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CHAPTER
ONE

Introduction

A journey of a million miles
starts with the first step

Confucius

1.1 GENERAL ISSUES

The determination of forces acting on geotechnical engineering structures, which are in
indirect or direct connection with earth masses, is of paramount importance in applied soil
mechanics. A sound knowledge of these forces (both the static and dynamic) is essential for
the safe and economical design of such structures as retaining walls, footings, tunnels etc.

A retaining wall is a structure designed to maintain a difference in the elevations of the
ground surfaces on each side of the structure. Retaining walls are extensively used in
connection with railways, highways, bridges, canals and many other engineering works.
Some of the more common uses are illustrated in Fig. 1.1. The examples given in the figure
give an insight as to how the retaining walls as civil engineering structures are intimately
involved in the day to day life of human beings. Hence, proper analysis and design of these
structures assume utmost importance. The stability analysis of the retaining walls
necessitates the determination of earth pressures acting against the walls. Fig. 1.2 shows the
various parameters involved in the analysis and design of a retaining wall-backfill system
when the wall moves in active mode. The figure is for the sole purpose of illustration, since
retaining walls of simple trapezoidal section are rarely constructed. The resultant active force
P, acts at an angle § to the back of the wall. The wall friction angle & is more often
expressed as tand, the coefficient of wall friction. The point of application of the resultant
force is conveniently expressed as a dimensionless quantity (h/H), called the relative height
of point of application.

The Classical earth pressure theory, enunciated by Coulomb, is widely used in the earth
pressure analysis and design of the retaining structures within the validity of the assumptions

of that theory. The theory, however, paid no attention whatsoever to the modes of movement
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Fig. 1.1 Common uses of retaining wall (After Huntington, 1957)




of the wall (Translation, Rotation about the base, Rotation about the top, Rotation about the
base as well as Translation etc.) and assumed the lateral earth pressure distribution to be
simply hydrostatic. Mononobe-Okabe’s dynamic earth pressure theory too has similar

drawback as it is based on Coulomb’s static earth pressure theory.

VZ A\ A

Pa

S

RN /RN

Fig. 1.2 Main parameters of interests in earth pressure calculations

Ever since Terzaghi (1936) pointed out the fallacies in Coulomb's theory, the attention of
the research community in the field of earth pressure has been focused on the earth pressure
dependent on the wall movement modes. Experimental observations by various researchers
(Roscoe (1970), Ichihara and Matsuzawa (1973), Sherif et. al (1982), Sherif et. al (1984),
Sherif and Fang (1984), Fang and Ishibashi (1986), Ishibashi and Fang (1987), Kawamura
et al (1983), Ohara (1970)) have led to the conclusion that the magnitude and the distribution
of the earth pressure as well as the point of application of the resultant are influenced by the
kinds of movement the wall experiences in various situations. Analytical expressions have
been proposed (Dubrova (1962), Saran and Prakash (1977), Dimarogona (1983), Bang
(1985)) explaining the nonlinear distribution of the earth pressure for different modes of wall
displacement under static as well as dynamic loading.

However, the analytical methods can not explain the real phenomenon associated, as they
are unable to truly capture the progressive deformation characteristics of the backfill, and
hence, its consequences on the active or passive state parameters. Nevertheless, the basis of
these methods is the classical Coulomb theory which gives only the upper bound solution.
On the other hand, development of an efficient numerical model to treat this dependency of
earth pressure on the wall movement modes (thus enabling the practicing engineers to
translate the results into the design) is still at its infancy. This research is a step forward in
the direction towards the development of a numerical model.

Fig. 1.3 shows the various components which are part and parcel of the numerical
modeling of a retaining wall, namely: (1) the backfill and (2) the interface between the wall
and the backfill. In this dissertation, the emphasis is given to the modeling of these two
components, with special consideration to the wall deformation modes, which will be

discussed in detail in subsequent chapters.
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Fig. 1.3 Components involved in the modeling of a retaining wall-backfill system

Fig. 1.4 shows the different approaches usually adopted for the computational modeling
of a retaining wall-backfill system. The topics with shaded blocks connected by thick arrows
are of special interest to this research, and much attention is focused on these topics. The
three main issues of interests extensively considered in this thesis are:

(1) Modeling of the Backfill
(2) Modeling of the Interface
(3) How the Earth Pressure (both Static and Dynamic) is influenced by the Wall

Displacement Modes?

1.2 OBJECTIVES AND SCOPE OF THIS RESEARCH

1.2.1 Overview

As mentioned earlier, the analytical methods based on the classical theory and other theories
with rigid-plastic assumption, are not sufficient to capture the progressive deformation
phenomenon such as earth pressure development against a retaining wall. Hence,
researchers resort to numerical methods. Researches galore can be found relating to the
numerical computations of the static and dynamic earth pressure, using different approaches.
However, these works seem to ignore the progressive deformation characteristics of the
backfill soil such as localization. When deformed sufficiently into the plastic range, the
deformation within the granular materials tends to localize along concentrated bands, named
Shear Bunds, resulting in non-uniform stress state within an element. The modeling of this
localization phenomenon is of immense practical importance since the failure of many
engineering structures is indeed characterized by the formation and propagation of shear
bands. In particular, failure and post-failure analyses are important in earthquake, mining

and petroleum engineering design problems, where one is typically interested in the ultimate
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Fig. 1.4 Various approaches of modeling the retaining wall-backfill system

and residual bearing capacities of the various analyzed structures. In process of earth
pressure generation, the initiation of the active or the passive state from the at-rest state is a
phenomenon which involves progressive failure. Thus, the simultaneous mobilization of the

peak strength at various locations along the slip surface, as assumed in most of the analyses,



is not encountered frequently. Hence the numerical analysis of the earth pressure calls for the
consideration of the effects of the incepted shear bands.

Most of the numerical works on seismic earth pressure use equivalent linear stress-strain
relation for defining the constitutive properties of the backfill. These researches paid attention
only to the dynamic component of the earth pressure, not the total earth pressure. The lion's
share of this research was devoted to the development of the constitutive relation of the
backfill, for modeling the static and the dynamic earth pressure, considering the localized
deformations. The developed model can be applied to analyze both the earth pressures (total
static and total dynamic).

The modeling of the interface is an integral part of the earth pressure analysis as it
involves the interaction of the retaining structures and the backfill soil. Various interface
models with varying degree of complexity are available in the literature to date. A new
simplified interface model, from the point of view of the earth pressure analysis, is also

presented in this thesis.

1.2.2 Objectives

The principal elements of the present study are already illustrated in Fig. 1.4. The purpose of
this study is to treat the previously mentioned three topics of interest (i.e. backfill modeling,
interface modeling and how the earth pressure is influenced by the wall displacement
modes). Accordingly, the objectives of this research are in three folds: (1) To develop a
numerical model for the analysis of a retaining wall-backfill system; (2) To apply the
developed model to analyze the active earth pressure generation against a rigid wall
supporting dry backfill sand for various modes of deformation of the wall and (3) To bring
to light the various governing mechanisms involved in the backfill deformations.

The first objective involves the modeling of the backfill as well as the interface.
Consequently, the development of a new constitutive law for the backfill material
considering the localized deformation, and the idealization of the interface, which fits well
the physical mechanism involved in the wall-backfill interaction, form the foundation of this

research.

1.2.3 Scope

As of the present, the application of the developed methodology is restricted only to the
experimental model. As a first step, if a fundamental methodology can be developed through
simulation of the experimental models, in future this methodology can be refined and used in
practical problems instead of directly applying it to the field problems which have no reliable
data. Nevertheless, it is assumed that the inferences derived from this research can be easily

carried over to other retaining wall problems.



1.3 ORGANIZATION OF THE THESIS

This chapter gives a general view of the issues related to the earth pressure research. The

scope and the objectives of the research are also indicated. The organizational structure of the

thesis is schematically shown in Fig. 1.5.
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Fig. 1.5 Thesis organization




In Chapter 2, a review of the earth pressure research (experimental, analytical and
numerical) to date is presented. The limitations of the existing methods of the earth pressure
analysis are discussed. The influence of the wall displacement modes on the earth pressure
against a rigid retaining wall, was given particular attention, and the need of the present
research is highlighted.

Chapter 3 presents two constitutive laws for modeling the backfill. One is the
conventional formulation using Drucker-Prager model with a hyperbolic strain hardening
function. The other is a new constitutive formulation which is derived based on smeared
shear band technique utilizing two shear bands (named here as Coupled Shear Band
Method) in order to capture the progressive nature of deformation of the backfill mass. In
contrast to the conventional shear band analyses, the Coupled Shear Band Method
considers two shear bands inside a localized element. The constitutive relation, which is
formulated by coupling the two bands, incorporates the width of the shear bands in order to
represent the "geometric softening”.

Chapter 4 is devoted to the interface between the soil and the structure. The interface
models developed by the researchers for various applications have been reviewed. A new
interface model is presented that can take care of the problem of crossing and separation. The
merit of this model lies in its simplicity and minimum parameters involved in its application.
The simulation capability of the model becomes apparent in Chapter 5 and Chapter 6, where
the model is applied in the analysis of two earth pressure problems.

In Chapter 5 the numerical models presented in Chapter 3 (Backfill Model) and in
Chapter 4 (Interface Model) have been applied to analyze the static earth pressure against a
rigid retaining wall subjected to various modes of its movement. An experimental model has
been simulated in the analyses. The progressive failure modes of the backfill are observed
for each wall displacement mode, and the active state is defined based on the failure zone
progressions. Comparisons of the numerical results have been made with experimental
results, classical theories, analytical methods, and with numerical results obtained using the
strain hardening theories of plasticity.

Chapter 6 deals with the seismic earth pressure problems. The backfill has been modeled
based on the formulation described in Chapter 3. Under seismic loading conditions, when
the wall moves away from the backfill, and the inertia force acts away from the backfill,
momentary separation of the wall and the backfill is imminent. Hence, the interface model
presented in Chapter 4 is modified to allow for the relative motions of the interface. The
progressive deformation of the backfill mass as well the various earth pressure parameters
are numerically evaluated for a model retaining wall. In addition, wall-movement-mode
dependent seismic active earth pressure problems are also addressed. A comparative
discussion of the numerical results is made with Mononobe-Okabe's theory, Logarithmic
Spiral Method (see Appendix A for detail) and Dimarogona's analytical method, and the

drawbacks of these methods are pointed out.



Concluding remarks are made at the end of each chapter. A summary and the overall

conclusions of this research are presented in Chapter 7.
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CHAPTER
TWO

Earth Pressure - A Retrospect

Believe nothing, no matter where you read it
or who said it, no matter if I have said it,
unless it agrees with your own reason

and your own common sense

Gautama Buddha

2.1 INTRODUCTION

Earth pressure, in the broadest sense of the word, denotes forces or stresses that occur either
in the interior of an earth mass or on the contact surface of soil and structure. Its magnitude
will be determined by the physical interaction between soil and structure, the value as well as
character of absolute and relative displacements and deformations.

Taking this general definition into consideration, one may state that the problem of earth
pressure is one of the basic and essential topics of Civil Engineering. Karl Terzaghi, the
father of Soil Mechanics, has contributed tremendously to the field of earth pressure. His
experimental as well as theoretical contribution to the earth pressure problems is a real eye
opener to the researchers. Following Terzaghi’s footstep enormous research has already
been done. Therefore, instead of going to the pre-Terzaghi era, here an attempt is made to
review the existing researches on the earth pressure from the point where Terzaghi has left
behind.

Earlier investigations in the field of earth pressure can be broadly divided into two major
areas, i) Analytical/Numerical and ii) Experimental. The present research involves only the
computational (numerical) aspect of the earth pressure. However, for the sake of
completeness, the pertinent works done by various investigators in all the areas are reviewed

herein.
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2.2 ANALYTICAL STUDIES

Practically every known method of earth pressure calculation belongs to one or another of

the following five groups (Kezdi, 1974).
(1) Theories of elasticity: In this method three stresses and two displacements are
determined by two equations of equilibrium and the compatibility equation assuming the
validity of Hooke’s law. The ultimate failure can not be detected by this method.
Boussinesq’s method comes under this group.
(2) Theories of plasticity: This method is based on the assumption that the condition of
plastic failure is fulfilled at every point of the mass or along specified surfaces. Two
equations of equilibrium plus the failure condition is used to determine the three stresses.
Rankine’s earth pressure theory belongs to this group.
(3) Equilibrium method: In this method, slip surfaces are assumed to develop in the earth
mass; along these surfaces, at every point, the condition of failure is fulfilled. A single
equation is formed by combining the two equations of equilibrium and the condition of
failure, which explains the variation of stress along any rupture plane. An additional
requirement is that the solution must be kinematically admissible. Ohde’s theory is a
classic example of this method.
(4) Extreme method: In this method, one part of the earth mass behind the wall is
considered. The conditions of equilibrium and the failure conditions, in this case, are not
sufficient to determine the earth pressure; the missing equations will be furnished by an
extreme condition: the value of the earth pressure has to be a minimum or a maximum. It
is essential that the stresses acting on the sliding surfaces do not enter into the
calculations. This group contains e.g. the widely used earth pressure theory of Coulomb,
assuming a plane surface of sliding and the methods of Rendulic, Fellenius and others.

(5) Empirical method: The models tests and experiences come under this group.

2.2.1 Static Earth Pressure Research

All the customary methods to earth pressure computation can be traced back either to
Coulomb’s or to Rankine’s theory of earth pressure. It is worth mentioning at this point that
Rankine’s earth pressure theory is a classic one as far as the mechanism of earth pressure
generation is concerned. However, the theory fails to claim much practical merit since in
practice it is almost impossible to encounter a retaining wall that is smooth. Coulomb’s
method gives what is now termed an upper bound solution (equilibrium plus a mechanism
of failure) whereas the Rankine method gives a lower bound solution (equilibrium plus
failure criterion). Under specific circumstances the correct solution lies between these two

bound solutions.
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In the post-Terzaghi era, many models based on the theory of plasticity were developed
for solving the static earth pressure problems. Notable contribution came from Hansen
(1958), Sokolovski (1960), Rowe (1963) and Davis (1968). A summary of the application
of the concepts to earth pressure problems was given by Roscoe (1970) in his Rankine
lecture. Roscoe gave another dimension to the earth pressure research through his method of
associated fields. Based on the test results at Cambridge, James and Bransby (1970)
proposed a simple zero extension line field for predicting passive displacements in sands
behind a retaining wall. Habibagahi and Ghahramani (1979) extended the zero extension line
theory to predict stress patterns in the backfill behind a vertical wall. Alternative approaches
have been developed by Lee and Herington (1972) by using the theory of plasticity. The
applicability of various theories of earth pressure based on the theory of plasticity has been
discussed extensively by Lee (1975).

It is evident that the accuracy of the values predicted by the plasticity theory are
determined by the effectiveness of the particular soil model. Lee (1975) has shown that the
numerical values for active or passive parameters determined by alternative methods are
commonly very close, and therefore, one can not claim that the Coulomb method is widely
inaccurate. Use of plasticity theory has, however, as well as taking into account the type of
wall movement, resolved some basic issues. One of the most significant contributions is the
prediction of the values of wall-soil adhesion and friction to be used in the Coulomb
analysis. It was shown that the common assumption of the wall friction angle as two thirds
of the soil values leads to a good approximation to theoretical values derived by the use of

plasticity theory.

2.2.2 Dynamic Earth Pressure Research

Mononobe-Okabe’s theory is a stepping stone in the analytical research of dynamic earth
pressure. The theory is an extension of Coulomb’s sliding wedge theory in which
earthquake effects are taken into account by the addition of horizontal and vertical inertia
terms. Mononobe-Okabe analysis gives satisfactory results only if the wall displacements are
sufficient to fully mobilize the shear strength. Despite some advancement in the field of
dynamic earth pressure in the last seventy years, the state-of-the-art today is not in a stage
where reasonably accurate predictions of dynamic lateral earth pressures can be made.
Nevertheless, it is becoming increasingly important to predict accurately the dynamic lateral
soil pressures on essential structures, such as basement walls of nuclear power facilities and
quay walls. A review, how the study has progressed over these years, follows.

Matsuo and Ohara (1960) have found an approximate elastic solution for the dynamic soil
pressure on a rigid wall for translational motions using a two-dimensional analytical model.
The basic equations were derived using classical wave theory, assuming that the wall was

stationary, with the wave traveling in the soil media and impinging on the surface of the
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wall. A comprehensive review on the state-of-art of dynamic earth pressure was given by
Seed and Whitman (1970).

Scott (1973) treated the soil as a one-dimensional shear beam attached to the wall by
springs representing the soil-wall interaction and arrived at the conclusion that the pressures
and moments are significantly higher than those calculated by Mononobe-Okabe’s Method.
The points of application of the earth pressures are, in general, found to be around two thirds
of the wall height above the base. Details of Scott’s model illustrating the rigid wall system

are shown in Fig. 2.1.

<

| Elastic Shear |
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X,u
Winkler Spring Rigid Foundation

Fig. 2.1 Scott’s (1973) analytical model

Tajimi (1973) used two-dimensional wave propagation theory in homogeneous elastic
body to determine the dynamic earth pressure on walls displaced either in translation or
rotation. The mathematical model consists of a quarter-infinite field, whose vertical boundary
undergoes lateral displacement due to movement of the basement wall. The distribution of
earth pressure on the wall is expressed by the real and imaginary components varying with
frequency.

Jakovlev (1977) derived several expressions for the active and the passive earth pressures
under earthquake conditions. Two approaches, one based on Coulomb's theory and the
other based on the safe-stress static theory of Sokolovski (1960), were described including
the surcharge effects.

Having recognized that wall movements are expected during earthquakes, Richards and
Elms (1979) suggested a procedure to calculate the total displacement of the wall. The wall
undergoes a displacement relative to the soil whenever a relative velocity exists between the
wall and the soil.

Prakash (1981) summarized pertinent literature regarding the analytical and experimental
works on dynamic earth pressure. The problems of earth pressure variation due to the
earthquake motion, the point of application of the dynamic increment and the displacement of
the wall have been highlighted in that state-of-art report.

14



Prakash (1981) describes a single degree of freedom (SDOF) model to investigate the
behavior of retaining wall in translation (Fig. 2.2). The deformation of the soil and the
relative displacement between the wall and the soil were not considered separately.
However, the total displacement from the original equilibrium position of the wall is
computed using the spring-mass-dashpot system (Fig. 2.2a). The equivalent spring constant
represents backfill soil resistance and base friction. The equivalent mass includes the
retaining wall mass and 0.8 times the mass of the soil contained in a Rankine failure wedge.
The force-displacement relation is elasto-plastic, with higher values of stiffness and yield on
the compression side. It is stated that, for a selected amplitude and natural period, larger slip
occurs when the natural period of the wall-soil system coincides with the period of

excitation.
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Fig. 2.2 SDOF model for dynamic analysis of retaining walls (After Praksh, 1981)
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Nadim and Whitman (1984) computed the amount of permanent tilting and sliding of a
gravity retaining wall due to the earthquake loading. Limiting accelerations, where the wall
begins to tilt or slide, were evaluated by considering the dynamic equilibrium of the wall.
The equilibrium and continuity conditions of the wall and the backfill were written. The total
force on the wall and its line of action were evaluated by considering the equilibrium of a
slice of the backfill and integrating the force increment along the wall-backfill interface.

Siddarthan et al (1990) proposed an analytical model based on the model of Nadim and
Whitman (1984) for predicting the seismic displacements of rigid retaining walls supporting
dry backfill. The sliding and tilting were coupled in calculating the response. By performing
a parametric study on the position of center of rotation along wall base, they conclude that
when the center of rotation is away from the wall toe, a coupled mode of deformation occurs
and the total horizontal movement can be as much as 78% higher than those given by

considering sliding alone.

2.3 EFFECT OF THE WALL DISPLACEMENT MODES

2.3.1 Fallacies of the Classical Theories

Coulomb's theory provided no analytical basis for the distribution of earth pressure. He
simply assumed the pressure distribution to be quasi-hydrostatic and considered the resultant
earth force to apply at one-third the height of the wall. Same is the case for Mononobe-
Okabe’s theory for the dynamic earth pressure. However, a retaining wall can undergo
various kinds of movement depending on the situations as mentioned elsewhere. For
instance, when relatively deep fills or adjacent structures exist in front of the toe section of a
retaining wall, the passive earth pressure from the fills or the adjacent structures prevent the
movement of the wall at its lower part. In this case the wall undergoes rotational movement
about the base (RB). On the other hand, for bridge abutments, only the lower portion can
move since the outer movement at the top is restrained by the relatively rigid superstructures.
In such situations, the mode of displacement is rotation about the top (RT). Other probable
modes that a wall may be subjected to are Translation (T), Rotation about the center (RC)
and combination of Rotation about the Base as well as Translation (RB-T). In Figs. 2.3(a)-
(e), the aforementioned modes are shown for the active displacement of the wall. Results of
large-scale model tests by Terzaghi and Tschebotarioff (in Chapter 5 of Ref. [26]) have
demonstrated that for very rigid retaining walls experiencing rotation about the base (RB),
the earth pressure (sandy backfill) distribution is more or less hydrostatic. However, for the
other modes of motion, the test results indicate a parabolic type distribution of the earth
pressure. Thus, in contrast to Coulomb’s theory (Static Case) and Mononobe-Okabe’s

theory (Dynamic Case), the earth pressure distribution pattern (Figs. 2.3(b)-(e)) is nonlinear
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and the distribution pattern depends on the modes of displacement of the wall, resulting in

differences in the values of the resultant thrust and its point of application.
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Fig. 2.3 Various wall displacement modes
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2.3.2 Experimental Investigations

2.3.2.1 Static Earth Pressure

Many Researchers in the recent past have conducted small-scale as well as large-scale model
tests aiming at finding out the distribution of earth pressure, the resultant earth pressure at the
critical state (Active or Passive) and its point of application for different wall movement
modes. The extensive work by Roscoe (1970), for the passive case, has demonstrated that
the magnitude, the direction and the position of the applied point of the resultant force of
earth pressure are generally dependent on the mode of movement of the wall.

Ichihara and Matsuzawa (1973) conducted model tests on a wall translating as well as
rotating about a point located 20 cm below the base of a 55 cm high wall. Their experiments
have shown that the point of application of the resultant and the mobilized angle of wall
friction are functions of the mean wall displacement.

The experimental work by Fang and Ishibashi (1986) for various wall displacement
modes suggests that the lateral earth pressure distribution pattern differs depending on the
wall movement modes; consequently, the point of application of the total active thrust has no

unique value, and it increases with increasing soil density.

2.3.2.2 Dynamic Earth Pressure

Ohara (1970) conducted shaking table tests on retaining wall for four different types of wall
movement, namely, RB, RT, T and RB-E (Rotation about the base with elastic supported
wall). Both the seismic active and passive pressures were measured. It was concluded that
the vertical distribution of the seismic earth pressure acting on the wall depends on the mode
of wall movement and it is similar to the static one. The angle of internal friction of the dry
sand layer was found to decrease with increasing seismic coefficient.

Ichihara and Matsuzawa (1973) used a large scale vibrating soil bin to estimate the active
earth pressure as well as the at-rest pressure during vibration. The frequency of excitation
was 3.3 Hz with 600 gals of acceleration amplitude. The mode of movement of the wall was
RB-T. They concluded from the test results that the point of application of the resultant active
thrust moves upward with increasing acceleration and the Mononobe-Okabe theory can be
used to predict earth pressure using the static angle of internal friction. It is stated that the
active state develops when the angle of friction between the wall and the backfill reaches its
maximum value.

Sherif et al (1982) used shaking table tests to find the neutral, active static as well as
dynamic stresses and their points of application for rigid retaining walls supporting dry
sandy backfill. The University of Washington’s shaking table and retaining wall assembly

was used. The wall could move in three modes: T, RB and RT. They presented an equation
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based on the test results to calculate the displacement necessary to initiate active earth
pressure as a function of the wall height and the backfill soil strength.

Matsuzawa et al (1985) reviewed different dynamic earth pressure and water pressure
theories as well as available experimental investigations. They concluded that the point of
application of the lateral earth pressure depends on the mode of wall movement. They
proposed a generalized apparent angle of seismic coefficient to calculate the dynamic lateral
earth pressure and the water pressure.

Ishibashi and Fang (1987) investigated the dynamic active earth pressure developed
against rigid retaining structures with dry cohesionless backfill based on the observations of
the shaking table model experiment with different wall movement modes. It was found that
the dynamic active earth pressure distribution is strongly influenced by the wall movement
modes particularly at a low level of horizontal acceleration, while inertial body effect
becomes dominant at a higher acceleration level.

Kawamura et al (1987) conducted shaking table investigations on a gravity wall with
sandy backfill to find the effect of the wall displacements on dynamic active earth pressure
acting against the wall of 50 cm in height. It was concluded that the magnitude and the point
of application of the resultant force are dependent on the mode of wall movement, which is a

function of the wall height and the backfill density.

2.3.3 Analytical Approach
2.3.3.1 Static Earth Pressure

Dubrova (1963) proposed analytical expressions for the nonlinear distribution of earth
pressure for different modes of the wall movement using the method of redistribution of
pressure, a brief discussion of which follows. For detailed discussion of the method the
readers are referred to Harr (1966).

Fig. 2.4a shows a condition representing a rigid wall that rotates about the middle height
(point O). Fig. 2.4b shows a mechanistic model of the interaction of the soil and the wall.
Dubrova simply assumed that (for this case) the limiting passive condition exists only at the
very top of the wall, the limiting active state only at the bottom and that both occur
simultaneously. Denoting the angle between the force and the normal on any line Y
(bounded by two values -¢ and +¢), Dubrova assumed that the variation of this angle with

z, is linear and is given by:

20z
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Fig. 2.4 Dubrova’s method of redistribution of pressure (After Harr, 1966)

Dubrova then assumed the validity of Coulomb’s solution. Hence, the angle that the

quasi-rupture line makes with the horizontal for any z will be

p-T_2,9 2.2)
4 2 H

Using Coulomb’s equation, the force against the wall at any z is given by

Y Z ~
P (2.3)
2cosd li(l / cosd) +\/tan2 \y+tanwtan6]

The distribution of the pressure against the wall is given by:

2 2 2
p(2) = dp _ Y zcos. Y __ 2z ¢co'sw L siny + l+m (2.4)
dz cosd| (l+msiny)” H(l+msiny) 2m

where m =[1+ (tand/ tany)]""*.

Dubrova further simplified the equation by taking m to be constant; hence the modified

equation takes the form,

Y zcos® 2z°0cosy .
= - S + 2.5
p(z) cosﬁ[(l+msin y)? H(l + msiny)®* (siny m)} (2:3)

where m = [1 +(tand / tan ¢)]”2. The development followed in Eq. (2.5) provide the basis

for Dubrova’s method; that is, for any modes of displacement of the wall, once v is
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specified, p(z) can be determined. For the case of a wall rotating about its top (RT mode),

Dubrova found the following expression for the distribution.

2 2
Y zcos” Y z°pcosy . 0z
= - S +m)|; = 2.6
P(Z)gr cosB[(l+msin\p)2 H(1+ msiny)’ (siny m)] M H (2:0)

For the case of the wall rotating about the base (RB mode), Dubrova found the Coulomb

solution for the active case to be correct, thus

p(Z)gg = L [ cos¢ jl Y =¢'% (2.7)

cosd| |+ msin¢

For pure translation (T mode), Dubrova treated the case as the average of RB and RT mode

and thus mathematically can be expressed as:
p(z)r = 0.5[p(2)gg + P(Z)r7] (2.8)

Dubrova’s method provides no means of assessing the pressure distribution for any
arbritary surfaces other than the assumed straight surfaces. As Roscoe (1970) has pointed
out, this method of predicting the stress distribution at failure in the case of a translating wall
is open for criticism.

Bang (1985) extended Dubrova’s method by introducing the concept of Intermediate
Active State, and proposed expression for the distribution of earth pressure for a wall
undergoing rotation about base, which can express the effect of both the magnitudes of the

wall displacement and the modes of displacement.
2.3.2.2 Dynamic Earth Pressure

Saran and Prakash (1977) using the same philosophy of Dubrova, developed an analytical
formulation for a general case of an inclined wall supporting inclined cohesionless backfill.
Solutions were obtained for both the active and passive cases for all the possible modes of
wall movement, namely, RB, RT and T.

Dimarogona (1983) proposed an analytical method for the distribution of earth pressure
against a retaining wall caused by an earthquake loading for any mode of wall movement,
based on Dubrova’s method of redistribution of pressure.

Fig. 2.5 shows the mechanical model used by Dimarogona (1983) with infinite number
of failure lines. Considering one of the failure surface, the forces acting on it, during
earthquake, are shown in Fig. 2.6. In the figure, o is the seismic coefficient, and A
expresses the direction of earthquake. The total force, Py; acting on the wall is given by:
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where W;ji and A; are given by the following equations.
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Fig. 2.5 Mechanical model of soil-wall interaction during an earthquake (After Dimarogona,

1983)
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Fig. 2.6 Forces acting on a wall during earthquake (After Dimarogona, 1983)
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The pressure distribution along the wall is computed as

oP;: \
pgi = =3 = yzR”ch+iyzzR“/2(—asmx-, zd\uJBc+l\(22R”2a—Bc
oz 2 2 oz
1 1/2.. 0C
RS-
2 i oz
(2.12)
in which,
COS(M)—SH}(M)
B=—s1- - (2.13a)
cos(ﬂ'—)+sin(mg—‘)
4 4
R =1+02 +20cos); (2.13b)
‘gB dy : (2.13¢)
Z . .
[cos Vdi ) + sin(@)]
4 4
cos( ) SWdi _ Xi)
= 4 (2.13d)

%(zz = [——-d\u cos(8q4; +Aj) + dk{sm( Vdi —A; +04i ) +cos(dgj + A )}

. . . 2
_dS{COS(Sdi +A) - sin(3“;d' - +04; )}]/{COS( 3“;dl +94; ) + sin( 3“;(11 + 04 )}

(2.13e)

1 oc(cosk'~ +0)
dA =—dy ! ; (2.13f)
47 1+ +20cos ),

The distribution of y along the wall is the same as the one assumed by Dubrova for different
modes of movement of the wall; 8, is assumed to be given by the following equation.



T Wdi
di 4 4 ( )

The rotation of the failing retaining wall about any point was considered. For such cases

of the failure mode, the slope of the failure line was determined, together with the point of

application of the total force. Moreover, the pressure distribution and the critical direction of

the earthquake loading were computed.

2.4 NUMERICAL STUDIES

2.4.1 Static Earth Pressure

Plasticity based models have been used extensively in recent years to describe the behavior
of soils. The models based on the theory of plasticity, in general, describe the soil as an
elastic-perfectly plastic, or to account for the hardening-softening behavior up to the ultimate
or residual strength, as an elastic strain hardening-softening plastic material.

Clough and Duncan (1971) analyzed the soil-structure interaction problem by the
nonlinear finite element method. They used hyperbolic empirical equations with material
parameters determined from experiments to account for the nonlinear behavior of both the
interface elements as well as the soil elements, and performed incremental analysis for a wall
undergoing two modes (T and RB) of movement. However, their model still suffers from
the fact that it can not describe the mobilization of the wall friction along the wall-backfill
interface in each increment of the displacement. A pre-assigned value of the angle of wall
friction, 0, is required to perform the incremental analysis. In other words, their model took
d as an input variable. Another drawback of their method is that the generalized Hooke's
law, which form the basis of simple hyperbolic stress-strain relationship takes soil as non-
dilatant material.

Ozawa and Duncan (1976) modified the model of Clough and Duncan (1971) to account
for the elasto-plastic behavior instead of hyperbolic behavior by extending Lade's theory and
applied it for the calculation of the passive earth pressure. However, they applied the model
to analyze only smooth walls, and no attempt was made by them to incorporate wall friction.
Griffith (1981) used simple numerical models to examine the influence of various
stress/strain paths (both pre- and post-peak) with reference to the ultimate earth pressure
conditions.

Nakai (1985) used elasto-plastic soil element as well as elasto-plastic joint element in the
earth pressure analysis for different wall movement modes. The constitutive equation used in
his analysis was based on the concept of Spatial Mobilized Plane proposed by Nakai and
Matsuoka (1983). The model has the added advantage of considering the effect of the



intermediate principal stress, and the smoothening of the corners of the Mohr-Coulomb's
hexagon. However, the absence of the concept of the work-hardening on one hand, and the
assumption of the coincidence of the principal strain increment axes with the principal axes
of stress on the other, bring it to the category of the perfect plasticity model. No explanations
were also found regarding the assumptions and the physical significance of the different
parameters that appeared in the material property matrix of the joint element used in the
analysis.

Many other researchers (e.g. Simpson and Wroth, 1972; Bhatia and Bakeer, 1989 etc.),
in the last two decades, contributed to the field of numerical computations of earth pressure

under static loading conditions.

2.4.2 Seismic Earth Pressure

Numerical analysis of earth pressure under seismic loading conditions involves more
complication. With the advent of computer, the Finite Element Method (FEM) became a
powerful tool in analyzing seismic earth pressure problems. In the last decades, significant
advancements have been achieved in the analysis of the behavior of earth retaining walls
under seismic conditions.

Aggour and Brown (1973) used finite element model of a wall-backfill system excited by
sinusoidal ground motion. They concluded that in flexible wall, the pressure near the top 1s
smaller than on rigid walls, and that the dynamic pressures depend very much on the static
ones. They also concluded that if the length of the backfill is greater than 10 times the height
of the wall, the dynamic wall pressure approaches that of an infinite backfill.

Nazarian and Hadjian (1979) emphasize the need for a numerical model that includes a
no-tension wall-soil interface, simultaneous rotation and translation of the wall base and the
radiation damping effects.

Aubry and Chouvet (1981) proposed a mixed implicit-explicit nonlinear technique to
analyze the soil-wall interaction while accounting for the wall inertia and the relative
displacement between the wall and the soil. The behavior of the backfill sand was described
by the Drucker-Prager elasto-plastic law with associated flow rule. The initial state of stress
assumed to be in the active state throughout the mesh. Special interface elements, taking into
account Coulomb’s law of friction, were used between the soil and the wall. In view of the
extremely small duration of the imparted dynamic excitation, the presented wall-soil analysis
is not clear enough to draw any useful conclusion.

Nadim and Whitman (1983) assumed that all irreversible distortions in the backfill occur
in thin failure surfaces, the location and orientation of which were assumed in advance.
These surfaces were modeled by very thin joint elements of Goodman type (1968) that have
limited shear strength. The behavior of soil in the non-failing portion of the problem was

assumed to be elastic. Equivalent linear soil properties were employed. The conclusions



were: (1) The amplification of the backfill motion is important when the ratio of the dominant
frequency of the ground motion and the fundamental frequency of the backfill is greater than
0.3 and (2) Due to seismically induced stress redistribution, the residual forces on the wall
may be greater than the static active forces.

Bakeer and Bhatia (1985) used finite element method in the dynamic analysis of a
retaining wall subjected to different modes of movement. The analysis showed that the
magnitude and the distribution of the earth pressure depend on the mode of the wall
displacement. It was also confirmed that the coefficient of earth pressure becomes maximum
when the fundamental frequency of the wall-wedge system approaches the frequency of the
input motion. The effect of the fundamental frequency of the wall-wedge system on the
location of the earth pressure was found to be extremely small.

Siddharthan et al (1989) investigated the seismic response of rigid retaining walls
supporting dry sandy backfill. Slip elements were incorporated at the wall-soil interface, at
the base of the wall as well as along a pre-selected failure plane in the backfill (at 62° to the
horizontal and passing through the toe of the wall). The properties of the slip elements were
assumed elastic-perfectly plastic, with failure given by the Mohr-Coulomb failure criterion.
They showed that the rotational deformation (of the wall structure) might be very significant
in some cases and should be accounted for in analysis procedures.

Stamatopoulos and Whitman (1990) investigated the permanent tilt behavior of retaining
walls. A residual strain method was implemented, in which the calculation of the transient
and the residual response was uncoupled over each cycle of loading. A hyperbolic model,
for the sand backfill, with shear modulus decreasing with increasing shear stress was used.

Elgamal and Allampalli (1992) developed a simplified wall-soil computational model to
investigate the permanent sliding and rotational response of cantilever and gravity retaining

walls.

2.5 CLOSURE

In this chapter, literature on the existing philosophies of earth pressure from the analytical,
the experimental as well as the numerical points of view have been reviewed. Similarities as
well as diversities in the approaches have been seen. Even though, tremendous progress has
been made in general in the field of earth pressure, however. the progress for the dynamic
earth pressure has been remarkably uneven. The accuracy of the values of earth pressure
predicted by the plasticity theory is determined by the particular model adopted for soil.

A retaining wall can undergo various modes of displacement depending on the situations.
The distribution of the earth pressure is highly nonlinear depending on these modes. The
classical theory of Coulomb or Mononobe-Okabe provided no analytical basis for the



distribution of earth pressure. The resultant active or the passive thrust and the point of
application of the resultant thrust are governed by the modes of displacement of the wall.

Analytical solutions are available for expressing the distribution of earth pressure for
various modes of displacement. However, they can not explain the actual phenomenon as
they are unable to truly capture the progressive deformation characteristics of the backfill
soil. Numerical analysis based on the finite element method (FEM) or the discrete element
method (DEM) has been increasingly getting popular in analyzing earth pressure problems.
However, most of the existing numerical models do not consider the localized deformation
inside the backfill. In addition, an adequate interface description is also found to be lacking
in those models.

The inception and propagation of shear bands, inside the backfill, need to be considered
while analyzing the progressive deformation phenomenon such as earth pressure. Hence, a
new constitutive model is developed for the backfill based on smeared shear band method,
which is discussed in Chapter 3. Having recognized the importance of interface modeling in
the soil-structure interaction phenomenon associated with the retaining wall behavior a

simple interface model is developed and described in Chapter 4.
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CHAPTER
THREE

Constitutive Model for the Backfill

It is the mark of an educated man
to look for precision in each class of things
just so far as the nature of the subject admits

Aristotle

3.1 INTRODUCTION

The history of soil mechanics can be viewed as a search for the relations describing the
behavior of soil as a material responsive to the laws of mechanics. Perhaps Terzaghi’s
greatest contribution in establishing the mechanics of soil as a discipline was to organize the
diffuse literature of the achievements in the subject into a rational entity. In recent years much
research effort has been devoted to the development of realistic constitutive models of soil
behavior, a considerable proportion of which are based on the underlying assumptions of
classical plasticity theory.

While today there are practically no limits on the capability of computational techniques,
serious handicaps still exist with expressing material behavior by the proper constitutive law.
Limitations in using the techniques primarily derive from our inability to describe appropriate
constitutive behavior for soil and to determine the parameters needed for the constitutive
models.

Advances in understanding the behaviors of granular materials, such as sand, depend
upon both experimental and theoretical works. Experimental studies show what types of
constitutive relations are valid for laboratory conditions; theoretical studies indicate the
consequences of using various proposed constitutive relations for solving boundary value
problems. A variety of quasi linear or nonlinear elastic and elasto-plastic models have been
proposed for characterizing the stress-deformation behavior of such materials. Since the
behavior is complex owing to the effect of factors such as the initial state of stress, stress
path, change in physical state (volume) and the type of loading, it is necessary to modify or

improve the models based on classical plasticity theories.
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In this chapter two types of constitutive relations are derived. One is derived assuming
continuity of stress throughout the entire deformation field, which is nothing but the
conventional elasto-plastic strain hardening relationship using Drucker-Prager failure
criterion. However, failure of the soil structures and foundations is very frequently
accompanied by the development of surfaces or bands at which high gradients of strains are
present. Capture of failure surfaces by standard finite element techniques is still not
satisfactory as the deformation is smeared over a certain number of elements. In recent years,
considerable attention has been paid to the shear band localization problem. Until now, these
shear band localization analyses considered only one shear band inside an element.
However, the theoretical and experimental investigations proved the existence of two bands
crossing each other. Therefore, a new constitutive relation, for granular materials, is derived
by considering two shear bands for the elements undergoing localization. This constitutive

law is derived by coupling the two bands, and is named Coupled Shear Band Method.

3.2 CONVENTIONAL ELASTO-PLASTIC CONSTITUTIVE RELATION

The general form of the elasto-plastic constitutive equations for perfectly plastic, isotropic

strain-hardening and anisotropic strain-hardening materials can be written as,

d f
(D¢ 55) ® (D° §—>
do =|D°- gf 80" de (3.1)
h+ —e¢(D°=2)
0c J0

in which © is the stress tensor , D° is the elasticity matrix, f is the yield function, g is the
plastic potential function, € is the strain tensor and h is the hardening modulus. Introducing
the dilatancy factor, B (Rudnicki and Rice, 1975) into the above equation yields the

following expression for the constitutive relations.

£
(D°(m +fBn)) ® (D° §~)

do =|D®- 55 O |de (3.2)
h’+— eD°(m+ fn)
00

Here m and n are the unit tensors in the directions of deviatoric and volumetric stress
) h . ) )
respectively; h' = 3% is the hardening parameter and can be derived as,
9s
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here K is the hardening function of the material during the plastic deformation. The dilatancy

factor, B, is defined by the following equations:

&P
B= %: de? =+/de Pde,?, de? =VdePde’ (3.4)
e
in which de? and de P refers to deviatoric and volumetric part of the plastic strain def

respectively. The tensile force is taken as positive here and will be the same throughout the
discussion of this thesis.

The Drucker-Prager criterion of perfect plasticity has been modified to account for the
strain hardening properties of the backfill soil in which the yield function can be written in

the form,
f(o,x,(€7)) = a6 +s—K, (3.5)

where K = ¥;, + K, and K;, is the initial value of the hardening function, 6 and s denotes

the volumetric and the deviatoric component of the stress tensor respectively. The material
parameters o and Kj,, which are derived using Mohr's diagram under plane strain

condition, are computed by employing the following equations.

(R

o= > 1 i 36
\j3+4tan“q)i a9 (3.0)

. 6

K:. = ,-——————C (3'7)
n \f3+4tan2 0;

Here ¢; is the angle of internal friction of the backfill soil at the initial yield (Fig. 3.1),

which can be determined from experimental data for the material; ¢ denotes the cohesion.
Using the above yield function (Eq. 3.5) we can obtain the following equation.

i9—£=m-1—0m (3.8)

00
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Fig. 3.1 Definition of the angle of internal friction at initial yield, @,

Hence the elasto-plastic constitutive relations can be obtained as in Eq. (3.9) by substituting
the values from Eq. (3.3) and Eq. (3.8) into Eq. (3.2).

i - [De _ <D¢<m+Bn)>®<De<m+an»} de (3.9)
h’+ (m+ o) e D°(m + fBn)

A hyperbolic form of the hardening function, ¥, is assumed, which is given by the

following equation:

__G&
R (3.10)

in which d& = |de”

; a and b are the material parameters, which can be determined from the

experimental results. Using Eqgs. (3.3) and (3.10), the hardening parameter h’ can be

derived as,

- &
(a+bE)?

’

(3.11)
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The dilatancy factor § has been assumed to be of the form,

B=ae 010 (3.12)

where a, and b, are the material parameters determined from the experimental results by

least-squares curve-fitting technique.

3.3 LOCALIZED DEFORMATION ANALYSIS - AN INTRODUCTION

In the quest for determining the collapse loads, it is often found that the applied or driving
forces needed to cause failure in a soil mass is much less than those apparently needed to
mobilize the maximum shear strength of the soil everywhere along any assume failure
surface. This phenomenon called progressive failure involves non-uniform spatial stress and
strain distributions. In order to obtain the solution of a progressive failure problem, it is
necessary to introduce in the analysis the explicit stress-strain or constitutive relationship
which describes the elasto-plastic transition from the initial elastic state to the ultimate failure.
Progressive failure and localization of inelastic deformation are phenomena which are
delicately intertwined. The well-defined deformation pattern in the form of a shear band to

emerge from a state of previous homogeneity is indeed a very fascinating phenomenon.
3.3.1 Brief Review on Localization Research

The shear band localization is known to be a factor responsible for strain softening behavior
of the granular materials. Many researchers (e.g. Mandel (1966), Rice (1976), Rice and
Rudniki (1980), Anand and Spitzig (1980), Vardoulakis (1981), Ortiz et al (1987), Yatomi
et al (1989)) in the last three decades have been trying to model the localized deformation
phenomenon treating it as a material instability. All these treatments exhibit numerical
deficiencies as they preclude the post-localization analysis. In other words, the studies were
confined to the initiation of the localization.

De Borst (1988) included the post bifurcation behavior into his treatment, however, the
solution could not escape the pathological mesh dependence. Desrues (1990) gave a
comprehensive treatment on the subject of shear band from both the numerical and
experimental points of view. Since the triggering of the shear band leads to softening, the
post localization analysis involves modeling of the softening regime. Oka et al (1994)
developed a visco-plastic strain softening model for clay, using the strain localization theory,

which is capable of describing the plastic instability.
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However, most of the existing strain softening models do not consider the geometrical
effect, in the sense that the shear banding is entirely attributed to the material instability.
These models show sensitivity to different factors such as the discretization of the system,
the rate of strain softening etc. Pietruszczak and Mroz (1981) introduced the plastic shear
band theory to analyze the behavior of strain softening material from a different perspective.
They showed that the width of the shear band can be related to the type of the material; hence
the rate of strain softening is significantly affected by the geometry of the specimen, which
was termed geometrical softening. In the formulation, the smearing technique was applied
to include a factor (the width of the shear band) in the constitutive description representing
the geometrical softening. The selection of the appropriate value for the thickness of the
shear band has been shown to render the analyses essentially insensitive to the details of
discretization.

Pietruszczak and Stolle (1987) extended the smeared shear band approach of Pietruszczak
and Mroz (1981) to include more complex strain softening model that accounts for the finite
strain and rotations within the shear band using non-associated flow rule. The approach
views the inception of softening as a bifurcation from an initial uniform deformation to a
non-uniform deformation inside a planar band under conditions of continuing equilibrium
and continued homogenous deformation outside the shear band. The hardening function
employed in the formulation allows a transition from hardening to softening at the instant of

strain localization.

3.3.2 Smeared Shear Band Approach

An element undergoing shear band bifurcation can be schematically represented as shown in
Fig. 3.2 with two sub-elements, one with elastic response and the other with shear band

response engulfing the shear band, where the strain is localized.

CAA A

AL LLRLLRLRLN LY

# +
Load 7 S 6
Increment — T

Present State Fundamental Shear Band
Response

Fig. 3.2 Concept of shear band localization problem

If d is the strain rate inside the shear band, the strain rate for the whole element is given

by smearing the strain inside the band to the entire element. Since the thickness of the band is
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small compared to the dimension of the element, large deformation generates inside the band.
However, when smeared over the entire element the strain can be assumed to be small, and

is given by:
ef =cd (3.13)

Here £ is the smearing factor defined to be

Area of Shear Band (Ab)

= (3.14)
Area of Element (Ag)
The total strain in the localized element is given by:
g=e%+¢f (3.15)

This is known as smeared shear band approach and was initially proposed by Pietruszczak
and Mroz (1981).

Until now, all the shear band analyses considered only one shear band inside an element.
In this research, the constitutive relations for the post-bifurcation behavior are developed
using two shear bands based on the concept of smeared shear band approach. The
constitutive model, named Coupled Shear Band Method (C.S.B. Method), is formulated

by coupling the two shear bands the description of which follows.

3.4 ESSENTIALS OF THE COUPLED SHEAR BAND METHOD

Localized shearing leads to bifurcation from a uniform deformation to a non-uniform mode
involving the inception of shear bands. Once localization takes place, the post bifurcation
behavior can be idealized as pseudo-uniform deformation using smeared shear band
approach with single band initially proposed by Pietruszczak and Mroz (1981) and later
modified by Pietruszczak and Stolle (1987). However, theoretical evidence supports the
existence of two bands along which the strain is localized. Experimentally too it is confirmed
that if co-axiality of the ends of the sample is imposed by the apparatus generally two shear
bands will be observed crossing each other (Desrues, 1990). The two bands develop
simultaneously or alternately in loose sands; in dense sands the first band dominates for a
while, but finally the second band appears. Above all, Mohr’s diagram gives two directions
of the failure planes along which failure occurs with inclinations as shown in Fig. 3.3.
Although localization is possible even in the hardening regime just before the peak, in

this research, it is assumed that the localized shearing takes place only at the peak load (i.e. at
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failure), which leads to softening. In order to simulate the two failure planes of Mohr’s
diagram, consideration of both the bands in the analysis is indispensable, since the
concentrated strains in two different directions ultimately contribute to the softening of the
material. The consideration of single shear band, in general, might lead to underestimation of
the strain softening response. Hence, for an element undergoing the localized shearing, the

effect of both the shear bands needs to be incorporated in its constitutive relation.

A

Failure Plane |

i

Failure Plane 1l

Fig. 3.3. Mohr’s diagram for cohesionless soil showing the directions of the bands

3.4.1 Orientations of the Bands

As mentioned earlier, the basic assumption made here is that the localized shearing initiates at
the instant of failure. Hence, when the yield surface reaches the failure surface, the element
can be assumed to have cracked engulfing the two shear bands. At that instant, the
constitutive relation for the cracked elements needs to be modified taking into the account the
effect of the incepted bands.

At the localized state, the element can be assumed to be composed of three sub-elements
as shown (considering a triangular element) schematically in Fig. 3.4. Such an element,

containing the shear band, has been named as "cracked triangular element” by Kawamoto
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and Takeda (1979). Sub-element I behaves elastically under the applied load. Sub-elements
IT and III entrap the shear bands, which are inclined at angles 6, and 6, to the X axis

respectively. The plastic strains accumulate inside the two bands.

Band | Bandll
n 2
1
— + ty
/115;/:"’////!/// e l
Localized State Sub-element | Sub-element |l Sub-element Il
. . P P
€ = e° + g + €,

Fig. 3.4 Cracked triangular element with two shear bands

Assuming co-axiality of the stress and strain rate tensors, the inclinations of the two

bands are given by the following equations.

6,= em—(%+% (3.16)

¢

3n
= .17
0,= Gm ( 2 2) 3.17)

where 8, is the angle from the X axis to the major principal axis in the Mohr diagram (Fig.
3.3); ¢ being the angle of internal friction of the material.

The Coulomb orientations, given by the above equations (Eqgs. 3.16 & 3.17), are not the
sole shear band orientations existing in the literature. In fact differing opinions exist
regarding the orientations of the bands. The question of the orientation of the shear bands is
an important one from both the practical and the theoretical point of view, since a critical
orientation for the initiation of localization is one of the results of the bifurcation analysis
applied to shear band mode of bifurcation. If the shear band is seen as a region of intensely
shearing material where the strains are considerably greater than those in the surrounding
regions, which can then be assumed to be comparatively rigid, then the compatibility

indicates the coincidence of the shear bands with zero extension lines and this led to
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Roscoe’s (1970) orientation, 6 = Gm t(mn/4 ——\2{), V¥ being the angle of dilation. A further

possibility is to regard the formation of the shear band as an instability in the constitutive

relationship that the material is following immediately before the rupture forms. This

1
approach leads to the intermediate orientation, 6 = Bm t[rn/4- Z((b + )] (Arthur et. al

(1977), Vardoulakis (1981), Vermeer (1982)). Thus, Coulomb orientations and Roscoe
orientations provide the upper and the lower bound respectively. It can be expected that the
boundary conditions applied to any particular situation will influence the direction in which
the shear bands choose to form. Scarpelli and Wood (1982) suggested that the degree of
constraint perceived by the sand would influence the particular bifurcation (Coulomb,
Roscoe or Intermediate Orientations) that it adopts at any particular location. When the sand
gets the freedom of movement it may adopt the intermediate orientations. When the imposed
condition is greater (i.e. in a simple shear test where the thickness of the sample is only
about twice the expected shear band thickness), then the shear bands may have no choice but
to follow the Roscoe orientations. However, in the formulations that follow the

aforementioned Coulomb orientations (Eqgs. 3.16 & 3.17) will be adopted.
3.4.2 Constitutive Relations for the Cracked Elements

The large deformation theory gives the relations (3.18) and (3.19), which connects the rate

of deformation tensor d and the Jaumann rate of stress tensor & inside the two bands
under the plane strain condition in which f, is the yield function and g, is the plastic

potential function.

For band I: Relative to the {n,t,} co-ordinate system the constitutive relation takes the

form given below.

_ —agh afb 0 agb afb ] R
d,, | | 95, 90, 36, 95, || On
d, t=-— 0 0 0 G (3.18a)
i | H|og of,  dg Of |5
i dG,, 00, 96, 00 m
L t { nt) ntl_

The above relation in the {x,y} co-ordinate system takes the form

- 1 =,
d, = —[C/16, (3.18b)

S
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For band II: Relative to the {n,,t,} co-ordinate system the constitutive relation is

given by,
B (g, O, Ozy Oy |
d, | | 964, 904, 96,, 96, || O
d, r=— 0 0 0 G, (3.19a)
i Hy| dg, of, 0 og, of, 5
mz acn[z aGno a nt7 a(jntw mz
Relative to the {x,y} co-ordinate system the above equation takes the form.
d, = L [C,16 (3.19b)
AT .

S

Here [El] and [Ez] are the compliance matrices (Vermeer, 1982) in the global co-ordinate

system and defined by the following equations:
[C,1=IT,]"[C/IT,] (3.20)
[C,]1=[T,1"[C,1IT,] (3.21)

In which [61* ] and [E; ] represent the compliance matrices in the local co-ordinate systems
{n,,t } and {n,,t,} respectively and can be evaluated by the bracketed terms in the Eqs.
(3.18a) and (3.19a). The matrices [T,] and [T,] are the transformation matrices defined by

the shear band orientation angles 0, and 8, respectively, while H, is the softening modulus.

Egs. (3.18a) and (3.19a) indicate that the rate of deformation across the shear band vanishes.
Expressing 6, and G, in terms of Cauchy's stress rate ¢ and then some transformations

render the following equations

- 1 l = =
d; = —((1--[C1B3,)'[C 16 (3.22)

_
d, = —H—([I]—-—[C~,1B8 )'[C,16 (3.23)

S
in which I is the unit tensor and P is given by the expression

B ={-20,,,20,,.(0, -G} (3.24)
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0, and 3, are the transformation matrices defined by the orientation angles 6, and 6, and

can be obtained by substituting the values of g in the expression given below
1 2 2T
d = {-sc, sc, —2—(0 -s7)} (3.25)

where s =sin(—0); ¢ = cos(—0). Introducing the smearing factor {, the infinitesimal

plastic strains in the two sub-elements can be expressed as
el ={d, (3.26)
&) ={d, (3.27)
As shown in Fig. 3.4, the total strain in the cracked element can be written as,
E=¢ +¢€ +¢€! (3.28)

where €° is the elastic strain rate generated inside the sub-element I. Substituting the Egs.
(3.22), (3.23), (3.26) and (3.27) into the Eq. (3.28) the constitutive equation takes the

following form:

. 1 = = - = H. .
8={([I]—-H—S[C[]E351T) '[C1]+([1]—H—S[CZ]BSZT) l[(32]+—C5-[C ]}H%G (3.29)

in which the elastic part of the compliance matrix C® is given by the following equation.
(1-v?) —=v(1+V) 0

[Ce]=% —v(l+Vv) 1=V 0 (3.30)
0 0 2(1+ V)

E and v are the Young's modulus and Poisson's ratio respectively. Eq. (3.29) represents the

constitutive relation for the cracked elements with localized strain.
3.4.3 Hardening, Localized State and Softening

3.4.3.1 Hardening Regime

The constitutive relation for the non localized elements is given by the conventional relation

for elasto-plastic strain hardening material (Eq. 3.12) in which case the yield function f and



the plastic potential function g are assumed to be given by the following Mohr-Coulomb
criterion with the major principal stress, 6, and the minor principal stress, G

f=(0,-03)+(0,+0y)k; g=(0,-03)+ (0, +03)M (3.31)

where k and 1) are the hardening function and the dilatancy parameter respectively which are

assumed as
Kf& . K—K¢

3.32
A+E (3-32)

K=Sin¢m = T]:S[n\ym =

I - KK,
Here, ¢, is the mobilized angle of internal friction, K; = Sind_, 0; being the peak friction

angle, A is the material constant and & is the plastic distortion. y, is the mobilized dilatancy
angle, ¥, =Sin¢ is a constant defining the zero dilatancy state, ¢, being the friction angle
<

at constant volume. The consistency condition yields the hardening modulus H as

KA
H=- — 3.33
(o, + G3)(A+§)2 (3.33)

3.4.3.2 Strain Localized State

It is generally believed that localization can occur even in the hardening regime before the
peak. However, in this formulation it is assumed that failure precedes the localized shearing.
When the yield surface reaches the failure surface, that instant the constitutive relation for the
elements is given by Eq. (3.29). The failure surface, F, is assumed to be of Mohr-Coulomb

type given by the following equation.

F=(0;-03)+(0) +03)sind; (3.34)

3.4.3.3 Response in Softening Regime

On spontaneous loss of homogeneity, the irreversible deformation is assumed to be
localized in the two shear bands. Progressive flow within the bands generates plastic strains

of finite magnitudes. However, the average non-homogenous strains remain infinitesimal. At
the instant of localization, the yield function f, and the plastic potential function g, inside

the bands in the {n,t} coordinate system are assumed as

f, =0, +K0,: gp =0, t N0, (3.35)

where K, is the softening function assumed to be given by (Pietruszczak and Stolle, 1987).
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K = Ny {1 +exp[-R(Y* —vy)l} (3.36)

where T is the dilatancy parameter, R is the material constant that determines the rate of
softening, y" is the plastic shear strain that accumulates within the band after its inception
and 7, is the value of shear strain when y” = 0. Using the above yield and plastic potential

functions, the softening modulus, H; can be obtained from the consistency condition as
H; =Ro, (k; - 1) (3.37)
3.4.4 Material Parameters

In order to identify the model, the following material parameters need to be specified. The
various material constants appeared in the C.S.B. Method described above can be
determined from the conventional triaxial tests or plane strain tests.

(1) Elastic moduli E and v

(2) The deformation parameters which include:
(a) Parameter identifying the failure line denoted by k; = Sin¢..

(b) The constant A given by A = K; —2%- where G is the elastic shear modulus and P for

conventional triaxial test is given by P = (©,+ 20%5

(c) The constant R, which is the slope of the strain softening portion of the stress strain
curve and can be determined by performing parametric study.

(3) The dilatancy parameters that includes:
(a) The dilatancy constant k. = Sin¢_, where ¢, can be determined from the dilatancy

curve. As a rule of thumb, the relation ¢, = 0.7¢ £ can be used.

(b) The dilatancy constant in the softening regime is given by: Mg = tan q)cv

(4) The smearing parameter { can be determined from a parametric study for the problem,

which is explained in the chapter about the application of this constitutive model.

3.5 SUMMARY AND CONCLUDING REMARKS

In this chapter, two constitutive relations for modeling the backfill mass of a retaining wall
are described. The first one is the conventional elasto-plastic constitutive relation with the
Drucker-Prager failure criterion. In it, the hardening is defined by a hyperbolic function, the

parameters of which can be determined from the conventional triaxial testing. The other one,
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a new formulation named as Coupled Shear band Method, is based on the smeared shear
band approach and it considers the localized deformation inside the backfill.

Earth pressure phenomenon involves progressive deformation. Thus, the assumption of
simultaneous mobilization of the peak strength along the slip surface is not an easily
acceptable fact. This necessitates the use of shear band localization in modeling the backfill
constitutive laws. Since the triggering of shear band leads to strain softening, the constitutive
relation should involve the modeling of the softening regime. Thus, the constitutive relation
assuming continuity of stress throughout the entire deformation field, as in the case of the
first constitutive description, does not suffice to capture the progressive failure in the
backfill. A

In most of the existing strain localization models shear banding is entirely attributed to the
material instability. These models show sensitivity to different factors such as the
discretization of the system, the rate of strain softening etc. Inclusion of the width of the
shear band in the constitutive formula, thus taking care of the geometric softening, has
shown to render the analysis insensitive to the above factors.

The post localization regime should be modeled by using two shear bands, and the
constitutive relation can be formulated by coupling the two bands. The orientations of the
bands can be given by Coulomb, Roscoe or Intermediate orientation. The material
parameters appeared in the new constitutive law can be easily determined from the

conventional triaxial or plane strain tests.
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CHAPTER
FOUR

Modeling the Interface

Nature is indifferent towards
the difficulties it causes
to a mathematician

Fourier

4.1 INTRODUCTION

The interaction between the structure and the geologic media (e.g. soil) is an important aspect
of any retaining wall analysis and the response may be affected significantly by the interface
between the wall and the backfill (Fig. 4.1b). Whitman and Bielak (1980) define the soil-
structure interaction in the following way:
If the motion at any point on the soil-structure interface differs from the
motion that would occur at this point in the free field if the structure were
not present, there is soil-structure interaction. If the interface moves or
behaves differently than the corresponding surface in the free field, there is

interaction.

Structure ——pp» Interfaces

/ Backfill
% Interfaces
Geologic Medium A |
Fault (Joint) Geologic Medium

(a) (b)

Fig. 4.1 Typical soil-structure interaction problems (After Zaman et al, 1984)

It is now well established that for any realistic evaluation of the behavior of a structural-

soil system, subjected to static or dynamic loads, it is essential to allow for the interaction or
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coupling between the structural and the geologic media. A number of constitutive or stress-
strain models have been proposed in order to simulate the interface behavior, particularly for
static loading condition. No model has yet proved to be suitable for general application.

The importance of interaction phenomenon in static and dynamic soil-structure interaction
has been recognized and studied by many investigators. It is not intended to present a
detailed review herein; comprehensive reviews on various aspects of soil-structure
interaction are presented by Desai (1977), Whitman and Bielak (1980). In this chapter some
of the well-known interface models, which are widely in use in the Geotechnical Engineering
field, are briefly reviewed. Finally, a new interface model, particularly for retaining wall
problems, has been presented, the application of which can be referred in the subsequent

chapters.

4.2 THEORETICAL BACKGROUND IN MODELING THE INTERFACE

The interface modeling is usually based on the following constitutive relationship for a two-

dimensional body:
{o} =[K;[{u.} (4.1)

: T .
where {c}" =[G, 6] is the vector of normal and shear stresses, {u,} =[u,, u,] is the

vector of relative displacements (strains) in the normal and shear modes, respectively and
[K j] = matrix containing the stiffness of the interface element, which can be expressed as

Knn Kns
[Kj]z{K K } (4.2)

sn SS

Very often, the cross stiffness K, and K, are assumed to be zero, then

K, O
[Kj] =[ 0 K :I (4.3)

SS

In soil-structure interaction problems, it is usually assumed that the structural and the
geologic media may not penetrate each other and hence during the translational model, the
value of normal stiffness is assumed to be very high. It is difficult to arrive at an appropriate
high value of K, that would yield consistent and reliable results. Mostly, it is arrived at by

performing a parametric study for the problem at hand.

50



4.3 PROPERTIES OF THE JOINTS AND INTERFACES

The properties that may be assigned to the joints or interfaces, are the shearing and the
normal stiffness of the element. They are classified as dilatant if the shearing produces joint
expansion or contraction and nondilatant if the shearing and normal displacement are

uncoupled.
4.3.1 Nondilatant Joints or Interfaces

This class of joints is the simplest to model mathematically since there is no volume change
due to the shearing strains, and therefore the shear and the normal components of

deformation are uncoupled. The stress-strain relations are given by:

tlo el
= 4.4)
o 0 K,|[&

In relating the stress to the deformation in the direction normal to the joint, three distinct
stages are defined (Fig. 4.2): (1) separation or debonding K, =K = 0, when ¢, 0; (2)

compression K = E, when ¢ <0 and (3) contact, K, = Ef.

Ao,

o

o

‘@
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€9 [

T £,
Compression Tension
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£

E¢ S
(&}

Fig. 4.2 Normal stress-strain relationship (After Ghaboussi et al, 1973)

The tangential stress-strain relationship is assumed to be elastic-perfectly plastic using

Mohr-Coulomb yield criterion.



4.3.2 Dilatant Joints or Interfaces

Dilatancy at the joints or interfaces is more complicated. One method of representing
dilatancy begins by defining nondilatant properties of the joint in terms of p-q coordinate
system shown in Fig. 4.3. By transformation of coordinates, the constitutive properties may

then be expressed in terms of the n-s system as follows:

o, _ chl + Kp52 (K, - K,)sc ||g, (4.5)
o) |(K-K,sc Ks*+K’|[e

in which ¢ = cos ¥; s = sin y; Kq = normal stiffness in the q direction, perpendicular to the
local joint plane; and Kp = shear stiffness in the p direction. The amount of dilatancy,
according to this method, thus depends on the intrinsic properties of Kq and Kp as well as

on the normal stress.

Fig. 4.3 Dilatant joint model (After Ghaboussi et al, 1973)

4.4 CLASSIFICATIONS OF INTERFACE

Tatsuoka (1985) pointed out that the interface friction  between cohesionless soil and
another material is upper bounded by two different values (8, and 8") depending on the two
classes of interface: the first is the case when the interface is a velocity discontinuity, and the
second is the case when the interface is not a velocity discontinuity.

When the interface is a velocity discontinuity, the cohesionless soil mass in the
immediate vicinity of the interface may or may not be at the limiting stress condition. The
value of the friction angle may not be direct function of the mechanical properties of the soil

mass, but may be a function of the mechanical properties of the particles and materials in



contact and the roughness of the surface of the material. Fig 4.4 is the case when the

interface is a velocity discontinuity.

Fig. 4.4 Interface with velocity discontinuity

1:1

Prmax
/ N

| \\\\\

Possible Range of §

\\\\ NN\

Fig. 4.5 Relationship amongst §, 8, and 8 (After Tatsuoka, 1985)

When the interface is not a velocity discontinuity, the mass of soil moves solely due to
its deformation along the interface without producing a velocity discontinuity. The value of
the friction angle is a function of the strength and deformation properties of the cohesionless

soil and the deformability of the material in contact with the soil.
The relationship between 8, 8, and §" is illustrated in Fig. 4.5. The range for possible

values of 6 is upper bounded by two lines OA (8= 9,) and AB (§ = 8"). It is to be noted

that & may or may not be mobilized at the failure of the adjacent soil mass.



4.5 INTERFACE MODELS - A REVIEW

Junctions or interfaces between two dissimilar media having widely differing strength
properties pose a different problem than the deformation of a continuous medium. In the case
of the later, two adjacent points deform in such a way that the continuity of displacements at
the points is maintained. However, for the interfaces, continuity may be maintained only up
to a certain load level. At higher loads, relative slip and debonding (loss of contact) can occur
and the two initially adjacent points may no longer have continuous displacements. Under
certain types of loading, the interface may also experience separation or opening and then
may close. Thus, the behavior at the interface renders the structural-soil system to deviate
from being continuous.

A variety of efforts have been made to account approximately for the foregoing special
behavior at interfaces. These have included characterization of behavior of joints in rocks and
interfaces in structure-soil systems. Most of the studies towards development and application
of models for interfaces and joints have involved static loading and use of such models for
cyclic loading is of rather recent origin. Hence for the sake of logical development and

completeness, a review of the models for static analysis is presented.

4.5.1 Linkage Element Model

Ngo and Scordelis (1967) presented a linkage element for simulating the cracks in concrete,
and described the behavior of a crack in the two-dimensional mass by using springs for

normal and shear responses as shown in Fig. 4.6.

Vv

Fig. 4.6. Linkage element (Ngo and Scordelis, 1967)
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The linkage element can be conceptually thought of as consisting of two linear springs
parallel to a set of orthogonal axes H and V (Fig. 4.6). For generality, the linkage element
can be oriented at an arbritary angle g with the horizontal axis. This type of element is similar

to the non-dilatant type of joint element.
To incorporate the linkage element into the finite element computer program, it is

necessary to develop the stiffness matrix of the linkage element. Let the springs in the H and
V directions have stiffnesses K and K, respectively. The stress-strain relationship will be

given by:

c K, 0]fe
hi_|5n h (4.6)
o, 0 K, |lg,
where €, and €, are the relative displacement between the points I and J in the H and V

directions respectively. The strains and the displacements are related through the

displacement transformation matrix T.

{e} =[TKs} (4.7)
or
5,
{eh} [—c -s C s] 3,
= - (4.8)
£, s —¢ —s c]|&;
5,

where ¢ = cosg and s = sing. Hence the stiffness matrix of the linkage element can be

expressed as:
w=ram=| T ) T ] @9)

4.5.2 Joint Element Model

Goodman et al (1968) presented a rock joint element by expressing the relative displacement
between the two dimensional intact rock masses, and formulated the stiffness matrix for the
Joint in terms of the normal and shear stiffnesses (Fig. 4.7). The relative displacement vector

for the joint element (Fig. 4.7b) is given by:
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Fig. 4.7 Joint element of Goodman et al (1968)

The vector P (force per unit length) may be expressed in terms of the product of the joint
unit stiffness in normal (K ) and tangential (K;) directions and the displacement:

Lo e
= (4.11)
P, 0 K,||lw,

Considering the energy stored in the element then leads to the following local joint element

stiffness matrix

0 2K 0 1K, 0 (4.12)

. 0 2K, 0 IK,
2K, 0 -1IK, 0 1K, 0 2K 0
0 2K, ©0 -1K, ©0 1K, 0 2K,

Goodman type joint elements are used not only in the Rock Mechanics problems, but also
in Geotechnical Engineering problems, many of which include retaining wall analysis. With

Goodman type of joint element, adjacent blocks of continuous elements can penetrate into
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each other. Zienkiewicz et al (1970) advocate the use of continuous isoparametric element
with simple nonlinear material properties for shear and normal stresses, assuming uniform
strain in the thickness direction. Numerical difficulties may arise from ill conditioning of the
stiffness matrix due to very large off-diagonal terms or very small diagonal terms, which are
generated by this element in certain cases.

Ghaboussi et al (1973) put forward a model similar to above, but used the relative
displacement as an independent degree of freedom (Fig. 4.8). They also defined the behavior

in terms of the normal and shear stiffness.

Upper Continuum
Element

AuB xl

Lower Continuum
Element

Fig. 4.8 Geometry of joint element (Ghaboussi et al, 1973)

Herrman (1978) presented an algorithm for interface element similar to the
aforementioned concepts with certain improvements through constraint conditions. The
various modes of the interface behavior such as the sliding and the debonding were
discussed, and a numerical algorithm that can provide convergent solutions was proposed.
However, still the normal and shear stiffnesses during various modes were chosen
| arbitrarily.

The computed behavior of an interface under the forgoing procedures and assumptions
may work satisfactorily for translation up to the relative slip, but there appears no physical
basis for adopting arbitrary values for the normal and shear stiffness, when relative slip and
debonding (loss of contact) occur. Because of this, very often, the above interface models
involve considerable computational difficulties and the results obtained can not be always

relied upon.
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4.5.3 Constraint-Interface Model

Katona (1981) has developed a contact-friction interface model based on the virtual work
principle modified by a special constraint condition (Fig. 4.9). This element can provide
improved conditions at the interface as affected by the state of stress induced during various
modes (see Chapter 6 for various modes of an interface), and can be considered to be an

improvement over the other previous models.

y A

interface Node Pairs

P X

Fig. 4.9 Constraint-interface model (Katona, 1981)
4.5.4 Thin-layer Interface Model

Desai et al (1984) proposed the idea of using a thin solid element at the interface, called a
thin-layer element, in soil-structure interaction and rock joints. The basic assumption made
is that the behavior near the interface involves a finite thin zone (Fig. 4.10) rather than a zero
thickness as assumed in previous models described so far. According to this new concept,
since the interface is surrounded by the structural and geological materials, its normal
properties during the deformation process must depend upon the characteristics of the thin
interface zone as well as the state of stress and properties of the surrounding elements. Based

on these considerations, it was proposed to express the normal stiffness as:

(K, ], = [Ka (0. BE 7)) (4.13)
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where o! B2 .y%(m=1,2,....) denote the properties of the interface, geological and

structural elements, respectively. The above equation can be written as
(K. | = MK, ]+ KE ]+ 24K} ] (4.14)

where [E"]i denotes normal behavior of the thin interface element and A, A, and A, are the

participation factors varying from O to 1. One of the simplifications would be to assume
A, =A; =0and A, =1, implying that the normal component is based on the normal

behavior of the thin layer element evaluated just as the adjacent soil element.

B = (average) contact
dimension

Fig. 4.10 Thin-layer interface element (Desai et al, 1984)

The shear component [KS]i is assumed to be composed of a shear modulus G, for the

interface. The expression used for tangent G, (Fig 4.11) is given by:

o[t(o,,u,)]

- X tjo

Gi(0,.T.u,) = (4.15)

n
r

The quality of simulation of the interface behavior will depend upon a number of factors
such as physical and geometrical properties of the surrounding media, non-linear material
behavior and the thickness of the thin layer element. If the thickness is too large in
comparison with the dimension B, of the surrounding element (Fig. 4.10), the thin layer
element will behave essentially as a solid element. If it is too small, computational difficulties
may arise. The choice of thickness can, therefore, be an important question and can be
resolved by performing parametric studies in which the predictions from various thicknesses
are compared with observations. The choice of thickness can become particularly important

for dynamic analyses where the mass and damping properties need to be considered. The
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developed model was applied to a retaining wall problem. An algorithm for checking the

interpenetration of the nodes was also given by the authors.

N i Ly it L T ‘t
| /Y
X 777777777777

(a) Schematic of direct shear test (b) Deformations at the interface

Fig. 4.11 Behavior at interface

4.6 DEVELOPMENT OF A NEW INTERFACE MODEL

The interface has been modeled until now under two broad assumptions: one assuming to
have certain thickness and the other assuming zero thickness. For the application of to soil-
structure interaction problems, the thickness of the element is often assumed to be zero. The
joint element proposed by Goodman et al (1968) was particularly developed for rock joints.
This type of element was used by Clough and Duncan (1971), Bhatia and Bakeer (1989) for
the retaining wall problems. Nakai (1985) developed an elasto-plastic joint element based on
Goodman type element that can take care of the stick or no slip as well as the slip at the
interface between a retaining wall and the backfill soil. However, no explanations were given
regarding the assumptions and the physical significance of the different parameters appeared

in the material property matrix of the joint element.

4.6.1 Idealization of the Interface

One of the drawbacks of the Goodman type element is the problem of crossing
(interpenetration) under compressive load and separation or debonding under tensile loading.
In most of the interface models, a high value is assigned for the normal stiffness based on
the assumption that the structural and the geological media do not overlap or separate. There
is no logical basis for adoption of such values. The Thin Layer Element developed by
Desai et al (1984) usually does not exhibit the problems of separation or crossing. If the
problem occurs, it can be gotten rid of by separating the elements by an arbitrary fraction of
the thickness. However, extra calculation time due to iteration is required for this purpose.

Added to that, the model itself involves complexity due to the presence of various
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parameters, for which parametric studies need to be done. The real challenge is to construct
mechanistic models that behave something like the real world; while at the same time striking
a balance between rigorous mechanics and engineering simplicity. Thus, what we need is a
simplified model with fewest parameters and at the same time a reasonable one to simulate
the interface. In the earth pressure analysis, the need for the joint elements with thickness is
not of practical significance. From the physical point of view, to simulate the frictional
behavior at the interface between the wall and the soil, joints with zero thickness are more
appropriate.

An idealized interface model shown in Fig. 4.12 is developed for the soil-structure
interaction problems such as the retaining wall-backfill system interaction. The model is
based on the concept of linkage element of Ngo and Scordelis (1967) as discussed before.
The element has a shear spring in the tangential direction and a slider to represent Coulomb

friction.

Slider

¥
T

Spring

R

o

o

Fig. 4.12 Idealization of the interface

4.6.2 Element Connection

The elements are assumed to have an effective length / with thickness zero (Fig. 4.13a). The
elements are introduced connecting the corner nodes of the soil elements and the wall as
shown in Fig. 4.13a. The interface is taken to be one producing no velocity discontinuity
(Tatsuoka, 1985). In view of the fact that, the friction between the wall and the backfill
represents Coulomb’s friction between two material surfaces without any dilatancy, interface

of non-dilatant type is assumed.
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Fig. 4.13 Interface element with zero thickness
4.6.3 Constitutive Relation and Computational Technique

Roscoe's experiment (1970) demonstrated that the interface friction varies with the depth
along the interface. However, extensive research to explain this variation is still lacking. In
the absence of experimental studies to establish this variation firmly as well as for the sake of
simplicity, the same value of friction can be assumed to be maintained by all the interface
elements at all depths. The strength characteristics of the interface for the cohesionless
backfill can be expressed in terms of the maximum value of the angle of wall friction, &;, as

where T, is the shear strength in an element and o, is the normal stress acting on that
element. The stress-displacement relationship for the interface elements is assumed to be
bilinear with elastic-perfectly plastic as shown in Fig. 4.13b. The mobilized value of the

friction coefficient, tand at each incremental displacement can be calculated by
tand = P, / P,. The tangential force P, is calculated using the shear stiffness K,, the

effective length [ and the relative displacement (v, ) of the interface element in the tangential
direction. The normal force P, is given by the equivalent nodal force for the soil element
associated with that interface element.

In the earth pressure analysis, usage of the conventional interface elements leads to
opening up of the gap between the wall and the soil elements, when the wall is in active
mode. In the passive mode of the wall, the problem of interpenetration of the elements

arises. In the developed model, in order to avoid the separation, equal forced displacements



are given to both the wall nodes as well as to the soil element nodes thus keeping the relative
displacement in the normal direction between the wall and the backfill always zero. This
technique restricts the backfill mass to sliding movement alone along the wall, at the same
time keeping its contact with the wall and thus alleviating the necessity of assuming arbitrary
values for the normal stiffness of the interface element. The only parameter needed is the

shear stiffness, which can easily be obtained from the results of the direct shear test.
4.6.4 Determination of Model Parameters

The shear stiffness of an interface is usually detérmined by performing direct shear tests,
where the geologic material (e.g. soil) and the material of the structure are used in the shear
box. However, this type of conventional test does not truly represent the actual stiffness or
friction between the two materials, as the deformation characteristics or the dilatancy of the
soil affects the ultimate results. In order to minimize the effect of the soil deformation or
dilatancy, the tests need to be performed with the minimum possible thickness of the soil
sample in the lower box, something which is quite difficult to conduct. Another alternative is
to conduct the direct shear tests with various thicknesses and then extrapolate the results to a
lower thickness.

However, in the present research the shear stiffness value of the interface between the
dry Toyoura sand and the wall is determined to be 22x104 kN/m? from the test results of the
conventional direct shear test by making bilinear assumption as shown in Fig. 4.14.
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Fig. 4.14 Determination of shear stiffness value for the interface
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4.7 CLOSING REMARKS

In this chapter the interface models developed for various applications have been reviewed.
The review indicates the need for improved and rational models to account for the interaction
effect.

Goodman et al’s joint element is widely used in earth pressure calculation. However, this
type of element exhibits the problem of separation and/or crossing of two adjacent elements.

Most of the other interface models assume a high value of normal stiffness arbritarily in
order to prevent separation or crossing, which has no logical basis. The thin-layer element
developed by Desai et al (1984) advocated the need to determine the normal stiffness making
it a function of the other interface characteristics. This involves added complexity in an
already complex phenomenon of the interface interaction.

The inclusion of relative deformation, such as slip, is essential to simulate the real
behavior at the interface. A new interface model is presented, based on the concept of linkage
element of Ngo and Scordelis (1967), which can take care of the problem of separation
during the active movement of a retaining wall. Slip along the interface can be allowed
without opening up of a gap or interpenetration of the wall and the backfill elements. The
parameters of the model can be determined from the conventional direct test. The application

of this simple interface model can be found in chapter 5 and chapter 6.
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CHAPTER
FIVE

Analyses of Static Earth Pressure

Everything takes half as long again,
costs 30 percent more, and can
be improved by 10 percent

Anon

5.1 INTRODUCTION

Most numerical analysis tools for retaining structures are of recent origin; however, the early
work of many researchers in the field of Geotechnical Engineering provided the basic
information, which is useful in modern analytical tools. The methods of Coulomb and
Rankine were the forerunners of the limit approach, which is the basis of several modern
analysis techniques. Limit analysis has been used with success to predict collapse loads for
earth retaining structures, but it can not predict deformations associated with the limit loads
and can not yield information before the limiting state.

Newer numerical methods are oriented toward predicting not only the earth pressures but
also the deformations of the backfill mass and retaining structures. This is in recognition of
the fact that in many retaining structure problems it is more important to form a reasonable
prediction of the deformations that occur in the soil behind the structure than of the earth
pressure alone acting on the structures.

Numerical tools, such as the finite element method (FEM), are still not associated by
many practicing Geotechnical Engineers with prohibitive time and/or cost effort, in spite of
their frequent applications in the area of Geotechnical Engineering. In the past, the increasing
complexity of computer codes involved with numerical methods also tended to discourage
many ventures beyond conventional analyses involving closed form analytical solutions or
simplified limit equilibrium methods. However, in the last two decades, economic finite
element computer codes have been developed, and tested so thoroughly that utilizing them
even on a limited budget have become feasible.

The advantage of the FEM in the analysis of earth retaining structures lies in its ability to

predict both the earth pressures and the deformations with a minimum of simplifying
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assumptions. In this chapter, the numerical model comprising of the constitutive relation
described in Chapter 3 and the interface model developed in Chapter 4 is applied to analyze
the active earth pressure acting against a model retaining wall undergoing various modes of
displacement. As of the present, the application is restricted to a model wall, since the idea is
to develop a fundamental method through simulation of the model test to examine the

efficiency of the model.

5.2 MODEL SIMULATION
5.2.1 Finite Element Discretization and Boundary Conditions

University of Washington's shaking table and retaining wall assembly (Fang and Ishibashi,
1986) is simulated in the analyses. The FE discretization of the experimental model under
plane strain condition using constant strain triangular (CST) elements is shown in Fig. 5.1.
The wall can undergo three kinds of movement (RB, RT and T) as shown in Fig. 5.2.

As for the boundary conditions, as a general rule the nodes along the lateral boundaries
were allowed to have movements only in the vertical direction, while the nodes along the
bottom boundaries were restrained against both the horizontal and the vertical movements,

with the only exception in the case of the RT mode where the boundary condition changes.

Wall

le— 1m
jf€e———— 12m —mm >

Y

I( 24m

Fig. 5.1 Finite element discretization of the experimental model
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Fig. 5.2 Wall displacement modes considered in the analyses
5.2.2 Interface Model

In the analysis of a rough retaining wall, modeling the interface between the backfill and the
wall is an integral part of the analysis. In this analysis, a newly developed interface model
reported in Chapter 4 is used to simulate the wall friction. The interface elements are
introduced in the boundary between the wall and the backfill. In laboratory condition,
friction forces exist between the backfill and the lateral as well as the bottom sides of the soil
bin. Hence to simulate the experimental condition it is appropriate to introduce interface
elements in these boundaries too. However, to make the model versatile to the real situation
this logical view has been ignored in the analyses.

The interface friction 1s assumed to be the same irrespective of the depth along the

interface. The maximum value of the wall friction angle, &, is assumed to be 29° for the T

mode and 25° for the RB and the RT mode.
5.2.3 Constitutive Models and Material Parameters

Analyses are completed using two constitutive models, one using the conventional method
and the other using the C.S.B. Method, both of which are discussed in Chapter 3.

Same values of the angle of internal friction, ¢ reported in the experimental condition are
used in the analyses. The values of k,; depend on the particular ¢; and therefore, the friction
angle at constant volume, ¢, also differs. The value of R is determined by making
parametric studies for the Ottawa sand, which forms the backfill mass. Although, it is
advisable to find the value of thickness, d of the shear band from the compression test, in
this study a numerical technique is adopted to determine the value. Fig. 5.3 shows the FE
mesh used for the calculation. Table 5.1 shows the values of material parameters used in the
calculation. In order to simplify the calculation, a smooth wall was considered, a wall that
does not need the interface element. The wall was moved in passive translation. The thrust
against it was calculated for different values of . It is assumed that the correct value of { is

the one , for which the peak value of thrust on the wall approximately coincides with the
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Rankine value. For ¢ =0.4 X 107 the peak value of the thrust coincided with the Rankine

value, and it was used in the analyses.

I m

Smooth Wall

a

l< 2.0m >

Fig. 5.3 FEM mesh used for determination of the smearing parameter, d

Table 5.1 Material parameters of the backfill used for determination of {

Parameters Values

Elastic Parameters
Young's Modulus, E (kN/m2) 21000
Poisson's Ratio, v 0.3

Deformation Parameters

Angle of Internal Friction, ¢ 400

A 0.c037

R 0.05

Kf 0.642
Dilatancy Parameters

Ke 0.491

Ns 0.563

The Material parameters of the backfill used in the remaining analyses are shown in Table
5.2. The coefficient of earth pressure at rest (K,)) is assumed to be 0.6, a value closer to that

of the experiments. Hydrostatic distribution is assumed for the initial stress in the backfill.
The value of the shear stiffness for the interface element is taken as 22x10% kN/m2. This

assumption is a conservative one in view of the fact that the interface stiffness has been
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obtained based on the test results of Toyoura sand, whereas the backfill mass in the
experimental model simulated is Ottawa sand. However, due to the absence of experimental
results, the same value of stiffness is used in the analyses. The material parameters for the
backfill have been calculated based on the experimental results of Ottawa sand reported by
Ko and Scott (1967, 1968).

Table 5.2 Material parameters of the backfill used in the analysis

Parameters Values

Elastic Parameters
Young's Modulus, E (kN/m2) 21000
Poisson's Ratio, v 0.3

Deformation Parameters

Angle of Internal Friction, ¢ Varies
A 0.0037
R 0.05
Kf Varies depending on ¢
Dilatancy Parameters
Kc Varies depending on ¢
Ns Varies depending on ¢

Smearing Parameter
C 0.4x10-4

5.2.4 Computational Procedure

Analyses are performed in an incremental-cum-iterative scheme using modified Newton-
Raphson method. In the static earth pressure analysis, the conventional interface elements
suffer from the fact that during the active mode the wall and the backfill separate away,
leaving a gap between the wall and the backfill elements, which introduces numerical
anomaly. In order to avoid this, equal forced displacements are given to both the wall nodes
as well as to the soil element nodes, thus keeping the relative displacement in the normal
direction between the wall and the backfill always zero. As mentioned earlier, this technique
alleviates the necessity of assuming arbitrary values for the normal stiffness of the interface
element. During the analyses, whenever the shear strength in any interface element exceeds
its maximum value, it is brought down to that value by reducing the shear stiffness of the

interface element in an iterative scheme until convergence is achieved.
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5.3 NUMERICAL RESULTS AND DISCUSSION

The results obtained from the Coupled Shear Band Method (C.S.B. Method) based
numerical analyses, are presented in this section. Comparisons have been made with the
experimental results, Coulomb's theory, Dubrova's method and with the numerical results
obtained from the conventional strain hardening theory using the Drucker-Prager model

discussed in Chapter 3.
5.3.1 Effect of the Wall Displacement on the Earth Pressure Parameters

The three important parameters actively associated with the earth pressure calculations are,
(1) the coefficient of the earth pressure, K, (2) the wall friction coefficient, tand, and (3) the
relative height of the point of application, /H, H being the height of the wall. Figs. 5.4-5.6
show the variations of the three parameters with increasing mean wall displacements, for the
three modes of the wall displacement (Fig. 5.2) considered, where the mean wall
displacement, s, refers to the displacement at the mid-height (H/2) of the wall.

It can be observed that the magnitude and the nature of variations of the parameters
depend on the wall movement modes. The different stress conditions that prevail in the
backfill resulting from the differences in the boundary conditions for each mode can be
attributed for these kinds of behaviors. The numerical results using the C.S.B. Method are

showing a better simulation capability as compared to the conventional analysis.
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Fig. 5.4 Variation of the coefficient of earth pressure with wall displacement



Fig. 5.4 shows that the experimental tendencies are displayed by the variations of K. The
noticeable variation of K among the three modes, is the RB mode, in which the decreasing
trend is continued even at larger displacements of the wall. This is due to the fact that the
complete active state is difficult to attain, although not impossible, in this particular mode of
movement because of the existence of the extra high stress at the base of the wall, as will be
evident in the distribution of the active earth pressure discussed in the next subsection.

The variation of the magnitude of the relative height, /H (Fig. 5.5), is a striking feature
as it differs from Coulomb's value of 0.333. Another noticeable point is the dependency of
the variation of h/H on the wall movement modes. In the case of the T and the RT mode, the
values of /H increase gradually from the initial value of 0.333 to some particular value, and
remain almost constant after certain displacement. The final value is greater than that of the
Coulomb value. In the case of the RB mode, the value initially decreases, and then starts to
increase to attain the constant value, however, the final value remains less than Coulomb's
value. These differences are due to the different patterns of the earth pressure distribution
discussed in a subsequent section. It is to be noted that, due to the assumption of hydrostatic
distribution for the initial stress, the point of application remains at 1/3 of the wall height for

the non yielding wall in each mode of displacement.
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Fig. 5.5 Variation of the point of application of earth pressure with wall displacement

The variation of tand (Fig. 5.6) is also found to be dependent on the wall movement
modes. The general tendency is to increase gradually with wall displacement, and then attain
the peak value. In contrast to the experiments, the numerical results show a drop in the value

after attaining the peak value. This may be due to the assumption of equal values of shear
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stiffness for all the interface elements irrespective of depths. A slight deviation of the
numerical results from those of the experiments has been observed. The disagreement can be

attributed to the assumption of the values of shear stiffness for the interface.
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Fig. 5.6 Variation of the coefficient of wall friction with wall displacement

5.3.2 Progressive Failure Pattern and the Active Stress Distribution

Figs. 5.7(a)-5.7(c) show the progression of the failure zone at different stages of wall
displacements for each mode of movement. The failure zone of the backfill sand unfolds
some remarkable points regarding the active state and the distribution of earth pressure. In
the case of the T mode (Fig. 5.7a), the failure develops simultaneously from the top as well
as from the bottom, and ultimately joins to reach the final state. In the RB mode of
movement (Fig. 5.7b) the failure starts from the top and advances towards the bottom, while
in the RT mode (Fig. 5.7¢) it initiates at the bottom, and starts moving towards the top of the
backfill. The progressive failure eventually culminates in forming the active wedge. It is this
pattern of the failure zone progressions, which determines the shape of the distribution curve
for the active earth pressure behind the wall discussed in the following paragraph. One can
also observe from the failure zones that the RB and the RT modes resemble the Rankine
state forming a clear active wedge, while the T mode does not seem to resemble the Rankine

state where the failed elements are concentrating in a banded zone.
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The formation of banded zone in the case of T mode, is due to the fact that, in this mode
the wall displacement, the active wedge suddenly loses its support along the wall surface,
slides down, and forms a weak arch within the backfill soil. Development of a narrower
localized zone can be expected, as compared to the results shown here. The wider band may
be the results of the effect of the boundary condition, since no interface elements are
introduced at the bottom boundaries of the backfill to simulate the friction with the soil bin,
and the wall is moved in parallel giving extra freedom to the soil element at the base. The
discretization of the FEM mesh will not have a strong effect, since the use of appropriate
value of the smearing factor  is expected to render the analysis insensitive to the details of
discretization in the localization analysis that considers the geometrical softening
(Pietruszczak and Mroz, 1981).

In the case of the RT mode, it can also be observed that the elements at the top never
failed. This exception can be attributed to the role of arching for this mode of displacement of
the wall. When the backfill soil forms either a clear failure wedge or a banded zone, that
stage can be considered to be active state. The coefficients of the earth pressure reach the
lowest level of the magnitudes at this stage, and remain nearly constant, implying the
attainment of the active state. The failure surface predicted by Coulomb's theory is also
shown in the figure for comparison. The mobilization of the friction angle, ¢ along the
Coulomb surface is different. This phenomenon of the progressive mobilization of the
friction angle will be discussed in detail in Chapter 6, which relates to the dynamic earth
pressure against a rigid retaining wall.

Figs. 5.8-5.10 show the distribution of the earth pressure at the active state obtained
using the C.S.B. Method. In the same figures, the distribution obtained from Dubrova's
method and Coulomb's theory are also plotted for the purpose of comparisons. The effect of
the progression of the failure zones for different modes is clearly reflected in the distributions
of the active earth pressure. For example, in the case of the RT mode (Fig. 5.8), the upper
part of the distribution curve never reached the Coulomb line, which is due to the fact that the
elements at the upper part of the backfill never failed for this mode (Fig. 5.7¢).

Similarly in the RB mode (Fig. 5.9), because of the concentration of the localized
elements at the upper part of the backfill (Fig. 5.7b), the distribution curve at that part comes
below the Coulomb line. The extra higher stress at the base of the wall keeps the distribution
at the lower part above the Coulomb line. This is the exactly the reason that the magnitude of

the relative height for the RB mode is lower than the Coulomb value as observed in Fig. 5.5.

76



0 = — 1 T T T T T T T T T T T T
T _
R T~ — C.S.B. Method 7
- \\ \ .
T~ 0.2 . ~ — - - Dubrova (6 = 2/3¢) -
N i T 1
- L . N Coulomb (8 = 2/3¢) 4
S - N \ 1
% 0.4 _— \‘ , 7]
T — R .
2 - Y RT Mode: ¢=35° [T -
B 06} S s -
O . P -
s - . /£ .
g - / . /! ]
2 08 g . s -
TE yd .. L&J i
I N N R T TP R S S S
0 1 2 3 4 5
Lateral Active Earth Pressure (kN/m?)
Fig. 5.8 Active stress distribution for the RT mode
0 A 1 I T ' 1 ! 1 [ T I T l T T 1 l T I T I Ll l ] i
B ——— C.S8.B. Method 7]
% 0.2 - —— - - Dubrova (6 = 2/3¢) -
b= — NS -------  Coulomb (3 = 2/3¢) —
f= - \ .
£ 0.4 - N 7
= L * .
=S N\, RB Mode: ¢ =33° (K' ]
8 06 [ X W
E N WE
£ - RN \\é .
Z 08 ) \ -
- \\ VJ .
— \\ h
] L e N Y
0 1 2 3 4 5 6

Lateral Active Earth Pressure (kN/m?)

Fig. 5.9 Active stress distribution for the RB mode

In the T mode (Fig. 5.10), the absence of the failed element at the upper part in the
vicinity of the wall (Fig. 5.7a) is keeping the distribution curve away from the Coulomb line.
From these figures it is seen that the distribution pattern of the active earth pressure depends

on the modes of wall displacement due to different mechanisms of the failure. Consequently,
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the coefficient of the resultant active thrust and the point of application differ in magnitudes,

the discussions of which are made later.
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5.3.3 Effect of the Backfill Strength on the Active Stress Distribution

In order to examine the effect of the soil strength on the distribution pattern of earth pressure,
the variation of the active lateral earth pressure behind the wall is plotted as shown in Fig.
5.11 for two particular modes, namely T and RT, for different strengths (angle of internal
friction) of the backfill.

It can be observed from Fig. 5.11a that for the translational movement the density of the
soil does not effect the pattern of distribution. However, the effect of density is pronounced
in the case of the RT mode (Fig. 5.11b). The arching effect at the upper portion of the
backfill is known to be responsible for this. The dense backfill is more vulnerable to arching
compared to the less dense one. As a result, the dense backfill shows existence of higher
stress at the upper part.
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Fig. 5.11 Effect of the backfill strength on the distribution of active earth pressure
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5.3.4 Coefficient of the Active Stress and Its Point of Application

The computations were performed for various values of the internal friction, ¢ of the backfill
sand. The coefficient of the horizontal active thrust, K, has been plotted as a function of ¢
for the different modes as shown in Figs. 5.12-5.14. It can be seen that the results from the
C.S.B. Method are more close to the experimental values as compared to the results from the
conventional method.

In the T mode, the results show a close agreement with the values given by Coulomb's
equation as seen in Fig. 5.12. However, in the RB mode (Fig. 5.13) and the RT mode (Fig.
5.14) the values are higher than the Coulomb value, which implies that the total active thrust
depends on the wall displacement modes. A remarkable observation from the three figures is
that the values given by Dubrova's analytical solution coincide with the Coulomb values, and
remain unaltered for all the modes. This is due to the fact that Dubrova assumed the validity
of the Coulomb solution (Coulomb’s theory considers only the equilibrium condition and the
failure mechanism, but not the failure state along the boundary, giving only an upper bound

solution).
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Fig. 5.12 Coefficient of active thrust at various angles of internal friction (T mode)
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Figs. 5.15-5.17 show the variation of the relative height of the point of application of the
horizontal active thrust, (h/H),, for the various modes as a function of the backfill
strength. It can be seen that other than the RB mode, both the numerical results and
Dubrova's solution agree with the experimental trend. Difference in the case of RB mode is
due to proximity of Dubrova's distribution to Coulomb's hydrostatic distribution. Both the
magnitude and variation of (h/ H), differ depending on the wall movement modes. For the
same value of ¢, the RT mode gives the highest value for (h/ H), and the RB mode gives
the lowest value, while the values given by the T mode lying intermediate. With increasing
values of ¢, the (h/ H), of the RB mode follows a decreasing trend, while those of others
are showing an increasing trend with only exception that the RT mode has a steeper gradient.

The exception of the RT mode is due to the effect of arching. The dense backfill exhibits
higher arching stress than that of the loose or medium dense backfill. As a result, for dense
sand, the upper part of the active distribution curve moves further away from the Coulomb
line, while the lower part shows significant reduction of the stress due to free movement of
the sand elements near the base of the wall (see Fig. 5.11b). This mechanism of the stress

redistribution contributes to the upward movement of the relative height with steep slope.
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5.3.5 Influence of the Modes of Wall Displacement

Regression analysis of the results obtained from C.S.B. Method renders the following two
equations for K, and (h/H),expressing their wall movement modes dependent character

for various values of the backfill strength, ¢.

KA =-0.20+ (¢ —176.3)M¢ - 9667M > (5.1)

(h/H), =0.36 + (¢ — 20)Mp — 396Mp> (5.2)

where, Mcand Mp are the parameters which take different values depending on the wall

displacement modes as shown in Table 5.3

Table 5.3 Values of the parameters M and Mp for each mode

Modes of Wall Movement Values of Mc and Mp
Mc Mp
T Mode -0.0104 0.0043
RB Mode -0.005 -0.0051
RT Mode -0.01 0.0123

A comparison is made for the values of the coefficient of the active thrust and the
corresponding relative height at ¢ = 40°, for each wall displacement mode as shown in
Table 5.4. It can be seen that in the case of the RB mode a significant difference exists
between the numerical values and Dubrova's values. The Table also shows that even though
Dubrova's method gives different values of the relative height for wall displacement modes
the total active thrusts are independent of the modes. Thus, direct application of Dubrova's

method for the retaining wall problems may lead to conservative design.

Table 5.4 Comparative values of the active state parameters

Modes K, (h/H),
C.S.B. |Conven. |Coulomb | Dubrova | C.S.B Conven. [Coulomb | Dubrova
Method | Method Method | Method
T 0.158 0.168 0.179 0.178 0.440 0.460 0.333 0.447
RB 0.238 0.212 0.179 0.177 0.250 0.270 0.333 0.333
RT 0.214 0.194 0.179 0.179 0.550 0.544 0.333 0.555
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5.4 DESIGN PHILOSOPHY

Most of the retaining walls are typically designed based on the active earth pressure
distribution. Matsuo et al (1978), based on the field tests of a 10 m high wall, emphasized
the importance of the at-rest pressure in designing a retaining wall. Two types of backfill
material were used in the investigations: silty sand and slags from industrial production.
After the completion of the backfill, the retaining wall was kept in the at-rest state for about
two months, and then the wall was rotated about the base (RB Mode). After the wall reaches
the active state, this state was held for twenty days, and the change of earth pressure was
investigated during this period. It was observed that the earth pressure gradually recovered
with time, although the wall was left as it was. The experimental results reported are shown
in Fig. 5.18.
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Fig. 5.18 Change of resultant force of earth pressure (After Matsuo et al, 1978)

It can be observed from Fig. 5.18 that, from the completion of the backfill to the start of
displacement of the wall, there is a gradual increase of earth pressure. This is due to the
gradual compaction of the backfill due to its own weight and the influence of the vehicles
running around it. The notable point of the figure is that there is a gradual recovery of the
earth pressure with time after the wall reaches the active state. By observing the total
horizontal earth pressure on the wall, the coefficient of the earth pressure at-rest (K;) was
reported as 0.35~0.45 for the silty sand, 0.30~0.40 for slag A and 0.45~0.55 for slag B.

Ichihara and Matsuzawa (1970) based on the laboratory model tests with a backfill of clean
sand reported the K, value to be 0.4~0.8. The field tests by Matsuo et al (1978) also
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indicated that the shape of the distribution of the at-rest pressure is nonlinear, and the shape
is not so different from that of the active state.

The recovery of the earth pressure after the active state may be due to the effect of
rainfall, which generates seepage flow in the backfill. However, in the analysis of this
research, a simplifying assumption of the hydrostatic distribution of the earth pressure at-rest
was made. Since dry sand was used as the backfill, and the simulated model was a
laboratory model, the assumption made was a justifying one.

The fundamental philosophy of the present design of retaining wall is that it can support

the active earth pressure. Expressing this with the mathematical terms, we get:
P, =P, xE, (5.3)

where, F, is the factor of safety, Py is the design earth pressure and P, is the active earth
pressure. However, in practice, a retaining wall is not intended to serve a short period. With
time, as observed in Fig. 5.18, the wall comes to at-rest state again. Hence, Matsuo et al's

recommendation can be expressed in the following form:

Py =P, xF (5.4)

where, P. is the earth pressure at-rest and F, is the corresponding factor of safety.
Observing Egs. (5.3) and (5.4), it can be said that, for the same design pressure Py, F, in
Eq. (5.4) can be made almost equal to 1.0, however, in Eq. (5.3) Fy will remain as high as
2.0~3.0. Hence, as a design philosophy the recommendation by Matsuo et al is a justifying
concept. However, in order to make such a design possible the characteristics of the at-rest
pressure need to be studied in detail, and with the present state of research in this field

nothing concrete can be said about it.
On the other hand, the value of K, to be used is still a controversial topic. Jaky's

equation (1 — Sin¢”) is valid only for the normally consolidated soil with horizontal ground
surface. It is not valid for the over consolidated soil and compacted sand. It also depends on

the nature of the backfill and retaining wall. For an infinite horizontal backfill with vertical
wall face, the value of K, is found to be 0.5 using Mohr's diagram. However, for inclined

backfill and inclined retaining wall, the K, value is different. Thus, the design based on the
at-rest state involves some uncertainties.

In earthquake prone zones, all retaining walls are designed against possible collapse
during earthquake. In the design code of Japan, design accelerations of 150-200 gals are
used. The corresponding active earth pressure for this range of acceleration will be close to

the static at-rest pressure (a detailed discussion of dynamic earth pressure is made in Chapter
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6). Thus, walls designed for earthquake loading condition, and walls designed on the basis

of the at-rest pressure will have almost the same factor of safety.

5.5 SUMMARY AND CONCLUDING REMARKS

In this chapter a numerical method is presented for the analyses of the active earth pressure
against a rigid rough retaining wall, which can adequately capture the progressive
deformation of the backfill. The Coupled Shear Band Method based analysis is seen to have
an edge over the conventional strain hardening analyses especially in regard to its power of
capturing the progressive failure, although the capability of the conventional analysis in
capturing the same can not be entirely ruled out.

The active state can be defined as that state when the backfill forms a clear failure wedge
or a slip surface. The present study shows that the progressive failure pattern of the backfill
is influenced by the modes of displacement of the wall, which in turn influences the patterns
of the earth pressure distributions. Consequently, the coefficient of the active earth pressure
and the point of application of the resultant active thrust depend on the modes of movement
of the wall.

The strength of the backfill has a pronounced effect on the distribution of lateral earth
pressure only in the case of a wall undergoing rotation about its top (RT mode), which is due
to the arching effect for this mode of the wall displacement.

Dubrova's analytical solutions are able to express the different nonlinear distributions of
the active stress for various modes. However, the resultant active thrusts given by that
method coincide with Coulomb's solution (i.e. irrespective of the wall displacement modes).

Empirical equations expressing the coefficient of active earth pressure and the point of
application of the resultant active thrust as functions of wall displacement modes, have been
put forward for various values of the backfill strength. Since the two equations are based on
the small scale model test analyses, the direct application of them to the field problems may
culminate in conservative design. However, the applicability of the two as a preliminary
testing mechanism can not be ruled out.

Interface elements with zero thickness, as idealized in this research, can simulate the wall
friction satisfactorily, when the appropriate parameters are determined suitably from the
experiments. The assumption of equal values of tand for all the interface elements at different
depths may be a gross approximation leading to variations in the behavior of the friction

coefficient in the analyses.
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CHAPTER
SIX

Seismic Analyses of Earth Pressure

If you can measure what you are
speaking about and express it in
numbers, you know something about it

Lord Kelvin

6.1 INTRODUCTION

In the earthquake prone zones, proper estimation of the seismic earth pressure against
retaining structures assumes significant importance, especially in the vicinity of port
facilities, where high intensity earthquakes can cause damage to the retaining structures,
resulting in catastrophe to the adjoining infrastructures and consequently to human lives. The
Great Hanshin Earthquake (in Japan) on 17 January, 1995, in which Kobe port was badly
damaged, serves as a stark reminder to both the research and the planning community the
enormity of the damage caused by a devastating earthquake, and its repercussions on social
and economic front. Thus, the zones frequented by seismic activities need adequate
earthquake resistant design.

Retaining walls are damaged in almost every earthquake. The predominant damage
occurs in bridge abutments, quay walls, freeway structures etc. Seed and Whitman (1970)
gave a brief account (Table 6.1) of the damages in retaining walls during some of the
devastating earthquake. Most of these reported damages are due to the increased lateral
pressures during earthquake loading, which in turn lead to sliding, overturning and tilting of
the structures (Nazarian and Hadjian, 1979).

The huge damages to the retaining walls during the Great Kanto Earthquake in Japan,
1923 gave a wake up call to the research community in the field of earth pressure, leading to
the well known Mononobe-Okabe theory which is extensively used till date for the seismic
design of the retaining structures. However, Mononobe-Okabe's analytical method is a

quasi-static one and it considers only the input acceleration of the ground. A structure under
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Table 6.1 Failure and movements of retaining walls in different earthquake (Seed and

Whitman, 1970)

Earthquake Date Magnitude Harbor | Epicentral Damage Approx.
Distance Movement
Kitaizu Nov. 25, 7.10 Shimizu 30 Miles Failure of Gravity Walls 26 Feet
1930
Shizuoka July 11, Shimizu Retaining Wall Collapse 16 Feet
1935
Tonankai Dec. 7, 8.2 Shimizu 110 Miles Sliding of Retaining Wall -
1944 Outward Movement of
Nagoya 80 Miles Bulkhead with Relieving 10to 13
Platform feet
Yokkaichi 90 miles Outward movement of pile 12 feet
supported deck
Nankai Dec. 21, 8.1 Nagoya Outward Movement of 13 feet
1946 Bulkhead with Relieving
Platform
Osaka 125 miles Failure of retaining wall 14 feet
Yokkaichi above relieving platform
Uno 190 miles Outward movement of 2 feet
gravity wall
Tokachioki | March 4, 7.80 Kushiro 90 miles Outward movement of 18 feet
1952 gravity walls
Chile May 22, 8.40 Puerto 70 miles Complete overturning of 15 feet
1960 Montt gravity walls
Outward movement of 2t0 3
anchored bulkhead feet
Niigata June 16, 7.50 Niigata 32 miles Tilting of gravity wall 10 feet
1964 Outward movement of 1to7
anchored bulkhead feet




dynamic loading experiences total acceleration (U ) which is the sum of the input acceleration
(Ug) and the response (u) as shown in Fig. 6.1. Thus, earth pressure against retaining wall

need to be analyzed numerically taking into account the effect of the response component.

m, K
®
: ug : Input

u : Response
| Ug + u= U : Total Acceleration

Fig. 6.1 Response of a structure under dynamic loading

The computation of the earth pressures against retaining walls during earthquakes is not
so well developed as in the static case, in which case the engineer may use a lot of more or
less sophisticated theories. The earth pressure on retaining walls during earthquake is a
function of many important parameters such as soil-structure interaction, backfill
characteristics, foundation stability, earthquake motion characteristics, structural properties
of the wall and the boundary conditions (Prakash, 1981). For increasing magnitudes of the
displacements, the soil stresses in the backfill can progressively advance from elastic to
elasto-plastic and finally to ultimate state. In addition, non-linear soil-structure interaction is
quite important and should be considered in the numerical modeling. Most of the existing
numerical methods for dynamic earth pressure analysis limited their attention only to the
dynamic component of the earth pressure, whereas the pressure acting on the retaining
structures during seismic loading is the total pressure (static + dynamic). A proper
constitutive description for the backfill is also found to be lacking in these models. In
earthquake engineering design problems, failure and post-failure analysis are very important,
and for this purpose consideration of the shear band localization in the backfill assumes
importance.

In this chapter, a numerical model is described for the seismic analyses of earth pressure.
The model is based on the Coupled Shear Band Method described in Chapter 3, which
considers the progressive deformation characteristics of the backfill. It also takes care of the
interaction between the wall and the backfill at the interface during dynamic loading. Since
the soil-structure interaction during dynamic loading play a prominent role in the numerical
results, the dynamic soil-structure interaction has also been reviewed here followed by its

influence on the seismic earth pressure analysis. The validity of the numerical model is
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demonstrated through simulation of a model retaining wall test. In addition, the dependency

of the seismic earth pressure on the wall displacement modes is also studied.

6.2 INTERFACE MODEL IN DYNAMIC INTERACTION

The characteristics of the soil-structure interaction are affected not only by the mechanical
properties of the constituents but also by the geometrical form and condition of the interface.
Often, analysis under dynamic loading is performed by assuming complete bonding at the
interface at all stages of loading. Although that assumption usually simplifies an analysis
procedure significantly, it can account for the soil-structure interaction effect only to a limited
extent, because the relative motions are not included in the analysis.

An interface can experience relative motions under dynamic loading (Fig. 6.2). In the
actual system, debonding results at the interface especially at the higher acceleration levels
for the active movement of the wall when the minimum inertia force acts away from the wall,
in which case the assumption of perfect bonding induces tensile stresses on the contact

surface. Thus for a realistic analysis, it may be necessary to incorporate the relative motions

ysn ¢cn

of the interface.
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Fig. 6.2 Modes of deformation at the interface

94



Toki et al (1981) developed a model for the dynamic interaction by considering the
separation and the sliding between soil and structure. The joint elements used in the contact
surface have a property such that tensile forces are not transmitted between the planes
representing the structure and the soil. The dynamic properties governing the sliding were
determined by the Mohr-Coulomb failure law determined from the cohesion and the friction
angle between soil and structure. The method was applied to: (1) a model nuclear reactor
building resting on the surface of a layered soil medium; and (2) a partially embedded pier
foundation structure subjected to dynamic excitations. It was observed that, assuming perfect
bonding at the contact surface between soil and structure, the structure’s motion was
restricted by the surrounding subsoil, thus underestimating the actual response of the
structure.

Zaman et al (1984) used the thin layer element of Desai et al (1984) for simulation of
various modes of deformation in dynamic soil-structure interaction. The numerical procedure
was used to predict the behavior of a model structure tested in the field, and the influence of
interface behavior on displacements, velocities and accelerations was delineated.

Desai et al (1985) described a modified Ramberg-Osgood model to simulate loading,
unloading and reloading response considering the slip mode at the interface. Drumm and
Desai (1986) described the cyclic stress-deformation response of dry sand-concrete
interfaces using a modified Ramberg-Osgood model. The model permits the description of
the interface secant stiffness as a function of the normal stress, shear stress, sand density and
number of loading cycles.

A comprehensive review in this general topic is provided by Desai (1981). In recent
years, the effects of the relative slip, debonding and rebonding have been identified and
analyzed. Appropriate tests are needed to define the constitutive model for the interface, and

there appears to be a general lack of testing devices (Desai, 1981).

6.3 A NUMERICAL MODEL FOR ANALYSIS OF SEISMIC EARTH
PRESSURE

6.3.1 Constitutive Relation for the Backfill Mass

The constitutive equations, which are used frequently for soil-structure interaction problems,
are generally of the visco-elastic type with hysteric damping so that no constraint is imposed
on the stress level (yield). It is often recognized that in the area of earth pressure these
constitutive equations are inadequate, especially if the distribution of initial earth pressure is
close to the active state, and this is certainly the reason that the analyst usually resorts to a

simplified theory such as Mononobe-Okabe theory.
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In most of the cases of earth pressure analyses, the shear modulus and damping ratio of
the backfill are adjusted according to Fig. 6.3a. Nadim and Whitman (1983) used this
relationship for certain cases in their analysis. The stress-strain relationship for the backfill 1s

A

Damping

G/Gmax, Damping Ratio

Shear Strain, y

(a) Strain-dependent shear modulus and damping ratio

A
//l G‘equivalent

v

(b) Conventionally assumed stress-strain relationship

Fig. 6.3 Stress-strain relations normally used in dynamic analysis

96



assumed as shown in Fig. 6.3b using equivalent shear modulus (chuiva,em). However, the
above relations are true only for the pure vibration problems. In the case of seismic earth
pressure generation, the stress-strain relationship takes the form shown in Fig. 6.4. The
envelope of the response is somewhat similar to the static stress-strain relation. Hence, the
same constitutive relation, as for the static analysis, can be applied for the dynamic earth

pressure calculation.

Envelope

;

Shear Stress, T

Actual Response in Dynamic Loading

Shear Strain, ¥
Fig. 6.4 Stress-strain relationship used in this research

The Coupled Shear Band Method described in Chapter 3, was derived for the static
loading conditions. Needleman (1989) showed that the key features of the phenomenology
of shear band development under the dynamic loading conditions are the same as under
quasi-static loading conditions, and a delay in shear band development arises due to the
inertial effects. The visco-plastic approach has been used by Prevost and Loret (1990) for
dynamic localization problems by introducing the artificial viscosity into the rate-independent
materials. In this research, the Coupled Shear Band Method is applied to analyze model
retaining walls under seismic loading. It is recognized that the concept of mixed hardening is
more appropriate for the problems involving dynamic loading, however, for simplicity,

isotropic hardening is assumed in the analyses.
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6.3.2 Interface Model

The assumption of perfect bonding works satisfactorily for the static loading condition.
However, the relative movements, such as separation, should be considered for the dynamic
soil-structure interaction problems as pointed out earlier. The interface model developed in
Chapter 4 can be applied to seismic earth pressure analyses by considering the debonding of
the wall and the backfill, when the inertia force acts away from the wall and the wall itself
moves away from the backfill, a phenomenon more likely to develop when the wall is in
active mode. Debonding can be identified by a criterion based on the sign of the induced
force. It can be assumed to occur when the force is tensile. The stress-displacement

relationship for the interface element is assumed as shown in Fig. 6.5.

-Tf

Fig. 6.5 Stress-displacement relationship for the interface

6.4 MODEL OF ANALYSIS AND COMPUTATIONAL PROCEDURE
6.4.1 FEM Model and Method of Analysis

The experimental model developed at Nagoya University’s earth pressure laboratory
(Ichihara and Matsuzawa, 1973) has been simulated in the FE analyses, the discretization of
which is shown in Fig. 6.6a. The wall undergoes the combination of rotation about base and
translation (RB-T), and the center of rotation is 20 cm below the wall base as shown in Fig.
6.6b. In this figure, s represents the mean wall displacement of the wall which is the
displacement at the mid-height (H/2) of the wall.
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Fig. 6.6 FEM model of the analysis and the mode of wall displacement
The analyses are performed in time domain using Wilson's theta method (for details see

Appendix B) to calculate the applied dynamic increment on the model retaining wall. This
increment has been added to the static increment due to the displacement of the wall. The

updated Lagrangian formulation is used in the stress-strain calculation.

6.4.2 Determination of Material Parameters

Ichihara and Matsuzawa (1973) reported that the plane strain test gives the peak value of the
angle of internal friction ¢; of the backfill (dry Toyoura Sand) as 42°. However, since the
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confining pressure of the experimental model is quite low, the various material parameters
appeared in the constitutive relations need to be determined from the experimental data at low
confining pressures. The material parameters are determined from the test results of the
conventional triaxial compression tests or plane strain tests. Due to limitations of the
experimental set up, the experiments for confining pressure less than 10 kN/m?2 could not be
performed. Therefore, the parameters are plotted as a tunction of the confining pressures,
and the obtained curve is extrapolated to the low confining zones to determine the
parameters. Fig. 6.7 shows the variation of the angle of internal friction at peak ¢, with the
confining pressures. By extrapolation, the value of ¢; corresponding the confining pressure

of the experimental set up is found to be 519 and this value of ¢ is used in the analyses.
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Fig. 6.7 Determination of angle of internal friction

Similarly the constant A (Eq. 3.32, Chap. 3) is determined as shown in Fig. 6.8.
Material parameter values of the backfill soil (Toyoura sand) used/assumed in the analyses
are tabulated in Table 6.2. The coefficient of the earth pressure at-rest is assumed to be 0.8,
and it is assumed to be distributed hydrostatically. The same shear stiffness value, as in the
static analysis, for the interface between the dry Toyoura sand and the wall is used (22x104
kN/m?2)-
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Fig. 6.8 Determination of constant A in Eq. 3.32 (Chapter 3)

Table 6.2 Material parameters of Toyoura sand used in the analyses

Parameters Values

Elastic Parameters
Young's Modulus, E (kN/m2) 22000
Poisson's Ratio, Vv 0.3

Deformation Parameters

A 0.0029

R 0.05

Kf 0.777

Peak Friction Angle, (¢ 510
Dilatancy Parameters

Kc 0.584

MNs 0.719
Smearing Parameter, { 0.32x10%

101



6.5 INFLUENCE OF INTERFACE MODES ON SEISMIC ANALYSIS

As discussed in the preceding section, the assumption of perfect bonding at the interface
during dynamic loading leads to underestimation of the proper response in the soil-structure
interaction system. In this section, the influence of the dynamic interaction on the earth
pressure analysis is discussed.

The FEM model shown in Fig. 6.6a is simulated using two interface models to examine
the influence of interface behavior on the numerical simulation. In one (Without Debonding),
only the sticking and the sliding modes of the interface are considered, while in the other
(With Debonding), the separation aspect of the wall and the backfill is also taken into
consideration. Whenever debonding occurs, the shear stress is not transmitted through the
interface. Therefore, during the analyses at the instant of separation, the particular interface
element has been discarded from the finite element assembly by equating the normal stress
acting on the element to zero. The equivalent load is added to the element equations.
Rebonding can be assumed to occur, when the force becomes compressive again.

The numerical calculation, including the separation and sliding phenomena, shows
strong non-linearity and thus the equation of motion must be solved by the step-by-step
integration method in the time domain. The stiffness matrix is kept constant during the
computation and only the external force is modified so as to satisfy the equilibrium

condition.
6.5.1 Influence on Earth Pressure Parameters

Figs. 6.9(a)-(c) show the variation of the coefticient of earth pressure, K, the relative height
of the point of application of the resultant, h/H, and the coefficient of wall friction angle,
tan , as a function of mean wall displacement, s for the acceleration of 180 gals at the
maximum inertia force. It can be observed that initially, the results from both the interface
models coincide. However, with increasing wall displacements the differences get increased,
with the results from the model considering the debonding aspect at the interface coming
more close the experimental values.

Figs. 6.10a-f show the same variations for the acceleration of 360 gals at the maximum
and the minimum inertia force. Comparing Figs. 6.9 and Figs. 6.10, it can be observed that
for the higher acceleration levels the results from the two models differ even at the small wall
displacement, and as the wall displacement increases, the differences of the results obtained
using without debonding and the experimental results increase. This implies that the
separation mode of the interface plays an active role in the calculation of seismic earth
pressure. The influence of the separation becomes crystal clear if we observe the
performance of the two models in the case of minimum force as shown in Figs. 6.10(b), (d)
and (f). The usage of debonding mode at the interface predicts the experimental trends
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satisfactorily, whereas assumption of perfect bonding results in weird variations of the earth

pressure parameters K, h/H and tan 0.
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Fig. 6.9 Influence of interface interaction on earth pressure parameters (Acceleration = 180

gals)
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6.5.2 Influence on Mean Earth Pressure

Fig 6.11 shows the variation of the mean earth pressure at two different accelerations. This
figure too divulges the merit of including the debonding mode and demonstrates that the
effect of debonding becomes more pronounced when the acceleration level increases. At the
acceleration of 84 gals, the results from both the interface conditions do not exhibit
significant differences, however, at the acceleration of 480 gals, there exists a significant
difference between the experimental values and the numerical values for the interface model
without consideration of debonding. In fact, it was observed during the analyses that at 180
gals of acceleration debonding occurs only at the top interface element (0.09H), whereas at
the acceleration of 360 gals debonding spreads till the third element from the top (0.27H).
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Fig. 6.11 Influence of interface interaction on the mean earth pressure variation

6.6 VALIDATION OF THE NUMERICAL MODEL

In the following subsections, the results obtained from the analyses are discussed with
reference to the experimental results. For the retaining walls and similar structures, the action
of the earthquake is most dangerous when the horizontal acceleration is directed towards
them. Hence, practically, it is sufficient to consider only the effect of the maximum inertia
force. Here too, the discussions will be limited to the case of maximum inertia force. The
results of the analyses are also compared with the classical Mononobe-Okabe theory and
Logarithmic Spiral Method (see Appendix A). The separation between the wall and the

105



backfill is allowed when the minimum inertia force acts away from the wall. In other words,

the interface model permits debonding at the interface.
6.6.1 The Earth Pressure Parameters

The effects of the wall displacement on the seismic earth pressure parameters were observed
in Figs. 6.9-6.10. The numerical results exhibit higher values (around 10 %) of the
coefficient of the seismic earth pressure as compared with the experiments. Ichihara and
Matsuzawa (1970) found that due to the friction between the side walls of the soil bin and the
backfill sand the earth pressure against the wall gets reduced by about 10 %.

The non linearity of the earth pressure distribution, which will be discussed in a
subsequent section, is responsible for the peculiar variation of the relative height as observed
in these figures. The distribution curve changes its shape with displacement of the wall

resulting in the characteristic variation.
6.6.2 Progressive Failure of the Backfill and the Active State

The classical Mononobe-Okabe theory based on rigid plastic assumption assumes
simultaneous formation of the failure wedge in the immediate vicinity of the retaining wall.
However, one should keep in mind that the attainment of the active or the passive state
involves progressive deformation of the backfill. The localized deformation analysis is
considered to be one of the versatile tool to capture the progression of the deformation
pattern, although the capability of the conventional method based on stress continuity in
capturing the progressive failure phenomenon can not be entirely ruled out.

Fig. 6.12(a) shows the progression of the failure zone in the backfill at different stages of
the wall displacement for the acceleration of 180 gals. The failure initiates from the top of the
backfill and spreads downward with displacement. With further displacement of wall the
bottom backfill elements near the wall also start to fail, although the dominant failures are
still exhibited by the top elements. Finally, a complete failure wedge is formed. This is the
characteristic failure mode for this mode of wall displacement, which is RB-T (Fig. 6.6b).
Once the failure wedge is completed, even with further movement of the wall the progression
of the failure zone ceases, implying the attainment of the active state. The failure surface
predicted by the Mononobe-Okabe theory (¢ = 51°) is also shown in the same figure.
Similar observation has also been predicted for the acceleration of 360 gals as shown in Fig.
6.12(b). Comparing Fig. 6.12(a) and Fig. 6.12(b) it can be seen that the domain of the

failure zone increases as the acceleration level increases.
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Fig. 6.12 Progression of the failure zone at two different accelerations
6.6.3 Mobilized Angle of Friction and Angle of Wall Friction
The classical theory assumes simultaneous mobilization of the friction angle along the failure
line at every location, AL (Fig. 6.13). However, the progressive failure of the backfill, as
already discussed, does not justify the assumption as the elements intercepted by the M-O

failure surface are in a different state of affairs at a particular wall displacement.

AL/L=1.0

v

Mononobe-Okabe's
Failure Surface

AL =0

Fig. 6.13 Failure surface in the backfill
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Figs. 6.14(a) and 6.14(b) show the mobilized values of the angle of internal friction,
¢,,, in the elements which are intercepted by Mononobe-Okabe's failure surface, at various
mean wall displacements for two different acceleration levels. The figure reveals that, at a
particular wall displacement, the various locations of the failure surface exhibit different
mobilized value of ¢. Thus simultaneous mobilization of ¢ does not take place in the failure

surface.
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Fig. 6.14 Mobilization of the angle of internal friction, ¢, at different stages of the wall
displacement
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Fig. 6.15 shows the mean values of the mobilized friction angle, (¢,,)mean» at various
mean wall displacements for the two acceleration levels. It can be observed from this figure
that at the small wall displacements the mobilized friction angle differs depending on the
accelerations, however, as the wall displacement increases the differences get reduced. The
trend of the variation is the same for the two acceleration levels (i.e. initially increases to

reach the maximum value and then decreases).
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Fig. 6.15 Mean mobilized value of the friction angle for two particular acceleration levels

Fig. 6.16 shows the mobilized values of the wall friction coefficient, tang as a function
of the mean wall displacement. Although the trend of the variation is the same irrespective of
the accelerations, the maximum mobilized values differ. Higher acceleration contributes to
the less mobilization of the wall friction. This is reasonable from the point of view of the
interface behavior, as at the higher level of acceleration the wall tends to separate away from
the wall resulting in the reduced shear strength. The numerical results demonstrate the
capability of the present interface model (which can take care of the effects of separation) in
simulating the wall friction, even though the mean wall displacement required to reach the
peak is different from the experimental ones (Figs. 6.9 and 6.10). Ichihara and Matsuzawa
(1973), based on their experimental observation, detined the active state as the stage when
the wall friction coefficient tan§ attains its maximum value. Comparing Fig. 6.15 and Figs.
6.9-6.10, it can be seen that the mean wall displacement, s, required in the experiments to
reach the maximum value of the mobilized tang is almost the same as that at which the mean
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of the mobilized ¢ reaches its maximum value, and the value is not significantly affected by

the acceleration levels.
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Fig. 6.16 Mobilized angle of wall friction with displacement at two different accelerations
6.6.4 Distribution of the Lateral Active Thrust

Fig. 6.17(a) and Fig. 6.17(b) show the lateral active earth pressure distribution behind the
wall at the acceleration of 180 gals and 360 gals respectively obtained from the analyses. In
the same figures the hydrostatic distributions given by the Logarithmic Spiral Method (¢ =
519) and Mononobe-Okabe’s formula (¢ = 499; the maximum value of the mean mobilized
friction angle given by the analyses (Fig. 6.15)) are also plotted. The effect of the nature of
progression of the failure zone discussed in Figs. 6.12 is clearly reflected in the distribution.
The presence of the early failed element at the top and the bottom of the backfill contributes
to the high reduction of stress at the top and the bottom. The non linearity of the distribution
curve results in the characteristic variation of the relative height, (h/H), which was observed
in Figs. 6.9 and 6.10. The distribution curve changes its shape with acceleration resulting in
the different values of the point of application of the active thrust as will be discussed in the

next sub-section.
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Fig. 6.17 Active earth pressure distribution for two different acceleration levels
6.6.5 Resultant Active Thrust and Its Point of Application
Figs. 6.18a-b show the variation of the coefficient of the lateral active thrust, K,g, as a

function of acceleration. A comparison also is made with the Logarithmic Spiral Method and

the Conventional Strain-hardening Method (Chapter 3). The numerical results, obtained form
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the C.S.B. Method, show fairly good agreement with the experimental trend (nonlinear
increase of K ,r) as compared to the conventional method. This is because the conventional
method is unable to capture the mobilized friction angle along the failure surface efficiently.
The Mononobe-Okabe values for the two values of ¢, discussed in the preceding paragraph,
show that the use of the maximum mean mobilized friction angle yields result that is close to

the experimental as well as the numerical one (Fig. 6.18b).
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Fig. 6.18 Variation of the coefficient of the seismic active thrust with acceleration



The relative height of the point of application of the resultant active thrust, (h/ H) g, 1s
plotted as a function of acceleration level as shown in Fig. 6.19. The numerical results using
the C.S.B. Method are showing a good agreement with the experimental observations as
compared to the conventional method of analyses. With increasing acceleration the active
distribution curve gets bulged (Fig. 6.17b) in the middle resulting in the lifting up of
(h/H),g-

0-6 L Ll I T 1 1 T I LB 1 1 I T 1 T T I T T T I LR

At Maximum Inertia Force

Point of Application, (h/H),

llllllIllllllLlljlllllll'llll

0.3 & ¢ Hydrostatic Assumption of Earth Pressure
- (h/H),, = 0.333
0.2 - A Experimental
0.1 [ - -3 - - Conventional Method
 —&— C.S.B. Method
O C 1 1 1 1 I 1 1 1 1 I 1 1 L1 l L 1 1 Il I 1 i 1 i l 1 ] i1
0 100 200 300 400 500 600

Acceleration, a (gals)

Fig. 6.19 Variation of the point of application of the resultant active thrust with acceleration
6.6.6 Increment of Seismic Active Force and Its Point of Application

The issue of the incremental seismic force and its point of application still remains
controversial in the field of dynamic earth pressure. According to Seed and Whitman (1970),
the incremental seismic force acts at the height of 0.6H from the base of the wall. Ichihara
and Matsuzawa (1973) assumed that the dynamic increment of active thrust can be given by
an equivalent surcharge whose point of application acts at the mid-height of the wall. On the
other hand, Sherif et al (1982) found from their experiments that the dynamic increment acts
at 0.48H from the base of the wall. Therefore, it is felt necessary to elucidate the reality
behind this controversy by making use of the numerical values obtained from the analyses.
Fig. 6.20 shows a conceptual drawing used to calculate the total seismic active earth
pressure. Generally, the incremental seismic active thrust, AP ,g, is calculated by using the
theory of elasticity, which is not a justified concept for the earth pressure calculations. The
seismic increment and its point of application need to be judged based on the calculations

using the theories of plasticity.
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Fig. 6.21 shows the relationship between the calculated incremental coefticient of the
lateral active thrust, K, ., and the acceleration. The relationship shows that the incremental
coefficient increases non linearly. As shown in the figure, similar variations have been
observed experimentally by Sherif et al (1982) for the translational mode of the retaining
wall.

The relationship between the relative height of the incremental active thrust, (h / H) g,
and the acceleration level (Fig. 6.22) divulges that the point of application of the seismic
increment fluctuates between 0.5H and 0.55H. The experimental observation of Sherif et al
(1982) is also shown in the same figure. It can be inferred from the numerical results that the
acceleration levels do not have a significant influence on the point of application of the

incremental seismic earth pressure, even though its counterpart does have an effect.
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Fig. 6.21 Variation of the incremental active thrust with acceleration
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Fig. 6.22 Variation of the point of application of the seismic increment with acceleration

6.7 ANALYSIS CONSIDERING THE WALL DISPLACEMENT MODES

The effect of the wall displacement modes on earth pressure has already been discussed in
detail for the static loading condition in Chapter 5. In this section, the same is discussed for
the earthquake loading condition using the numerical model described so far.

The well known Mononobe-Okabe theory for earth pressure calculation during
earthquake loading is based on the classical Coulomb theory which itself has intrinsic
fallacies brought to light by Terzaghi in 1936. In addition, the Mononobe-Okabe theory does
not include the effect of the dynamic interaction between the wall and the backfill. It is a
theory that considers only the quasi-static force acting on retaining walls, not the pure
dynamic loading. Experimental researches on the wall movement modes dependent seismic
earth pressure were performed by various researchers (sub-section 2.3.2 in Chapter 2).
Analytical expressions have also been put forward (sub-section 2.3.3 in Chapter 2) to
explain the nonlinear distribution for various wall movement modes. However, the analytical
methods can not explain the exact nature of distribution, particularly because, they seem to
ignore the importance of the wall backfill interaction at the interface. Hence, the numerical
method that can take care of the effect of interaction was used to analyze the influence of the

wall displacement modes on the seismic earth pressure.
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6.7.1 FEM Model and the Modes of Wall Displacement

Two wall movement modes (RB and RT) are considered in the analyses. The same FE
model, which was adopted for the static earth pressure analyses (Fig. 5.1, Chapter 5), is
used here. Comparisons also have been made with the experimental results reported by
Ishibashi and Fang (1987). The material parameter values of the backfill sand used/assumed

in the analyses are given in Table 6.3.

Table 6.3. Material Parameters of Backfill

Parameters Values

Elastic Parameters
Young's Modulus, E (kN/m2) 21000
Poisson's Ratio, v 0.3

Deformation Parameters

A 0.0037
R 0.05
Kf 0643
Peak Friction Angle, @y 400

Dilatancy Parameters

Ke 0.491
Ns 0.563
Smearing Parameter, 0.40x 104

6.7.2 Earth Pressure Distribution and the Active State

Figs. 6.23(a) and 6.23(b) show the distributions of the horizontal earth pressure with depth
z, at different wall rotations for the RB mode and the RT mode respectively in the case of
maximum inertia force. From the results, it can be observed that the distribution pattern
depends on the mode of movement of the wall and is highly nonlinear. The noticeable points
in the figures are the earth pressure at the top and the base of the wall. In the case of the RB
mode, the earth pressure decreases faster at the top, while for the RT mode, the earth
pressure shows an increase in value with increasing deformation. On the other hand, at the
base portion of the wall, while the RB mode shows existence of higher stress, the RT mode
exhibits rapid reduction of stress. This is due to the different mechanism of deformation

resulting from differences in stress conditions for each case. The progressive nature of the
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Fig. 6.23 Distribution of horizontal earth Pressure with the wall rotations

failure pattern of the backfill elements is responsible for this difference in the mechanism of
deformations.
Figs. 6.24(a) and 6.24(b) show the progression of the localized zone consisting of the

cracked elements at various values of the wall rotation when subjected to an acceleration of

117



200 gals. The behavior is somewhat similar to the static case discussed in sub-section 5.3.2
of Chapter 5. In the case of the RB mode, as can be seen in Fig. 6.24a, the failure starts
from the top and advances towards the base of the wall, finally forming a clear active wedge
of Rankine type. However, for the RT mode (Fig. 6.24b), the failure initiates at the base and
moves towards the backfill surface. These two figures explain the phenomenon observed in
Figs. 6.23a and 6.23b; the early failed backfill elements contribute to the reduction of stress
for both the modes, while the arching phenomenon contributes to the higher stress at the top
for the RT mode. The extra higher stress at the base for the RB mode comes from the
restriction of the movement of the backfill at the base. Mononobe-Okabe's failure surface
using constant angle of internal friction ¢ is also shown in the figures. It is to be noted that
the elements touched by the Mononobe-Okabe's surface are having different mobilized
angles of internal friction at that stage as already discussed in sub-section 6.6.3 for the RB-T

mode.
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Fig. 6.24 Progressive failure pattern of the backfill elements (Acceleration = 200 gals)
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6.7.3 Active Earth Pressure Distribution

Figs. 6.25(a) and 6.25(b) show the distributions of the horizontal thrust at the active state
for the two modes. The pattern of the distribution curves obtained from the analyses shows
reasonable agreement with the experimental trend. For comparison, the active state
distribution obtained from Dimarogona's analytical expression is also plotted in the figures
along with the hydrostatic distribution obtained using the Logarithmic Spiral Method.
Dimarogona's method can only qualitatively express the nonlinear characteristics of the

active thrust distribution, and its dependency on the wall movement modes.
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6.7.4 Coefficient of the Seismic Active Thrust

Fig. 6.26 shows the variations of the horizontal component of the coefficient of seismic
active thrust, K ,¢, as a function of horizontal acceleration, o, along with the values given

by Dimarogona's method and Logarithmic Spiral Method. It can be seen that the RB mode
gives the highest, and the RT gives the lowest value of K ;. Incidentally, the values given
by the RT mode coincide with the values from Logarithmic Spiral Method. While the
analyses could explain the experimental trend (nonlinear increase with increasing
acceleration) satisfactorily, Dimarogona's method fails to carry any weight quantitatively,
which may be due to the fact that the method can not truly capture the progressive failure of

the backfill, and can not simulate the soil-wall interaction.
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Fig. 6.26 Coefficient of the seismic earth pressure for each mode at various Accelerations
6.7.5 Point of Application of the Resultant Active Thrust

Fig. 6.27 shows the relation between the relative height of point of application of the
resultant active thrust, (h / H) ,¢, and the horizontal acceleration, o. A trend similar to the

experimental results can be observed; for the RB mode, (h/H),g increases with
acceleration, while for the RT mode, it decreases. Dimarogona's method for RB mode

shows negligible increase of the value with accelerations.
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6.7.6 Effect on the Incremental Seismic Thrust

The discussion of the seismic increment of the active thrust is already made in section 6.6 for
RB-T mode of the wall displacement. In this sub-section, the effect of the wall displacement
modes on the incremental seismic active thrust is discussed with respect to the RB and the
RT mode.

Fig. 6.28 shows the relations between the calculated incremental horizontal coefficient of
seismic active thrust, AK g, and the horizontal acceleration, o, for the two modes. The

relationships exhibit a nonlinear pattern (as in the case of RB-T mode) for both the modes.
For the same value of acceleration, the RB mode gives the highest value of AK .

Similar relationships (Fig. 6.29) for the relative height of the incremental active thrust,
A(h/H),g, reveal that the RB mode results in a lower value and the RT mode results in a

higher value of A(h/H),,p at lower acceleration levels. However, at higher level of
acceleration, the values cluster around 0.5, a figure that coincides with the recommendation
of Ichihara and Matsuzawa (1973). It can be inferred from this observation of the
numerically calculated values that at the higher acceleration levels the wall movement modes

do not effect the point of application of the dynamic increment.
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The following empirical equation can be obtained for the variation of the incremental

coefficient with acceleration, o, based on the results presented in Fig. 6.28:

K = Mol0-542M +0.791) ©.1)

in which M is parameter which takes different values depending on the wall displacement

modes as shown in Table 6.4.

Table 6.4 Values of the parameter M

Modes of Wall Movement M Value
RB-T Mode 0.98
RB Mode 1.45
RT Mode 1.3

T Mode 1.1

6.8 MERITS OF DYNAMIC ANALYSIS

As mentioned earlier, most of the researchers analyzed the dynamic earth pressure in
frequency domain by using the equivalent linear stress-strain relationship for the backfill
soil. However, their results relate to the amplitude of the dynamic component of the earth
pressure and can not express the actual earth pressure (sum of the static component and the
dynamic one) along the back face of the wall.

In this research, experimental models are simulated for explaining the mechanism of the
dynamic earth pressure generation against a rigid retaining wall supporting dry backfill sand.
Dynamic forces similar to those applied in the laboratory tests were used as input motion in
the numerical analyses. However, in actual cases, seismic motion is a random one
comprising of low frequency motion of small amplitude, and high frequency motion of large
amplitude. In the present analyses a pure sinusoidal motion with a frequency of 3.3 Hz was
used, which is a low frequency motion. The geometrical scale ratio, (model to prototype)
AL, can be defined as,

_Im2
M—(Tp) (6.2)

where, T, and T, are the periods of vibration in the model and in the prototype,

respectively. Since the period of earthquake vibration is in a range of 1 second, the value of
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A becomes 1/10.89 for the frequency used in the analyses. Thus, the numerical results can
be expected to be valid for a wall of approximately 10 m height. Nevertheless, the purpose
of this research is to develop a fundamental methodology, through model test simulation, for
the dynamic earth pressure analysis.

On the other hand, Mononobe-Okabe's analytical method for dynamic earth pressure

calculation is a quasi-static method in the sense that the dynamic effect is taken into
consideration by using the horizontal seismic coefficient k,, as a ratio of the maximum

acceleration (., ) to acceleration due to gravity (g). Until now, Mononobe-Okabe's theory

is the only method for designing retaining walls under dynamic loading. In spite of the fact
that the method makes many simplifying assumptions the results given by it show
satisfactory agreement with the experimental results (Ichihara and Matsuzawa (1973), Sherif
et al (1982), Ishibashi and Fang (1987), Kawamura et al (1987)), in the case of maximum
inertia force. However, in the case of minimum inertia force, the Mononobe-Okabe's theory
underestimates the dynamic earth pressure. Therefore, many researchers recommended that a
reduced value of the angle of internal friction ¢ should be used for calculating the earth
pressure at the minimum inertia force. In this research a pure sinusoidal wave was used as an
input motion. Hence, a direct comparison is not expected to give much fruitful conclusions.
However, considering the fact that Mononobe-Okabe's quasi-static method is still used in
design offices of many countries in the world, the numerical results were compared with the
method and drawbacks of the method was brought to the light.

The Mononobe-Okabe theory assumes a linear increase of k;, with increasing maximum
acceleration. Noda et al (1975) proposed that for low level of acceleration (acceleration < 200
gals) the relation is acceptable, however, at higher levels the coefficient increases non

linearly. Thus,

K, =-°‘—f;@<-; g € 200 gals (6.3)
I
I Olnax (3

ky = 5(——;) 5 Oax = 200 gals (6.4)

Matsuo and Itabashi (1984), based on inverse analysis from the data of maximum ground

acceleration of actual earthquakes, proposed the following equation:

k,, = 0.072 +0.332(Zmax ) (6.5)
o

o

Fig. 6.30 shows the relationship connecting the seismic coefficient and the maximum

acceleration given by Egs. (6.3)-(6.5). Noda et al's proposal shows that after 200 gals of



acceleration Eq. (6.3) overestimates the seismic coefficient. Matsuo and Itabashi's proposal
shows that beyond 100 gals of acceleration, the seismic coefficient decreases compared to
Mononobe-Okabe's assumption and the relationship is linear.

Ichihara and Yamada (1982), based on the response analysis using SHAKE for the city

of Tokyo during the Great Kanto earthquake, proposed expression for the seismic

.. . ) o
coefficients, which are functions of —X2%

, called the pseudo velocity. The expression takes

the following mathematical form:
ky = A x (9‘%@&)3 (6.6)

where, A and B are constant depending on the characteristics of the soil deposit (alluvium or
dilluvium), and f is the natural frequency of vibration.

The present design code in Japan uses relations (6.3) and (6.4) for calculating the
dynamic earth pressure using Mononobe-Okabe's theory. However, in the strict sense of the
seismic motion, this coefficient does not express the magnitude of acceleration; rather it is a

coefficient which converts the dynamic effect to a quasi-static load on the structures.

0-4 Ll T 1 T l T T T 4 | T T T T l T T {

1/3
k,=1/3(ct__ /9) ’
0.3 — (Noda et al, 1975)

Seismic Coefficient, kh
(@]
[\
T

: ! /T
) _
- ’, i
/

L k,=0.072+0.332(cc,__ 7
i e (Matsuo and ltabashl, 1984) ]
= , ’ -
- ’ 4
V4
O 1 1 1 1 l 1 X 1 L l L 1 1 1 I 1 1 1 1 l 1 1 L 1
0 100 200 300 400 500

Maximum Ground Acceleration, o (gals)

Fig. 6.30 Relation between the seismic coefficient and the maximum acceleration
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Another drawback of Mononobe-Okabe's theory is that it does not consider the effect of
interaction of the soil and the structure. In order to analyze a soil-structure system, under the
dynamic loading with input acceleration ii,(t), the following differential equation needs to

be solved.

Mii(t) + Cua(t) + Ku(t) =—Miig(t) 67)
< Response > < Input > (6.

where M, C and K are the mass, damping and stiffness matrices, and u(t), u(t) and u(t) are
the response displacement, velocity and acceleration vectors respectively. As shown in Eq.
6.7, the left hand side of the equation represents the response of the structure, and the right
hand side represents the input motion. However, Mononobe-Okabe's theory considers only
the input or causes using only the maximum acceleration acting on the structure, regardless
of the response that is also affected by the soil-structure interaction. In addition, the theory
assumes that the displacement is sufficient to mobilize the full shear strength along the failure
surface, and the earth pressure is distributed hydrostatically. All these drawbacks could be
dealt appropriately by performing dynamic analyses, which was one of the objectives of this

research.

6.9 SUMMARY AND CONCLUDING REMARKS

A new methodology is presented, in this chapter, for the seismic analysis of earth pressure
against rigid retaining walls. It uses the constitutive model discussed in Chapter 3 (Coupled
Shear Band Method), and an interface model that allows debonding of the wall and backfill
when the inertia force acts away from the wall. The methodology is applied to simulate an
experimental research on the seismic earth pressure. The various parameters relating the
seismic earth pressures are calculated at different accelerations, and the validity of the
developed methodology is described through the comparative discussion. The Coupled
Shear Band Method demonstrates its efficacy by its power of capturing the progressive
deformation characteristics of the sandy backfill more efficiently than the conventional FE
analysis.

The assumption of perfect bonding at the interface can not simulate the actual response of
the retaining wall-backfill system during dynamic loading. The performance of the interface
model in simulating the wall friction could be enhanced by considering the debonding mode
at the interface as compared to that where only the sticking and the sliding mode of the

interface were considered.
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The progressive failure of the backfill culminates in forming the active wedge, and the
failure pattern determines the shape of the distribution curve at the active state, which is
nonlinear. The domain of the failure zone increases as the acceleration level increases. As in
the static case, the progressive failure pattern of the backfill is found to depend on the wall
displacement modes.

The mobilization of the friction angle along the failure surface is progressive, not
simultaneous. At the active state, the mobilized friction angles at the various locations of the
failure surface are difterent. The coefficient of the seismic active thrust given by Mononobe-
Okabe's theory agrees reasonably with the experimental as well as numerical values, if the
average value of the maximum mean friction angle is used for the value of ¢.

The seismic increment of the active thrust varies non linearly with increasing acceleration,
and the magnitude depends on the wall displacement modes. However, its point of
application is not significantly affected by the acceleration and the wall displacement modes.
At the high acceleration levels, the value fluctuates around 0.5H for all the modes, which is

in agreement with the experimental findings of other researchers.
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CHAPTER
SEVEN

Summary and Conclusions

The point is not to pocket
the truth, but to chase it

Elio Vittorini

7.1 SYNOPSIS

The analytical methods for earth pressure calculation, based on the classical theory and the
others with rigid-plastic assumption, can not capture the progressive deformation
phenomenon such as earth pressure development against a retaining wall. Hence, researchers
resort to numerical methods. In this dissertation, a numerical method is presented for the
analysis of a retaining wall-backfill system that considers the progressive deformation
characteristics of the backfill such as localization.

The three main issues of interests, in this dissertation, were:

(1) Modeling of the Backfill Considering the Localized Deformation
(2) Development of a Simple Interface Model
(3) The Wall Displacement Modes Dependent Earth Pressure (both static and dynamic)

A new constitutive formulation was derived, based on smeared shear band technique,
utilizing two shear bands (named Coupled Shear Band Method), in order to capture the
progressive deformation of the backfill mass. In contrast to the conventional shear band
formulation, the Coupled Shear Band Method considers two shear bands inside a localized
element. The constitutive relation was formulated by coupling the two bands. It contains the
width of the shear bands, which represents the “geometric softening”.

Various interface models with varying degree of complexity are available in the literature
till date. A new simplified interface model from the point of view of the earth pressure
analysis was also presented in this thesis. The merit of this interface model lies in its
simplicity and minimum material parameters to describe it.

Earth pressure (both the static and the dynamic) acting against model retaining walls was

analyzed using the described computational model. The influence of the wall displacement
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modes on the static as well as the dynamic earth pressure was discussed in detail. Based on
the results of the numerical analyses, empirical equations were put forward expressing the
wall displacement modes dependent character of the earth pressure. which are functions of
the backfill strength (¢) and the acceleration (o). Thus, the total seismic active earth pressure
(K,g) can be calculated from the total static active earth pressure (K,) and the seismic

increment ( K,,¢) for each mode, which can be expressed in the following way:
KAE = KA (0.M)) + Kiag(a,M3) (7.1)

where, M; and M, are the parameters that take different values depending on the wall

displacement modes.

7.2 CONCLUSIONS OF THIS RESEARCH

The key findings of this research can be summarized as follows:

(1) The earth pressure development against retaining structures involves the phenomenon of
progressive deformation. Hence, numerical analysis of retaining structures should adopt
constitutive description that can adequately express the deformation that takes place
progressively in the backfill. The constitutive relation based on the localized deformation
can capture the progressive deformation more efficiently than that of the conventional
strain-hardening constitutive relation.

(2) The progressive failure patterns of the backfill are influenced by the modes of
displacement of the wall, which in turn influence the patterns of the earth pressure
distributions. In earthquake loading condition, the domain of the failure zone increases
as the acceleration level increases.

(3) The active state can be defined as that state of the backfill when it forms a clear failure
wedge or a slip surface.

(4) The mobilization of the friction angle along the failure surface is progressive, not
simultaneous. At the active state, the mobilized friction angles at the various locations of
the failure surface are different. The mean values of the mobilized friction angle are not
significantly affected by the acceleration levels.

(5) The coefficient of the active earth pressure and the point of application of the resultant
active thrust depend on the modes of movement of the wall.

(6) Dubrova's analytical solutions (static earth pressure) are able to express the different
nonlinear distribution of the active stress for various modes. However, the resultant
active thrusts given by that method coincide with Coulomb's solution (i.e. irrespective

of the wall displacement modes). Dimarogona’s analytical method for the seismic earth



pressure calculation has similar drawbacks too. It can express the nonlinear distribution
of the earth pressure, for various modes of wall movement, only qualitatively.

(7) The seismic increment of the active thrust varies non linearly with increasing
acceleration, and the magnitude depends on the wall displacement modes. However, its
point of application is not strongly affected by the acceleration and the wall displacement
modes; the value converges towards the mid-height of the wall for all the modes at the
high acceleration level.

(8) Interface elements with zero thickness as idealized in this research, can simulate the wall
friction satisfactorily when the appropriate parameters are determined suitably from the
experiments. The assumption of equal values of tand for all the interface elements at
different depths may be a gross approximation leading to variation in the behavior of the
friction coefficient in the analyses. An experimental study in this regard will be a big

boon to this field of research.

7.3 FINALE

The present study relates to the active movement of the retaining wall. The efficacy of the
computational model should be more pronounced if applied for the passive condition in
which case the shear band consideration would be indispensable as the continuity of the
stress field within the backfill, under no circumstances would prevail due to large
displacements involved.

Complexity was sacrificed in favor of simplicity in certain cases. However, this should
not always be case, as A.N. Whitehead said, “The only simplicity to be trusted is the
simplicity on the far side of the complexity”.

Considering the fact that many important retaining structures are constructed on
waterfronts, the model can be extended to include saturated backfill (submerged soil). In
addition, the application of the described model to practical retaining wall problem will
continue to offer insight into the importance and relevance of various governing mechanisms
of backfill deformations. New ideas will definitely make room for the improvement of the
present model. To put it into the words of the Greek philosopher Heraclitus - Tow Totvto
pel (Everything flows).
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APPENDIX
A

Logarithmic Spiral Method

Al EARTH PRESSURE CALCULATION BASED ON CURVED FAILURE
SURFACE '

Mononobe-Okabe’s theory for the dynamic earth pressure calculation assumes the rupture
surface of the failure wedge as a plane surface. However, experiments and theoretical
investigations established the fact that the sliding surface is composed of a curved part in the
lower section and of a plane part which corresponds to the Rankine state. The exact equation
of the curved part has not yet been found - it is likely that the respective differential equations
can not be solved in a closed form. Therefore, in practice, the real curve is replaced by
simple curve. Two types of slip curves are mainly in use: the circle and the logarithmic
spiral.

Ichihara et al (1973) analytically derived expressions for calculation of the passive earth
pressure coefficient during earthquake by assuming the slip surface to be composed of a
logarithmic spiral and a straight line. It has been proved that the active coefficient for the
static earth pressure using curved slip surface does not differ significantly from that of the
straight line surface even though their counter part (the passive coefficient) does differ. The
same can not be true for the dynamic active earth pressure calculation, where the effect of the
inertia force enters into the governing equations. The Logarithmic Spiral Method proposed
by Ichihara et al (1973) is extended to compute the dynamic active earth pressure coefficient,

the details of which follow.



A2 LOGARITHMIC SPIRAL METHOD FOR CALCULATING THE
ACTIVE EARTH PRESSURE

An Inclined retaining wall with vertical height H is shown in Fig. Al. The sliding surface is
approximated to be consisting of a logarithmic spiral BD (convex spiral) and a straight line

DC. Within the soil mass ADC, the state of stress is same as the Rankine active pressure.
The dynamic force acting on the vertical section FD are Py and Pg as shown in Fig. Al.

The center of the logarithmic spiral is at O.
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Fig. A1 Backfill with composite sliding surface

From the moment equilibrium, the following equation can be obtained.
Paelo =-M,+ M, +M; + M, (Al)

Here, 1, = Arm length of the resultant active earth pressure, P g
M, = Moment about O of the assumed soil mass of AOBA including the seismic effect

Moment about O of the assumed soil mass of sector OBD including the seismic effect
M, = Moment about O of the assumed soil mass of AADF including the seismic effect

S
i

M, = Moment about O of the active Rankine earth pressure including the seismic effect

acting upon the vertical section FD.
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Moment M,

Assuming only the horizontal component of the input acceleration, o, we get:

M, =Sopa (XgiKy + Y1) (A2)

, g being the acceleration due to gravity. The area S5, and the

04
where k, =tan0, = —
o

o
center of gravity (Xg,,Yg,;)of AOBA can be obtained from the simple geometry.

Moment M,

> Y
n/2—(wg+io —P)
\/
X
Fig. A2 Illustration of calculating the moment M,
The equation of the sliding surface is given by,
r=r,e” @ (A3)

here, ® is the angle of vector r from r, and is considered positive if measured

counterclockwise. The moment M, is given by:

M, =M, +M, (Ad)
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where M, and M, are derived to be,

1.3
M = Ii—é):—z[ec'w(clsino)—cosco)]ﬁf (AS5)
1

L3
3T, tan 6

M, = W[eCIw(C‘ cos® +sin )]y (A6)
C, = -3sin0, ¢ is the angle of internal friction of the backfill. The vector r, can be derived
as,
[, = cos(B.— i, — al)H]e<§—(w0+i2-B))tan¢ (A7)
sinw,
Moment M,

The moment M,is given by,

M; =S, pr(kpXg3 +Y63) (A8)

where (Xg3. Yg3)is the center of gravity of AADF (Fig. Al) and S,p represents the area
of AADF.

Moment M,

The forces acting on the soil mass in the active Rankine zone during earthquake is shown in

Fig. Al. The Mohr circle for the plastic equilibrium state is shown in Fig. A3. Using this
figure, The normal resultant force, Py and the shear force, Pyg (both the forces are

considered positive in the shown direction) are calculated to be,

Py = —IE—?——C—O—SE—[I —singcos(A, + 6, — B)IC, (A9)
2cos” hcosB, )
Py = Mﬁ—sin(bsin(Ao +8,-B)C, (A10)

- 2
2cos” ¢cosb,

where, sinA, = Sl_n[i; ; Cy =cosf —\/(cos2 B, —cos>®) and B, =P+6, ( By <0).
sin
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Fig. A3 Calculation of the moment M,
The arm lengths I, and 1, are given by
I, = ODsin(i, —f) - {FD (Al1)
1, = ODcos(i, - B) (A12)
Hence the moment M, i1s given by
M, =1,Pyy +1,Pps (A13)
Arm Length lp
The arm length |, of P, can be obtained as follows.
I, = OBsin(8 + @, +i, +a, =)~ H, cosd (Al4)

139



Angle between the Backfill Surface and the Sliding Surfaces

Considering the Mohr diagram (Fig. A3) and from geometry we get,

ilzL.Q_(B_o““ﬁl (AL5)
4 2 2

i’=£+9+M (A16)

© 4 2 2

Angle between the X Axis and the Sliding Surface AD

The angle o, between the X-axis and the sliding surface AD can be obtained as
T

The clockwise moments are considered positive throughout the formulations.
Substituting the values of M,;, M,, M;, M, and |, given by the above equations in Eq.

Al, the resultant force of active earth pressure can be obtained from the maximum value of
P g for various values of @, shown in Fig. Al. If the wall is forced down with reference to
the backfill, for instance by the action of a heavy load on its crest, the value of 6 becomes
negative and the curvature of the lower part of the failure surface is reversed (i.e. concave
spiral). In that case the above equations need to be reformulated using the concave

logarithmic spiral, the details of which is not discussed here.
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APPENDIX
B

Solution of Equilibrium Equation in
Dynamic Analysis

B1 NONLINEAR DYNAMIC ANALYSIS
The finite element equation for a dynamic system is represented by:
Mui(t) + Cu(t) + Ku(t) = R(t) BD

where M, C and K are the mass, damping and stiffness matrices; R is the external load
vector; and u(t), u(t) and ii(t) are the displacement, velocity and acceleration vectors of the
finite element assemblage.

The Wilson 6 method renders the following equation of motion for the finite element

assemblage:

M{(e;)z Au(t) - &um - 3&(0} + C{E:Z—{Aum - 3u(t) - %ﬁ(t)} +KAu(t) = AR(1)

(B2)

where,
Au(t) = u(t + 8At) - u(t) (B3)
AR(t) = R(t + 0At) - R(1) (B4)

On rearranging the terms, Eq. B2 takes the following form:
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K(OAu(t) = AR(t) (B5)

where,
= 6 3
Kt)=K+M——+C (B6)
(BAL)” BAL
e ~ 6 . . ) BAL .
AR(t) = AR(t) + I\’I{'éE u(t) + 3U(t)} + C{:’)U(t) + ——q—u(t)} (B7)

In the formulations described above 6 = 1.4 and At is a suitably chosen time increment.

B2 SOLUTION OF NONLINEAR EQUATIONS

The solution of Eq. BS gives the values of Au(t) at time t + OAt. In order to calculate the
variables u(t), u(t) and U(t) at time t + At, the following procedure is adopted.
(1) From the solution of Eq. B5, calculate Aij(t), employing Eq. B8 which is of the form:

Au(t) —iu(t)-sﬁ(t) (B8)

. 6
Au(t) =
Ho) (BAL)? BAt

(2) Calculate Au(t) using the equation
. 1A
Ali(t) = aAu(t) (B9)
(3) Calculate Au(t) and Au(t) employing the following equations.

Au(t) = ii(t)At+Aij(t)% (B10)

2 2
Au(t) = (l(t)At+ij(t)ATt+Aij(t)A—6[— (B11)

(3) Calculate the values at time t + At by employing the following equations

u(t+ At) = u(t) + Au(t) (B12)



u(t+ At) = u(t) + Au(r) (B13)
u(t+ At) = U(t) + Ali(t) (B14)

The equilibrium equation to be solved, in nonlinear analysis, at time t + At using

modified Newton-Raphson method (k = 1,2,3....) can be written (neglecting the damping

matrix C) in the following form.
M™i(t+ A0 +K"Au(0) = R(t+At) - FVF(+ A (B15)

®ut+An="Put + A)+*FAu() (B16)

B3 LOADING AND UNLOADING CRITERIA
For Backfill Element:
Loading Condition

When (6, -03) = (0, - 0;)
d(o,-065)>0

and

max

Unloading condition

max

For Interface Element:
Loading Condition

When t=1_,, anddt >0

Unloading condition
When 1< 1 anddt <0
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