researchers previously used height distribution of laser height
measurements in combination with density-related variables, such
as the proportion of laser returns from the canopy, to predict stand
volume (e.g., Means ef al. 2000; Neesset 2002). Since the sum of
all tree stem volumes within a stand is regressed against the
measures of the laser canopy height distributions and the density-
related variables, such a method would produce fewer
underestimates than the approach used in this study. However,
according to Holmgren ef al. (2003b), simulations showed that
laser height percentiles and the proportion of canopy returns
changed more with an increased scanning angle for long crown
species, such as spruce, in comparison with short crown species
such as pine. This indicates that each regression model for
predicting each forest parameter such as mean tree height, basal
area, and stand volume might have different predictor variables in
the different settings of LiDAR systems or forest types.
Therefore, collecting information regarding individual tree
parameters to predict forest parameters might be more useful for
detailed forestry monitoring and forest management. Methods
that use the information of individual tree parameters for LiDAR-
detected canopy trees should be developed if we want to predict
the stand volume more accurately. For example, Yone ef al. (2002)
indicated that a method using aerial stand volume tables for
LiDAR data would provide the best results for estimating stand
volume since such tables had been prepared to estimate volume
including both visible and invisible trees. Maltamo ef al. (2004)
used theoretical distribution functions to predict the number of
stems and stem volume for suppressed trees accurately, and they
showed that their approaches improved the underestimation of
stem density and stand volume. However, both methods were

insufficient for predicting actual stand volume; therefore, we need
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to develop these methods or investigate better procedures for
predicting accurate stand volumes in the future.

The results of this study indicated that small-footprint
airborne LiDAR will be a useful tool for predicting the individual
stem volume for LiDAR-detected trees and the stand volume of
sugi plantations in mountainous areas. LiDAR-estimated sunny
crown mantle volume would be as good as or a better predictor
variable than the LiDAR-derived crown area in case of regression,
together with the LiDAR-derived tree height, for predicting the
individual stem volumes of sugi plantations for LiDAR-detected
trees regardless of the different topographical features and stand
characteristics in mountainous forests.

Chapter 5. General Discussion

The development of a system for the measurement of forest
attributes in coniferous mountainous forests consisting mainly of
middle-aged sugi and hinoki cypress plantations in Japan using
small-footprint airborne LiDAR required considerable research.
As mentioned previously, one of the objectives of this study was to
focus on accurate assessments of tree height because tree height
is one of the most significant parameters in forest measurement.
Since accurate DTMs usually facilitate equally accurate
estimations of tree height in LiDAR remote sensing, first the
possibility to create accurate DTM was examined for sugi and
hinoki cypress stands in Chapter 2. As expected, the low
penetration rate of LiDAR pulses (1.1%) in hinoki cypress stands,
which was approximately one eighth of that of the sugi stand,
meant that creation of an accurate DTM was not possible and
neither were examined in the hinoki cypress stand. However, the
generation of a DTM and estimation of tree height were examined
in the sugi stand and these are covered in Chapters 3 and 4,
respectively. The differences in penetration rate of the LiDAR
pulses in each stand is a general attribute of each stand and
confers the ability to discriminate between sugi and hinoki
cypress stand efficiently using penetration rate as an indicator.
This information can then subsequently be used to select the
appropriate procedure for estimating forest parameters as
described in Chapter 3 and 4, respectively.

For DTM creation, some researchers have suggested that,
although filters have not used the recorded pulse reflectance
strengths, neither have they used aerial photographs or maps to
support the separation of LiDAR data into vegetation data and
ground data, such additional information on a scene (fusion of
data) could potentially provide a much better understanding of a
scene and thereby improve filter performance (Ackermann 1999;
Axelsson 1999; Sithole and Vosselman 2004). Although fusion of
several kinds of data should be attempted when creating a DTM in
areas with low LiDAR pulse-penetration rates, we propose the
development of a new method based on the idea of the top surface

model proposed in Chapter 2. Since the top surface model can
reflect the ground surface, at least in a small area, we might be
able to create accurate DTM combining the LiDAR pulse data that
hit the ground with the top surface model and this will serve as the
basis for future work. As reported by Sithole and Vosselman
(2004) in their assessment of the performance of several filters
(i.e., methodologies and algorithms for creating DTMs), all filters
performed well in smooth rural landscapes, but all filters produced
errors in structurally complex urban areas and over rough terrain
with vegetation despite. However, good estimates of DTM data
were acquired for the sugi stand in the mountainous areas
examined in this study by applying a filter developed by Holmgren
et al. (2003a) with spline interpolation (Magnussen and Boudewyn
1998; Magnussen et al. 1999; Riafio et al. 2003; Brovelli ef al.
2004) (Chapter 4a), although another methods should also be
tested in order to determine the best method for creating DTMs
in those areas.

The procedures for estimating forest parameters presented in
Chapter 3 and 4 are based on mainly raster-based analysis. Since
the volumes of raw LiDAR point data are considerable, and
relatively modest datasets are composed of millions or tens of
millions of returning pulses (St-Onge ef al. 2003), the conversion
of 3-D point clouds into 2-D raster data can reduce the volumes
significantly and facilitate data processing. Moreover, we can apply
image processing techniques that are capable of using the
neighborhood information of points, clouds and pixels
characteristic of DSM and CHM data, more efficiently. Physical
features, such as tree crowns, individual trees, groups of trees, or
whole forest stands, can be delineated using image processing
techniques before being analyzed using existing models to
estimate forest and stand parameters (Hyyppi ef al. 2004). For
example, the local maximum filtering for detecting individual tree
tops, minimum filtering for calculating vertical crown depth, and
segmentation of individual tree crowns presented in this study do
not require 3-D point data, only 2-D raster data. Therefore, a
raster-based system for forest measurement using small-footprint
airborne LiDAR would be useful since we can extract the tree
information on both the individual and stand level, although sub-
canopy tree information cannot be acquired.

Some researchers have used laser height percentiles of the
distribution of canopy heights as predictor variables and density-
related variables, such as the proportion of laser returns from the
canopy, in regression models for estimation of mean tree height,
basal area and stand volume (Magnussen et al. 1999; Means et al.
2000; Naesset and Bjerknes 2001; Nesset and @kland 2002;
Neesset 2002; Popescu ef al. 2002, 2003). Such statistical methods,
mainly based on stepwise regression analysis have the advantage
of being applied directly to forest parameters at stand or plot level,
and are highly likely to produce the regression models with high
coefficients of determination (R®) since stepwise regression often
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selects many predictor variables within each model. Moreover,
since this approach is mainly applied to 3-D point data, sub-canopy
tree information may be included in the statistic and good
estimates of stand volume (R* = 0.95-0.97) derived using this
method have been reported (Means et al. 2000). However, the
resultant models cannot be widely applied because, as shown in
the simulations of Holmgren ef al. (2003b) discussed in Chapter
4h, each regression model for predicting each forest parameter
might have predictor variables that might vary between different
of LiDAR system settings or forest types. This is particularly
important given that the evolution of LiDAR technology will
continue to enhance data quality and richness (Lim ef al. 2003) and
this may greatly affect the resultant LiDAR-derived predictor
variables in each regression model of forest parameters (e.g., the
variety of the laser height percentiles of the distribution of canopy
heights and the proportion of laser returns from the canopy).
Conversely, a raster-based approach can usually produce direct
measurements (estimates) of physical features corresponding to
dependent variables regardless of the differences in LiDAR
measurement settings.

Since small-footprint airborne LiDAR can only characterize
objects based on their 3-D coordinates (X, ¥, Z) and does not
produce colorful images that contain spectral information of the
objects they describe, it is difficult to classify tree species using
LiDAR data alone. However, Holmgren and Persson (2004)
demonstrated how airborne laser scanning of the structure and
shape of tree crowns could be used discriminate between Norway
spruce (Picea abies L. Karst) and Scots pine (Pinus sylvestris 1.)
on an individual tree level and with high accuracy. In their report,
only two species could not be discriminated between, but this is a
limitation common to all species surveys (i.e., accurate
identification to species-level and species number itself are
(2004) subsequently
attempted species identification (also in Norway spruce and Scots

inversely proportional). Persson et al.

pine, as above, and in deciduous trees) and found that the
combination of high resolution laser data with high resolution near-
infrared images increased the accuracy species identification and
that near-infrared images add useful information for tree species
classification. These studies demonstrated that, although it is
difficult to classify tree species using only LIDAR data, fusion and
combining passive optical remotely sensed data with LiDAR data
have considerable potential in accurately measuring and
monitoring forests. Since the combination of small-footprint
airborne LiDAR with passive optical remote sensing techniques
for forest measurements is a relatively new technique, particularly
in Japan, this should be explored further to improve our forest
measurement capabilities presented in this study and beyond. For
example, we must be able to discriminate sugi and hinoki cypress
on the stand-level or individual tree-level efficiently and

automatically.

The procedures for measuring individual canopy (predominant)
tree heights adopted by three studies in Japan (Yone et al. (2002),
Omasa et al. (2003) and this study), were all based on raster-based
analysis, and the accuracy of the LiDAR-derived tree height
estimates (RMSE) was less than 1 m in all three studies. The
results of these studies indicate that small-footprint airborne
LiDAR is a useful tool in the measurement of tree height, at least
in middle-aged sugi and Japanese larch plantations in Japan.
Although these studies also estimate individual stem volumes or
carbon stocks for LiDAR-detected trees, this was done using
procedures that varied between the respective studies. For
example, field-measured stem volumes were regressed against
LiDAR-derived tree heights and sunny crown mantle volume (this
study), stem volumes were estimated by empirical height-volume
equation (Yone ef al. 2002), and carbon stocks of trees were
estimated by empirical height-carbon stocks equation (Omasa et
al. 2003). Since a comparative study of these methods has not
been yet been undertaken, it is not possible to suggest at present
which method is best suited to estimating stem volumes and
carbon stocks. However, at least it has been conclusively
demonstrated that tree height can be measured directly using
small-footprint airborne LiDAR. It therefore seems likely that we
will be able to apply the technique to estimate tree height
accurately in middle-aged sugi and Japanese larch plantations on
the regional scale needed for cross-checking carbon stocks and for
sink accounting in a transparent and verifiable manner in
accordance with the QA/QC guidelines of the Kyoto Protocol. We
will also have the ability to measure canopy tree heights using
airborne remote sensing techniques objectively and efficiently on
a regional scale compared that currently possible by crews on the
ground.

In Japan, the application of small-footprint airborne LiDAR
remote sensing for forest measurement has just begun and the
studies into the potential for the technology and methods is
currently insufficient. The potential of this powerful technique
should be investigated and evaluated further through research
conducted in other forest areas. Moreover, we particularly need to
develop procedures for creating DTMs accurately in hinoki
cypress stands in order to measure and estimate tree heights
accurately using mainly small-footprint airborne LiDAR. Although
there is still much to be done regarding the application of small-
footprint airborne LiIDAR given its high potential for forest
measurement, 1 hereby propose that a system for forest
measurement, especially one directed at the estimation of tree
height and stand volume in mountainous coniferous forests
consisting mainly of sugi (Cryptomeria japonica D. Don) and hinoki
cypress (Chamaecyparis obtusa Sieb. et Zucc.) be undertaken
using small-footprint airborne LiDAR based on the results
obtained in this study in the following way. First, we need to
acquire accurate distribution data for sugi and hinoki cypress
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stands using passive optical remote sensing data, such as
geometrically corrected digital aerial photographs, or manually or
semi-automatically classified multi-spectral images before we
analyze LiDAR data. If we want to obtain individual tree
information, LiDAR data acquisition should be performed using
settings with similar footprint diameter and high sampling density
so as to be at least greater than or equal to 4 to 5 points/m2. This
can then be used to produce a DSM with a resolution of 0.3 m to
0.5 m as recommended in this study. After selecting the
appropriate LiDAR data for each stand and combining it with the
digital spectral images on a computer using GIS, we should
estimate stand volume in hinoki cypress stands, individual tree
height, stem volume and stand volume can then be calculated in
the sugi stands using the methods presented in Chapter 3 and 4,
respectively.
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Summary

Small-footprint LiDAR remote sensing techniques have been anticipated
as a useful tool to acquire forest parameters in detail. However, the
detail researches for application of small-footprint airborne LiDAR to
forest measurements in Japan are only some plantations with flat
terrain. Therefore, if we wan to use it practically for cross-checking of
the accounted carbon stock and sink in FM activities under the Kyoto
Protocol, it must be proved the ability of small-footprint airborne LIDAR
to measure and monitor mountainous coniferous forests because in
Japan, there exist many dense coniferous forests consisted of sugi
(Cryptomeria japonica D. Don) and hinoki cypress (Chamaecyparis obtusa
Sieb. et Zucc.) plantations which have not been adequately thinned and
weeded in mountainous areas, the topography of which is likely to be
steeper and more complex than that of previously researched sites.
Thereby, we investigated the potential of small-footprint airborne
LiDAR for forest measurement in such mountainous coniferous forests
in detail.

Firstly, in order to know the characteristics of penetration rates of
laser pulses transmitted from a small-footprint airborne LiDAR system
in both sugi and hinoki cypress stands, we investigated it in a middle-
aged (40-50 year old) hinoki cypress and sugi plantation that had similar
levels of canopy openness. The number of transmitted pulses was
107,427 points/ha for the hinoki cypress stand and 122,883 points/ha for
the sugi stand. The penetration rate of the first pulse (P) and second
pulse (Py) that hit the ground was 0.1% and 1.0%, respectively in the

hinoki cypress stand and 2.6% and 5.5% in the sugi stand, respectively.
That is, the penetration rate of total pulses (Pr.) that hit ground within
each stand was 1.1% and 8.1%, respectively. According to a statistical
significant test for the difference between the two population
proportions, there was a significant difference for each penetration rates
(i.e., Pi., P, and P,) between sugi and hinoki cypress stand (p < 0.001).
The results indicated that it may be difficult to create an accurate DTM
in middle-aged hinoki cypress stands that have been improperly
managed, such as this study area, by using only the information on the
data of the LiDAR pulses that exhibited poor penetration and hit the
ground. Therefore, we found that method of forest measurement using
LiDAR for sugi and hinoki cypress stands in mountainous areas should
be conducted separately.

According to the results of the investigation of the penetration rates
of laser pulses, we found that a DTM cannot always be generated easily
and accurately in every forest stand, especially in hinoki cypress stand.
Therefore, a procedure for estimating stand volume without generating
and using the DTM created by mainly last pulse data, which is equal to
second pulse data in this study, should be developed. Such a procedure
would free us from the troublesome post processing procedures that use
last pulse data to generate an accurate DTM. Therefore in the next
study, we proposed a new single predictor variable for directly
estimating stand volume in hinoki cypress stands without estimating
and using the DTM and the tree height. The variable can easily be
extracted using only first pulse data without generating and using a
DTM. We also demonstrated the applicability of this variable by use of
ground truth data of hinoki cypress plantations. The variable
corresponds to sunny crown mantle volume and was calculated using
only first pulse data acquired from small-footprint LiDAR. This predictor
variable was highly correlated with observed stand volume in 72-year-
old and 16-year-old hinoki cypress plantations. Moreover, according to
the regression analysis, the simplest relationship between the variable
and observed stand volume was expressed as a simple ratio (p < 0.01;
R*=0.922). The importance of this variable is that unlike LIDAR-derived
height-based variables previously presented it does not require the
computational procedure of generating an accurate DTM. Thus, this
single predictor variable offers a convenient and accurate method of
estimating stand volume in hinoki cypress stands.

Next, we investigated the usefulness of LIDAR measurement for
sugt stands in detail more than hinoki cypress stands because we have a
possibility to be able to create accurate DTM in sugi stands. Since most
of the areas studied previously were limited to only flat terrain, we
investigated the accuracy of LiDAR-derived individual tree height
estimates for different types of topographical features in mountainous
forests with a steeper and more complex topography. We chose 48-yeaf-
old sugi plantations to investigate the accuracy of these estimates. The
surveyed area was divided into three types of topographical features;
steep slope (mean slope = SD; 37.6° = 5.8%), gentle slope (15.6° = 3.79),
and gentle yet rough terrain (16.8° % 7.8°). Before estimating tree
heights, the number of detected trees within each topographical feature
was researched. In each of these terrains, we found that the percentage
of trees detected correctly was 74, 86, and 92; the average error
between LiDAR-derived and field measured tree heights was 0.227 m, -
0.473 m, and -0.183 m; and the accuracy of the LiDAR-derived tree
height estimates (RMSE: m) was 0.901 m, 0.846 m, and 0.576 m,
respectively. Consequently, the procedure presented in this study could
detect most canopy trees and estimate individual tree heights with an
accuracy better than one meter, even in a forest with a mean slope angle
of approximately 38° thus, indicating that small-footprint airborne
LiDAR will be a useful tool for accurately estimating the heights of
individual canopy trees in sugi plantations in mountainous areas.

Furthermore, we investigated the possibility to estimate individual
stem volumes in the sugi stands. In the research, we aim to (i)
investigate which predictor variables with respect to crown properties,
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derived from small-footprint airborne LiDAR data, together with LiDAR-
derived tree height, could be useful in regression models to predict
individual stem volumes, and (i7) to compare sum of predicted stem
volumes for LiDAR-detected trees using the best regression model,
with field-measured total stem volumes for all trees within stand. In the
regression analysis, field-measured stem volumes were regressed
against each of the six LiDAR-derived predictor variables with respect
to crown properties, such as crown area, volume, and form, together
with LiDAR-derived tree height. We found that the model with sunny
crown mantle volume (SCV) had the smallest standard error of the
estimate obtained from the regression model in each stand. The
standard errors (m®) were 0.144, 0.171, and 0.181 corresponding to
23.9%, 21.0%, and 20.6% of the average field-measured stem volume for
detected trees in each of these stands, respectively. Furthermore, we
found that sum of the individual stem volumes predicted by regression
models with SCV for the detected trees, occupied 83-91% of field-
measured total stem volumes within each stand, although 69-86% of the
total number of trees was correctly detected by a segmentation
procedure using LiDAR data.

All results of this study demonstrated that small-footprint airborne
LiDAR is a useful and powerful tool for estimating many biophysical
parameters accurately in both sugi and hinoki cypress stands in
mountainous areas in Japan. We suggested that we should apply different
methods for estimating them in sugi and hinoki cypress stands judging
from the magnitude of laser penetration rates if we want to acquire the
accurate estimates when using current small-footprint LiDAR systems.
Although there will be room for improvement for the forest
measurement system using small-footprint LiDAR presented in this
study, especially for dense hinoki cypress stands, this study will provide
a significant guideline for cross-checking of the accounted carbon stock
and sink in FM activities under the Kyoto Protocol.

Keywords: Chamaecyparis obtusa, Cryptomeria japonica, DTM, mount-
aneous coniferous forest, LIDAR, remote sensing
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