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Chapter 1 Introduction

The essential of Engineering lies in optimization and invention, while the essential of Science
is to discover the law of Nature. The optimization in the engineering is to produce something
more suitable, more precise, and speedier. In the growing complex human society, especially,
industry and commerce, the concept of optimization is very important for product design,
resource allocation, plant location, manufacturing scheduling, and so on. With the progress of
computing power, the optimization has been recently done by using computational technology, -
though the previous optimization had been done by human knowledge of experts. In fact, the
computer contributes greatly to the current human society, and the computer power keeps
increasing while the size and cost of the computer keep decreasing. As a result, we can solve
various complex problems quickly and effectively and therefore, we require the powerful and
quick solution methods. This chapter briefly presents optimization methods and the related
fields such as operations research, artificial intelligence, evolutionary computation, soft

computing, and artificial life.

1.1 Background on Optimization

Optimization plays a very important role in various fields and today its application can be
seen in business, education, government, industry, and so on. Therefore the origin of the
optimization can be retraced the history of all the fields such as engineering, science, economics
and sociology. From the historical point of view, the development of the computer can be the
latest revolution for the optimization. The computer provides us quick computing, advanced

information processing, and numerous data storing [1].

Before the development of the computer, a systematic approach can be regarded as a
methodological revolution. The system analysis by logical and mathematical methods provides
us effective solutions and insights for large complex problems. For example, operations
research is well-known as one of the systematic approach [3,4]. The operations research was
first successfully used for the analysis of military operations at World War II. The operations
research is, in general, the use of quantitative methods to analyze and predict the behavior of
systems which are influenced by human decisions. In fact, the operations research applies

optimization methods such as linear programming and dynamic programming for decision
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making.

When retracing the history of the optimization furthermore, we can reach the fact that the
optimization was done by human knowledge of experts, and the human knowledge for the
optimization was inherited from ancestors to offspring. This kind of human knowledge is
often called heuristics. In addition, there have been a lot of historical facts concerning the
optimization. Thus, we can see a lot of facts concerning the optimization in the human

history.

Table 1.1 Optimization and related fields from the historical points of view

Fuzzy System / Computer / Evolutionary Others
Neural Network Artificial Intelligent | Computation
1940 McCulloch-Pitts | Programmable Operations
Neuron Model Computer Research
Hebbian Learning Cybernetics
1950 Perceptron Turing Test Metropolis
Algorithm
Lisp Machine Dynamic
Evolution Programming

Monte Calro

Method
1960 Fuzzy Sets General Problem Evolutionary Random Search
Solver Programming
A¥* Search Evolution Branch-And-Bound
Strategy Technique
1970 Back-Propagation | NP-Completeness | Genetic
Algorithm Algorithm
Fuzzy Controller | Expert System Classifier
System
1980 Hopfield Network | Belief Network Bucket Brigade Artificial Life
Algorithm
Fuzzy Modeling Immune System
Boltzmann Tabu Search
Machine
1990 Neuro-Fuzzy Qualitative Genetic Q-Learning
Probabilistic Programming
Network
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On the other hand, from the viewpoint of related fields, the optimization has been developed
together with operations research, evolutionary computation, artificial intelligence, neural
network, fuzzy logic, and so on (Table 1.1). In addition to the dynamic programming as
mentioned before, random methods such as metropolis algorithm and Monte Calro method
were proposed in 1950s. Furthermore, A* search and branch-and-bound technique were
proposed to search for solutions effectively. After that, evolutionary computation such as
evolutionary programming, evolution strategy, and genetic algorithm, has been applied to
various optimization problems. In recent years, reinforcement learning such as temporal
difference learning and Q-learning has well discussed. Furthermore, these kinds of optimization
methods are applied to neural network, fuzzy system, and so on. In this way, the optimization
has been developed through the interaction with these related fields. The following sections
present the optimization and these related fields in brief.

1.2 Optimization, System Engineering and Intelligent Manufacturing System

In this section, we consider what the role of the optimization is in the engineering. The
systematic approach in the previous section is explicitly discussed in the system engineering,
though the systematic approach is utilized widely in various fields. A system is generally
defined as an assemblage of functionally interacting components, which is satisfied the following
conditions: (1) having two or more components, (2) accomplishing an object as a whole, and
(3) each component achieves each function. In fact, the effectiveness of all the components
regarded as a system may be greater than the sum of the separated effectiveness of each

components.

The system engineering has been gradually developed on the basis of operations research,
information theory, cybernetics, computer science, and so on. Information theory provides us
the concepts such as reliability and redundancy based on entropy [5]. In addition to entropy,
Markov chain is very useful for prediction. Cybernetics, which was proposed by N.Weiner, is
a theoretical study of communication and control processes in biological, mechanical, and
electronic systems and the concept of feedback is very important [6]. A current computer is
regarded as Turing machine based on the concept of automaton which produces some output
in response to an input according to its internal state. And V.Noman proposed a stored

program computer based on the Turing machine [1].
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Input Output
Components

?

Figure 1.1 System synthesis: Design of components

Input Component A Output !

Component B

Compénent X

Figure 1.2 System analysis: Examination by quantitative/qualitative methods

The system engineering has two aspects of (1) system synthesis and (2) system analysis. The
system synthesis combines separate components to form a coherent system (Figure 1.1). The
system analysis examines methodically by using both quantitative methods and qualitative
methods (Figure 1.2). In general, the system synthesis is far more difficult than the system
analysis since the system synthesis requires system design, simulation, optimization and
evaluation. In fact, when a problem is given, the procedure to develop a system for the

problem is as follows:

Step 1. Definition and formulation

Step 2. Development of alternative solutions
Step 3. Modeling of alternative solutions

Step 4. Determination of the evaluation function
Step 5. Optimization and evaluation

In step 1, we define and formulize the problem to clarify the structure. Second, we develop
some alternative solutions for solving the problem. Next, we build models of alternative
solutions from the results of the cause-effect analysis of the problem. Next, we determine the
evaluation function and evaluation criterion for the problem [7]. Finally, we optimize each
model and compare the evaluation result. As a result, we can obtain a desired system. Thus,
the optimization plays the important roles, and the decision making selecting the best alternative

depends on the optimization results. In general, an optimization problem is defined as follows,



Chapter 1

minimize(maximize) f(x)

. g(x)=0 (@G=LL.,)
subject to {hj(x)zo G=1D m (L.1)

where x is a set of decision variables, f(x) is called objective function, which includes

effectiveness and cost functions, and g.(x), h;(x) are called constraints. In a minimization

problem, the optimization is to find the decision variables x* which satisfies the following -

equation,

F(x*) < f(x) (1.2)

The objective of the optimization is, in general, to obtain the best values which maximize the
effectiveness and which minimize the cost at the same time. However, the optimization
problem usually has some trade-off between the effectiveness function and the cost function.
It is therefore very difficult to optimize the objective function. In general, most of problems
to be dealt with in engineering, science and sociology, can result in this kind of optimization
problems. For examples, a current manufacturing system has many complex optimization
problems such as product design, resource allocation, plant location, manufacturing scheduling
since the current manufacturing system has a lot of constraints such as space capacity,
machining ability and time restriction [2]. Most of these optimization problems belong to
ill-defined and/or ill-structured problems. To deal with these kind of complex problems

effectively, intelligent manufacturing system has been discussed recently [2].

The intelligent manufacturing system comprises a new concept for coping with a large number
of products and manufacturing processes, and its effectiveness lies in the processing capability
corresponding to high variety. Therefore, the intelligent manufacturing system requires the
powerful and quick optimization methods to create an ideal manufacturing environment. In
fact, the intelligent manufacturing system has various complex problems such as resource
allocation problems with prediction, relocation problems of machining centers, path planning

for automated guided vehicles and dynamic manufacturing scheduling problems.
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1.3 Optimization Methods

Various types of optimization methods have been developed so far and the optimization
methods can be divided into two categories of exact and approximate methods. The exact
method can obtain optimal solutions using local information peculiar to the optimization
problem, but the exact method needs much computation cost. On the other hand, the approximate
method can obtain optimal or quasi-optimal solutions with less computation cost. Thus, each
optimization method has a trade-off between the performance of solution and the computation
cost. There are four criteria to evaluate the optimization methods, i.e., completeness, time

complexity, space complexity and optimality [3].

On the other hand, from the mathematical point of view, the optimization methods can be
divided into three main categories: (1) numerical methods [8] such as simplex methods,
bisection line search and steepest decent method, (2) enumeration methods [3,4,9] such as
dynamic programming and branch-and-bound algorithm, and (3) random methods [10~12]

such as Monte Carlo method, simulated annealing and genetic algorithm.

Figure 1.3 Bisection line search

1.3.1 Optimization by Numerical Methods
The numerical methods are mainly known as linear programming and non-linear programming.
The optimization methods by non-linear programming have been studied heavily so far.

These methods are based on iterative hill-climbing by using a descent direction. In this

-6-
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section, we focus on a minimization problem of an objective function. One of the simplest
techniques is a bisection line search (Figure 1.3) [3]. The basic idea is to search for a point x
satisfying df(x)/dx =0. First, we initialize two starting points, «° and b°. Next, find the
midpoint x°=(a’+5")/2, and evaluate the derivative. If the derivative at a point x° is
positive, then the minimum is between a° and x° and the next right point b' = x°. Otherwise,

a' = x°. This process is repeated until df(x)/dx = 0. The bisection line search can converge

to a global minimum when the objective function is convex.

)X1

Figure 1.4 Steepest descent method

When we consider an objective function with more than one variables, the most used method
is a steepest descent method (Figure 1.4). The gradient of the objective function always points
the ascent direction, and therefore the opposite direction is a descent one for minimizing the
objective function. Consequently, the next candidate solution is calculated by the following
equation,

df (x)
dx

i+1
X

=x'-a- (1.3)

where «is a step size which is non-negative. The optimal value of & can be found by solving

the following equation,
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minimize f(x"*') = f(a) (1.4)

that is, by solving the equation df («)/do =0, we can obtain the optimal . These process is

repeated until df(x"*')/dx = 0. However, the steepest descent method has problems of trapping

to local minima easily and requiring many iterations [7].

In addition, when we can use the second derivatives of the objective function, we can use a
Newton’s method. First, the objective function f(x) is approximated according to Taylor

series expansion up to the second-order,

) i | . . .
fo)= f(x‘)+df%2(x—x’)+§(x—x’)TH(x’)(x-—x’) (1.5)

where H(x') is the Hessian matrix which consists of the second partial derivatives of f(x).

The point minimizing the objective function f(x) is equal to the following point x™*' by

differentiating eq.(1.5) with respect to x and setting it to zero.

5’%2+H(x")(x—x‘)=o (1.6)

1 1

Next, by inserting x"*' into x, we obtain the minimization point x'*' of the approximated

objective function.
. ) o df(xh)
xH—I:xl_Hxl l_______ 1-7
(x') o (1.7)

If the H(x')™ exists, we can obtain a unique solution. Though the Newton’s method can
obtain a minimization point by only one iteration, the Newton’s method has problems of the
difficulty of calculating a Hessian matrix and its inverse matrix, and numerical problems due
to round-off errors. To improve Newton’s method, quasi-Newton’s methods and others have
been proposed.
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1.3.2 Optimization by Enumeration Methods

The enumeration methods can find the best solution by counting out one by one, but the
enumeration methods requires much computation time. To reduce computation cost, dynamic
programming and branch-and-bound algorithm have been proposed. The dynamic programming
is often used for solving a certain problem requiring sequential decision that made be at

various stage based on the principle of optimality by R.Bellman, that is,

an optimal policy has the property that whatever the current state and decision are,
the remaining decisions must constitute on optimal policy with regard to the state
resulting from the current decision [3].

On the other hand, the branch-and-bound method basically divides the optimization problem
into some subproblems and solves the subproblems [3]. The procedure dividing subproblems
is called a branching operation. Next, the subproblem, which has no possibility of containing
optimal solutions, is excluded from possible subproblems. This procedure is called a bounding
operation. In the branch-and-bound method, the branching operation is very important since
the number of search times depends on the branching operation. In general, there are best-first
search, breadth-first search and depth-first search in a sequence of subproblems that differ
from one another. However, these methods require much computation cost as the problem
size is large, though these methods can obtain optima within finite search times.

1.3.3 Optimization by Random Methods

The random method is basically a hill-climbing search which moves in the direction of
increasing an evaluation value in case of a maximization problem. The random methods can
find global optima within infinite time without trapping to local optima in solving non-convex
optimization problems [7]. However, the global convergence is not important because the
enumeration method in a finite search space can find global optima in finite time. The

importance is that the random methods can obtain quasi-optima with less computation cost.

In addition, the random methods have two approaches of local search and global search. The
local search selects a next searching point out of the neighborhood of the current point, while
the global search selects a next searching point out of all solution space. In general, the

computation time for the search depends on how to design the ratio of the global search to the
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local search. The local search can fast attain local optima, while the global search can slowly
attain global optima. On the other hand, random methods that the search ratio is well designed,
are simulated annealing [11] and genetic algorithm [12]. These methods, which are called
modern heuristics, are optimization methods simulating physical phenomenon and biological

evolution, respectively.

Random perturbation fx)

PR

Figure 1.5 Simulated annealing algorithm

The simulated annealing is a hill-climbing method which can move in the downhill direction.
The simulated annealing generates a next point, x,,,, with random perturbation and the next
point is evaluated. And then, the current point, x,, is replaced with the next point according to
the Metropolis or equivalent criterion. Metropolis algorithm uses the probability,
max(Le¥’"), where Af is the difference between f(x,,) and f(x,). If Af>0 then the
current point is replaced with the next one. Otherwise, the current point is replaced with the

next one with the probability ¢”’". Another frequently used criterion is the Boltzmann

probability distribution, 1/(1+¢¥’"). Consequently, while it is easy to move in the downhill
direction when the temperature, T, is high, the search point move only in the hill-climbing
direction when the temperature is low. In addition, the search ratio depends on the cooling
schedule of the temperature.

On the other hand, the genetic algorithm simulates the process of evolution and genetic

operation. The next section presents the genetic algorithm and evolutionary computation.
Thus, nature often provides us effective ideas for engineering.

-10-
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1.4 Optimization and Evolution
1.4.1 Evolution on Engineering

Living things in nature evolve and adapt to their external environments. If it is possible to
simulate evolution on a computer, then we can realize an adaptive system. First of all, we

consider the terms concerning Evolution and Adaptation on Engineering.

Evaluation Evaluation

Environment

Form Form

(a) Evaluation of change (b) Evaluation of adaptation
Figure 1.6 Evaluations of change and adaptation

* Change. The process or result of giving a different form or appearance. Here the
form includes figure, pattern and shape of cells, function, organization, culture and
environments. Change can be evaluated under an evaluation criterion as evolution or

degeneration.
Evaluation = f, .. (form) (1.8)

The evaluation result determines evolution or degeneration (Figure 1.6.a).

* Evolution: a progression from a simple form to a more complex one.
* Degeneration: a change from a complex form to a simpler one.

Here we can not judge whether or not the evolving one adapts to its environment
from the evaluation result. Whether or not one adapts to its environment, depends on

the environmental condition.

* Adaptation. Adjustment in structure or function to a changing environment

-11-
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(Figure 1.6.b). Adaptation can be evaluated under an evaluation criterion and

environmental factors.

Evaluation = f,

Jeviterion ( fOrm oenvironment) (1.9)

where ‘c’ is an operator. The adaptation is not evaluated without environmental
factors since the adaptation is evaluated as the result of the interaction with the
environment .

Here the important point is that an evolved one is not necessarily the adapted one (Figure 1.7),
though evolution is often regarded as a subset of the adaptation in engineering. For example,
human being can be said to adapt to the current environment on earth, but human being lost
the ability of generating vitamin in the human body through the process of evolution. The lost
ability can be said to be degeneration. Thus, the evolution and degeneration occur in nature as
the results of the adaptation. Another example is a numerical control (NC) machine in the
intelligent manufacturing system. The NC machine adapted to a machining environment may
not adapt it to another one. On the other hand, the machine can be said to be evolved, if the
processing speed of a computer in the NC machine is higher than other NC machines.
Consequently, the evolution and adaptation can not be evaluated under the same evaluation
criterion at the same time.

Process

W Decgeneration

Process

Figure 1.7 Evolution and adaptation

-12-
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Next, we consider the process of evolution and adaptation.

* Process. A series of actions, changes, or functions bringing about a result. The

process includes inheritance and learning.

* Inheritance. The process of transmission of genetic information from parents to
offspring. As transmitting errors, mutation changes genetic information.

* Leaning. The act, process, or experience of gaining knowledge or skill. Learning
includes learning by discovery, learning by show from parents, and reinforced
learning through the interaction with the environment.

1.4.2 Evolutionary Computation

Evolutionary computation is a field of simulating evolution on a computer [13~17]. As
mentioned before, an optimization problem is defined as eq.(1.1). Consequently, the evolutionary
optimization method can be defined as an optimization method by using eq.(1.8) as an
evaluation criterion, since the optimization problem, in general, has neither input nor output
from the environment. However, if the objective of the optimization problem is to model a
controller and to acquire rules and skill through a computer simulation, the evolutionary
optimization method requires eq.(1.9).
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Figure 1.8 Evolution of population in genetic algorithm
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From the historical point of view, the evolutionary optimization methods are divided into
three main categories: genetic algorithm by J.Holland [14], evolutionary programming by
L.Fogel [13], and evolution strategy by H.Schwefel and I.Rechenberg [15, 16]. These algorithms
are fundamentally iterative generation and alternation processes operating on a population of
candidate solutions. In addition, these evolutionary optimization methods have been applied
successfully to various optimization problems so far. Figure 1.8 shows the evolution of a
population in the genetic algorithm. The genetic algorithm generates new candidate solutions
by using genetic operators based on the current candidate solutions, while the random search
randomly generates new candidate solutions. Next, the genetic algorithm selects next candidate
solutions according to fitness value. In this way, the fitter candidate solutions survive and

generate better candidate solutions.

1.5 Artificial Intelligence and Optimization

With the progress of computation ability, various methods concerning artificial intelligence
have been successfully proposed. The study of intelligence can be retraced to very old
philosophy. From over 2000 years, reasoning theory and learning theory have been discussed
by Plato, Socrates and Aristotle [8]. The first work of artificial intelligence is a model of
artificial neurons which was proposed by McCulloch and Pitts. On the other hand, Shannon
and Turing were writing chess program for a computer, and Samuel wrote a computer program
that eventually learned to play checkers. At that time, a high level computer language, Lisp,
was developed. The objective of early artificial intelligence is problem-solving. One of the
attempts was general problem solver (GPS) by Newell and Simon. The main methods of GPS
embody the heuristics of means-ends analysis. After that, a lot of knowledge representation
method, search strategies and reasoning methods have been proposed for problem-solving.

The ultimate goals of the artificial intelligence are to understand the mechanism of brain and
to realize human intelligence on a machine. The goals are scientific and engineering approaches,
respectively. In fact, the problem of artificial intelligence is to describe and build an intelligent
agent, which perceives its environment, make a decision, and performs action (Figure 1.9 ).
Here the environment includes deterministic, dynamic and continuous elements. The researches
concerning the artificial intelligence can be divided into three fields:
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1. knowledge acquisition
2. recognition of external environment

3. learning and decision making

However, these fields have mutual dependence. Here knowledge means data or procedures
that are given as truth for an objective and also includes the law of physics and mathematics.
The knowledge acquisition includes how to represent knowledge and how to store knowledge.
The recognition of external environment is to know or identify from the past experience or
knowledge on the basis of the input and output from the environment. Learning is the process
to acquire knowledge or skill based on the information acquired from external environment,
and especially, the learning is to acquire inference rules as knowledge [18]. One of knowledge-
based inference systems in the artificial intelligence is an expert system. The expert system is
generally defined as a program that uses available information (knowledge), heuristics, and

inference to propose solutions to a special problem.

—— Environments —— Perception Intelligent agent
N :: > ensors
deterministic ? I Sensors |
Knowledge Inference
dynamic ? representation
continuous ? . '
. arni .
Action Leaming Prediction
<}—'—'——| [ Decision making
N <

Figure 1.9 Intelligent agent interacting with various environments

As a next stage, the artificial intelligence requires an ability for problem-solving as the expert
system. Here a problem is, in general, solved by using the acquired knowledge, but it is
known that the solution by the acquired knowledge requires much time. Therefore, the solution
methods by heuristics, have been proposed for reducing computation time. Here the heuristics
is defined as useful knowledge acquired by experience in most case. The optimization is
required for obtaining optimal knowledge and skill. In fact, the optimization methods have

been applied for acquiring the knowledge such as inference rules and feature extraction.

-15-



Chapter 1

1.6 Soft Computing and Optimization

Soft computing, which was proposed by L.Zadeh, is a new concept for information processing
and its objective is to realize a new approach for analyzing and creating flexible information
processing of human such as sensing, understanding, learning, recognizing, and thinking. In
fact, L..Zadeh described,

Soft computing is an emerging approach to computing which parallels the remarkable
ability of the human mind to reason and learn in an environment of uncertainty

and imprecision [22].

As methodological approaches of the soft computing, there are neural network [19~22], fuzzy
systems [19,22,23], evolutionary computation, machine learning [18], conventional artificial
intelligence and so on.

1.6.1 Neural Network

The human brain processes information super-quickly and super-accurately as a network.
McCulloch and Pitts proposed that a suitably defined network could learn in 1943, and Hebb
demonstrated a simple updating rule for modifying the connection strength between neurons
of network in 1949 (Hebbian learning). In addition, Rosenblatt proposed perceptron which
was a pattern classification system recognizing abstract and geometric patterns in the late
1950s. After that, the rediscovery of back-propagation algorithm by Rumelhart, popularized
artificial neural network, though the back-propagation algorithm was developed by Werbos

[8].

Atrtificial neural network simulating the biological brain can be trained to recognize patterns
and to identify incomplete patterns. These training and learning features make neural networks
suitable for applications in pattern classification, signal processing, control, and so on [19].
The basic attributes of neural network are the architecture and the functional properties;
neurodynamics. Neural network is composed of many interconnected neurons with input,
output, synaptic strength, and activation. The neural networks can be divided into two types;
feed-forward and recurrent networks. A feed-forward network has input layer, hidden layer,
output layer and unidirectional links between neurons (Figure 1.10), while the recurrent network
has feedback links between neurons (Figure 1.11).

- 16-



Chapter 1

Hidden

Input layer

layer Output

Figure 1.10 A feed-forward neural network

X, : : 0,
X3 ;( )

Figure 1.11 A recurrent neural network

The learning algorithm is, in general, determined by the teacher type from the environment.
The learning algorithms for adjusting weights of synaptic strength are classified into supervised
learning with target responses, unsupervised learning without target responses, reinforced
learning only with the response of success or failure. In general, a multi-layer neural network
is trained by a back propagation algorithm based on the error function between the output
response and the target response. However, the back propagation algorithm, which is known
as a gradient method, often misleads to local minima. In addition, the learning ability of the
neural network depends on the structure of the neural network and initial weights of the
synaptic strength. Therefore, the optimization of the structure and the synaptic strength is
very important for obtaining the desired target response.

Other artificial neural networks are Hopfield network and Boltzmann Machine. Hopfield
network is regarded as an autoassociative fully connected network which has symmetrically
weighted links. Boltzmann Machine is based on the simulated annealing according to Metropolis

dynamics.
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1.6.2 Fuzzy System

The conventional expert system in a process controller has a problem of how to represent
human decision making. Fuzzy theory and fuzzy logic, which was proposed by L.Zadeh,
provide us the linguistic representation such as ‘slow’ and ‘fast (Figure 1.12). Fuzziness is
often confused with probability. A statement is probabilistic if it expresses a likelihood or
degree of certainty or if it is the outcome of clearly defined but randomly occurring events.
On the other hand, the fuzzy expresses a degree of truth, which is represented as a grade of a
membership function. The fuzzy logic is a powerful tool for nonstatistic and ill-defined
structure.

Membership
1.0

0.5

0.0

0 10 20 30
Speed

Figure 1.12 Membership function for speed

Fuzzy inference system is based on the concept of fuzzy set theory, fuzzy if-then rule, and
fuzzy reasoning. The fuzzy reasoning derives conclusions from a set of fuzzy if-then rules.
Fuzzy inference system implements mapping from its input space to output space by a
number of fuzzy if-then rules. The widely used fuzzy inference systems are Mamdani fuzzy
models and Takagi-Sugeno fuzzy models, which are used as fuzzy controllers [22]. The
feature of the fuzzy controller is the locality of control and the interpolation among local
control laws. In the fuzzy controller, the state space of the system is divided into some
regions as membership functions which are antecedent, and the output (consequence) for the
system control is designed as singletons or membership functions. Next, the fuzzy rules are
interpolated as a global controller.

However, fuzzy theory and fuzzy logic have no tuning methods for fuzzy rules and human

experts have generated and tuned the membership functions and fuzzy rules so far. Therefore,
we require optimization and learning methods to obtain optimal fuzzy rules. The learning of
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fuzzy systems can be basically classified into three categories; (1) structure learning which
optimizes the combination of fuzzy rules, (2) antecedent part learning which optimizes the
shapes of input membership function, (3) consequence part learning which optimizes the
output of fuzzy if-then rules frequently defined as singletons. Of course, the combined

optimization can be considered.

1.6.3 Emerging Synthesis on Soft Computing

Each technique plays the peculiar role in the soft computing and related fields (Table 1.2).
However, there are not complete techniques for realizing all functions, and therefore, we can
integrate and fuse some techniques to overcome the disadvantages of each techniques. One
characteristics of neural networks are to recognize patterns and to classify input, and to adapt
themselves to dynamic environments by learning, but the neural network is a black box. In
addition, fuzzy systems can cope with human knowledge and perform inference, but fuzzy
systems does not fundamentally have learning processes. Nuero-fuzzy computing has developed
for overcoming each disadvantage [28~33]. In general, the neural network part is used for its
learning and classifying, while the fuzzy logic part is used for inference and crisp output.
Figure 1.13 shows the emerging synthesis of artificial neural network, fuzzy logic and genetic

algorithm.
Table 1.2 Features of soft computing and related fields

Knowledge - Natural Language, Communication Language, Programming Language
Representation - If-Then Rule, Fuzzy If-Then Rule
Inference - Production System, Fuzzy Inference System

- Artificial Neural Network, Classifier System, Belief Network
Learning - Back-Propagation Learning, Reinforcement Learning

- Temporal Difference Method, Q-Learning, Bucket Brigade Algorithm
Search - A* Search, Heuristics, Branch-And-Bound Method, Dynamic Programming

- Line Search, Steepest Descent Method

- Hill-Climbing Search, Genetic Algorithm, Simulated Annealing
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Figure 1.13 Emerging synthesis of neural network (NN), fuzzy and genetic al gorithm (GA)

On the other hand, the evolutionary computation as mentioned before, plays the role of the
optimization. The hybrid algorithms with evolutionary computation on the soft computing are
known as evolving artificial neural network [25,26], self-tuning fuzzy system [27], evolving
fuzzy neural network [34,35]. These hybrid algorithms can make up for each disadvantage by
the advantages of other methods. In this way, the evolutionary computation provides the
artificial neural network and fuzzy system with optimizing ability.

1.7 Artificial Life and Molecular Computing

Living things on earth can be divided into four levels from the structural point of view: (1)
the molecular level, (2) the cellular level, (3) the organism level, and (4) population level. A
living thing at any level is a complex adaptive system emerging from the interaction of a
large size of elements from the below level. Artificial life means ‘life made by humans rather
than by nature.” The artificial life has three types of approaches: (1) wetware system from the
molecular level, (2) software system from the cellular level and (3) hardware level from the
organism level [36~39]. In the wetware system, there are a lot of attempts to artificial
evolutionary process such as the molecular evolution in the tube. Cellular automaton, is
known as one of software system, is placed in the grid on the cell space. All cells change each

state according to the previous state of the cell and its close neighbors. The hardware system
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1s often described as an ecological system formulated by J.Holland [14,39]. The Holland’s
ecological system uses genetic algorithm and allow a large range of ecological interaction.
The objective of the ecological system is to study how simple interactions among simple

agents lead to emergent high-level phenomena.
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Figure 1.14 Representation by using DNA molecules

On the other hand, there are researches to solve a hard combinatorial optimization problem by
building a DNA based computer. The DNA based computer encodes binary strings as DNA
molecules composed of {A,T,G,C} (Figure 1.14). The combination of strings ‘zx’ and ‘yz’ is
preformed by the hybridization based on the Watson-Click complements. By using biological
operations such as polymerase chain reaction, the DNA molecules can be extracted and
amplified for symbolic operations. These research are called molecular computing [40,41]. In
fact, L.Adleman applied the DNA computer to a directed Hamiltonian path problem and
R.Lipton applied the DNA computer to a satisfaction problem [40,41]. Though the DNA
computers performs an operation very slowly (1 hour per operation, on the average), the
DNA computer has a capability of huge parallel processing (10'?). These results indicates a
probability that a DNA computer can realize far more computation than Turing computer.
Therefor, the molecular computing is recently focused on as a computer science of the next
generation. However, there are some problems such as the difficulty of the implementation,
the difficulty to deal with errors in large scale systems.

1.8 Motivation and Goals
The optimization plays a very important role in the engineering, as presented in the above

sections. The engineering requires the powerful and quick optimization method for complex
problems to obtain the high performance. The quick solution of the problem enables the
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reduction of the computation cost. And the powerful solution enables the improvement of the
performance. Figure 1.15 shows the optimization techniques from the various points of view.
The evolutionary computation and random methods are, in general, global and problem-
independent searches since they does not use the features of the optimization problems, while

the heuristics and numerical methods uses the features peculiar to the optimization problems.

Biological
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Problem-dependent — <€— »  Global in search

* Random search
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* Hill-climbing search
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* Bisection line search

* Steepest
descent method —
* Newton Method r Random methods s]
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Figure 1.15 Optimization techniques from various points of view.
(SGA; standard genetic algorithm, SSGA; steady-state genetic algorithm,
EP; evolutionary programming, £S; Evolution strategy, ASGA; age-structured genetic

algorithm, VEGA,; virus-evolutionary genetic algorithm, SA; simulated annealing)

On the other hand, nature often gives us effective ideas. In fact, human being have often
simulated natural phenomena to create new technology, though the created technologies are
sometimes different from natural phenomena. Evolutionary optimization methods simulate
natural evolution from the viewpoint of neo-Darwinism, and work on a population of candidate
solutions. The operations for the optimization are very simple and require neither the differential

information nor the continuity concerning the objective function of a complex optimization
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problem, but the evolutionary optimization methods can solve the complex optimization
problem effectively. However, the evolutionary optimization methods have some problems in
search. We therefore propose biologically inspired evolutionary optimization methods to
improve the searching ability.
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Figure 1.16 Difference of evolution of populations between SGA and ASGA

First, we propose an age-structured genetic algorithm (ASGA) as a simple extension from a
genetic algorithm. The standard genetic algorithm (SGA) has a problem of premature local
convergence which occurs when a population of individuals lacks genetic diversity, that is,
the most of individuals are same one (Figure 1.16(a)). The ASGA maintains genetic diversity
of a population by removing aged individuals from the population (Figure 1.16(b)). Furthermore,
the ASGA is applied to a knapsack problem.

Second, we propose two evolutionary optimization methods based on virus theory of evolution;
virus evolutionary genetic algorithm (VEGA) and virus evolutionary algorithm (VEA), into
which virus infection operators are introduced. The SGA has no directionality in search and
therefore the SGA is weak at local search, since the SGA uses crossover operators randomly
recombining some individuals (Figure 1.17(a)). To improve this weakness, the VEGA uses
local search by virus infection operators, while the VEGA basically uses genetic operators as

global search (Figure 1.17(b)). Here virus individuals have local genetic information.
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Furthermore, the proposed methods are applied to conventional and traditional optimization
problems: (1) a knapsack problem, (2) a traveling salesman problem, and (3) a function
optimization problem. The simulation results indicate that virus infection operators can

effectively solve the optimization problems with the directionality in search.
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(a) Evolution by SGA (b) Evolution by VEGA

Figure 1.17 Difference of evolution of populations between SGA and VEGA -

Finally, the proposed evolutionary optimization methods are applied to engineering optimization
problems: (1) trajectory planning problems of redundant manipulators as the application to
robotics, (2) a pallet allocation problem in self-organizing manufacturing system as the
application to intelligent manufacturing system, and (3) a self-tuning fuzzy controller for a
cart-pole problem as the hybrid algorithm in soft computing. These simulation results show
that the proposed methods can be successfully applied to complex engineering optimization

problems.

1.9 Organization of this Dissertation
This dissertation is organized as follows. Figure 1.18 shows the outline of this dissertation.

Chapter 2 presents evolutionary optimization methods in detail. To put it concretely, the

chapter presents natural evolution, artificial evolution, genetic algorithm, evolutionary
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algorithm, and advanced evolutionary optimization algorithms and their problems.

Chapter 3 proposes an age-structured genetic algorithm based on the population with age
structure and its application to a knapsack problem.

Chapter 4 proposes two evolutionary optimization methods based on virus theory of evolution;
virus evolutionary genetic algorithm and virus evolutionary algorithm. Furthermore, the chapter
presents their applications to conventional and traditional optimization problems and some

numerical simulation concerning virus infection.

Chapter 5 presents three application examples to engineering optimization problems. The first
section proposes a hierarchical trajectory planning method for redundant manipulators and
presents the application to some trajectory planning problems. The second section proposes a
self-organizing manufacturing system and presents the application to a pallet allocation problem.
The third section proposes a self-tuning method for a fuzzy controller and the application to a
cart-pole problem.

Chapter 6 presents the conclusions and the future works.
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Figure 1.18 Outline of this dissertation
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Chapter 2 Evolutionary Optimization Methods

Nature often gives us good ideas. Evolutionary computation is a field of simulating evolution
on a computer. In the evolutionary computation, stochastic optimization methods simulate
natural selection and work on a set of candidate solutions with operators based on evolution
and genetics. Though evolutionary optimization method has very simple architecture, but is

very powerful for optimization problems.

This chapter presents natural evolution and evolutionary optimization methods. Second, a
simple genetic algorithm which is most basic and standard, and some extended genetic
algorithms, are presented. Finally, other evolutionary algorithms: evolutionary programming
and evolution strategy are presented.

2.1 Optimization Methods Based on Evolution and Genetics

Evolutionary optimization method is constructed based on the Darwinian theory of evolution.
First, this section presents natural evolution of Darwinian theory and natural genetics. Second,
this section presents artificial creatures evolving in an artificial world by simulating natural

evolution.

2.1.1 Natural Evolution

What is natural evolution? The fact that evolution occurs in nature is certain. However, it is
difficult to explain the process of evolution in nature. One of the most important evolutionary
theory in biology is Darwinian theory of evolution [42]. The Darwinian theory is based on
natural selection. Before Darwin, Lamarck argued that species changed over time into new
species. Lamarck’s conception of evolution has two mechanisms. One is “internal forces” to
produce offspring slightly different from parents and this causes visible transformations over
generations. The other is the inheritance of acquired characteristics. The inheritance is
conventionally called “Lamarckian inheritance.” With a progress of molecular biology, various
theories of evolution have been proposed so far. There are other evolutionary theories [42~46]
such as neutral theory of molecular evolution, Imanishi’s theory of evolution, serial symbiosis
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theory, and virus theory of evolution. First of all, the evolutionary process of the Darwin

theory is presented.

Darwin proposed the evolutionary theory in the book “On the Origin of Species” [44].
Evolution means change of living things (creatures) as the result of natural selection through
generations. Darwin called evolution "descent with modification". Evolutionary modifications
in creatures depend on their environmental changes and random genetic innovations. Evolution
is mainly controlled under natural selection. Natural selection means the process that the
creatures adapted to their environment, tend to survive and reproduce more offspring to the

next generation. Natural selection requires the following conditions in nature,

1. Reproduction to form a new generation.
2. Heredity of features from parents.
3. Variation in characteristics of the members of the population.

4. Variation in the “fitness” of creatures associated with their various characteristics.

Fitness of a creature is defined as the relative contribution to the next generation, that is,
when the fitness is higher, the creature can reproduce more offspring. However, Darwinian
original theory is lack of heredity theory. In order to explain heredity theory, Neo-Darwinism,
which was proposed as synthesis of Darwinian theory and Mendel’s “atomistic” theory of
heredity. Before Mendel, most theories of evolution were based on “blending” theory. In a
blending mechanism, the “genes” are not preserved. The genes inherited from its parents are
physically lost, as the two parental sets are blended together. On the other hand, in Mendelism,
it is possible for the phenotypes of the parents to be blended in the offspring, but the genes do
not blend (Figure 2.1). Therefore, the combinatorial changes of genes cause the changes of
phenotype. Next, we present the mechanism of natural selection from viewpoints of molecular
biology and population genetics [42,45,47].

In nature each individual has a certain number of chromosomes which are structured of DNA
(deoxyribo nucleic acid). DNA carries genetic information used to build a new body and
causes the inheritance of characteristics from parent to offspring. DNA consists of four types
of bases, G (guanine), C (cytosine), T (thymine) and A (adenine). Polypeptide chain is made
up of two chains of nucleotides twisted in a double helical structure and joined by hydrogen
bonds between the complementary bases (Figure 2.2). Gene is a hereditary unit composed of
DNA. Every gene is located at a particular place on a chromosome called genetic locus. A
chromosome determines an individual characteristics based on the genetic composition of the
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individual called a genotype. Therefore, a genotype determines its phenotype which expresses
characteristics of the individual.
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(a) Blending heredity (b) Mendelian heredity
Figure 2.1 The difference of Blending heredity and Mendelian heredity
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The genotype of offspring is, in general, different from the parents because of a recombination
between parents with different genotypes. Recombination is the rearrangement of genes that
occurs when reproductive cells are formed. Figure 2.3 illustrates an example of recombination
between two chromosomes. First, a pair of chromosome lines up, and second, a strands of the
pair of chromosomes breaks at the same point, and last, the strands join together and recombine.
A recombination generates offspring which have a combination of characteristics different

from that of their parents.

When an individual reproduces, its genes are physically replicated. However, accidental
errors naturally occur at a low rate during replication. The change by these errors is called
mutation. There are, furthermore, some types of mutations such as inversion and translocation.
The inversion reverses a sequence of genes on a chromosome. In the inversion, a strand of a
chromosome breaks off and links in the reverse direction (Figure 2.4.a). In the translocation ,
a strand of a chromosome is broken off and rejoined to the chromosome at the different locus
(Figure 2.4.b). The majority of mutations are, in general, harmful to individuals, but the
mutation may increase an individual’s fitness with a very small proportion. These successfully
mutated individuals spread over the population by natural selection. Thus, genetic variations

in species arise by these mutations.

To summarize simply, evolution is controlled under natural selection in Darwinism. However,
species needs new genotype to adapt its external environmental change. Species can adapt
itself to changing environment by recombination and mutation.

T S omm S

Figure 2.3 Recombination of chromosome

(a) Inversion (b) Translocation

Figure 2.4 Mutation (inversion and translocation)
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2.1.2 Evolution in Artificial World

Living things evolve and adapt to their external environment, as mentioned in the previous

section. If it is possible to simulate evolution on a computer, then we can realize an adaptive

system like living things in nature. This section consider how to realize the evolution of
artificial creatures in artificial world on a computer. As mentioned before, living things have

some chromosomes which determine their characteristics by the genetic composition, and

natural selection eliminates living things according to their adaptiveness or fitness to their

environment. Darwinian theory of evolution provides a framework for realizing artificial

evolution on a computer, and genetics provides a framework for dealing with symbolic "
operation on a computer. To realize an artificial creature and world on a computer, we

assume the following condition:

1. An artificial creature has certain genetic information which is inherited from ancestor
to offspring.

2. An artificial world has a population of the creatures, and selects the creatures adapted
to their environment from the population into the next generation.

3. A fitter individual to its environment can reproduce more offspring.

Figure 2.5 shows the process of above artificial evolution. First of all, it is required to define
environments in the artificial world to simulate the evolution of artificial creatures. If an
optimization problem is regarded as an environment, then the environment can give each
artificial creature (individual) a certain fitness. Each individual has a certain strategy or
information to survive in the environment. In addition, individuals generate new individuals
with recombination. As the result of recombination, individuals may create more suitable
strategy or information generation by generation. Since the process of selection and
recombination is repeated on a computer, more suitable individuals are created through
generations. At last, we can obtain the most suitable individual, that is, a solution to the
problem. This kind of method simulating evolution in nature, is called evolutionary computation
[12~17]. There are three categories in evolutionary computation. J.Holland proposed Genetic
Algorithm [14]. L.Fogel proposed Evolutionary Programming [13). I.Rechenberg and
H.Schwefel proposed Evolution Strategy [15,16]. These algorithms have historically
independent origins, but the difference among them has become less distinct recently. Next,
we consider the process of an evolutionary optimization method by using the genetic algorithm.
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Figure 2.5 Evolution in artificial world

The initial genetic algorithm was devised as an adaptation process, and later, the genetic
algorithms were used as optimization methods [12]. When we solve an optimization problem,
the goal is often to obtain variables to maximize or minimize a given objective function. In
the genetic algorithms, we must encode a decision variable into a finite length string on a
chromosome as genotype, because genetic algorithms use genetic symbolic processes. The
genetic algorithm works on a set of strings which called population with copying strings (i.e.
reproduction) and exchanging of partial strings (i.e. recombination). Individual has one or
some chromosomes of strings. In general, a string of an individual stands for a candidate
solution by binary notation for the objective function. Phenotype of an individual represents
a candidate solution and we can obtain phenotype with decoding a string of an individual.
Fimess of an individual represents the value calculated an objective function. In the genetic
algorithms, the operations for string are called genetic operators and the selection of candidate

solutions to the next generation is performed by reproduction.

1. Recombination: this generates new individuals (offspring) by combining substrings

on the string of parents.
2. Mutation: this replaces a gene on the string with the other one.

3. Reproduction: this creates the population of the next generation by selecting individuals
according to their fitness values from the current population.

The selected fitter individuals generate new individuals with the recombination and the mutation.

In this way, a population evolves toward optimal solutions. To summarize, the procedure for
solving an optimization problem with a genetic algorithm is as follows,
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Step 1. Determine a coding method from solution space into string space as genotype.

Step 2. Design fitness function.

Step 3. Design crossover operators and mutation operators suitable for the problem.

Step 4. Design selection scheme.

Step 5. Parameter tuning of crossover probability, mutation probability, selection pressure
and so on.

2.2 Simple Genetic Algorithm

In this section, we present a simple genetic algorithm [12] and its application to a simple
function optimization problem. Furthermore, we illustrate how a population evolves on a
simple genetic algorithm by hand. A genetic algorithm mainly needs reproduction,
recombination, and mutation. Though various genetic operators have been proposed so far,
we first present a simple genetic algorithm because of the simplest and most standard.

A simple genetic algorithm is composed of roulette wheel selection (reproduction), one-point
crossover (recombination), and simple mutation. Each operation is very simple and works on
strings in a population only with simple bit operations. The procedure of the simple genetic
algorithm is as follows:

begin
Initialization
repeat
Roulette wheel selection
Crossover
Mutation
Evaluation
until Termination_condition = True
end.

With the genetic operators on a population by hand, we illustrate how to evolve on the simple

genetic algorithm one generation. As a basic example, let us consider a function maximization
problem in the following function:
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fx)=x° (2.1)
where x is defined as unsigned integer.

First, we must represent each character in bit number (binary digit) to apply a simple genetic
algorithm. We call this operation coding which is mapping a finite-length string space from a
solution space. We can express the number from 0 to 31 with using 5 length bits in this case.
The bit number 10110, for example, decodes to the number 22 as follows:

1:2°40:2°+1-22+0-2' +0-2°=20 (2.2)
In this way, we can decode the genotype into the phenotype.

We then illustrate the procedure of the simple genetic algorithm by hand. Initialization is to
generate the initial population. Each individual’s string in an initial population is generated
with selecting character O or 1 at random. Assume the following population of four individuals

at generation ¢:

No. String
I: 10100
2: 01011
3: 11001
4. 01111

Next, we evaluate the fitness value of each individual against the environment. Calculating
fitness function eq.(2.1), we can obtain the fitness value. The fitness value is defined as
payoff or profit. In the simple genetic algorithm, the survival ability of an individual is
dependent on the fitness value. The individual with a higher fitness value can reproduce more
offspring under the selection. The reproduction generates a new population of the generation
t+1 with copying strings of the generation ¢. The reproduction makes use of the selection of
individuals according to their fitness values. In order to select offspring, the simple genetic
algorithm uses the roulette wheel selection scheme as one of the most basic selection strategy.
The roulette wheel selection selects an individual with the probability in proportion of its
fitness value to the summation of all individual fitness value. The selection probability of an

individual i, pseteciion is as following:
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fitness, 2.3)

n

Z fitness,
=1

Dselection =

where n denotes a population size, which is 4 in this case.

A new population is generated with the roulette wheel selection four times. Table 2.1 shows a
reproduction result of a new population in this case. Decoding a string into base 10 integer,
we obtain the value of string and calculate fitness function. Calculating the selection probability -
of individual petecion, we calculate the summation of all fitness values, which is a sum of 1371.
We obtain each individual pselection according to the sum. The expected value is the number
of individual to be selected into the next generation. In this case, based on each expected
value, the roulette wheel selection selects the string with the highest fitness 625 twice, and the
strings with the fitness 400 and 225 once, respectively. As the result of the selection, we
obtain a new population of the next generation. The reproduction generates the population
with higher fitness on average, not to generate individuals with new genotypes. Therefore, in
order to generate new candidate solutions for solving the problem, genetic algorithms require

recombination operators and mutation operators.

Table 2.1 Selection result by roulette wheel selection

Genotype Phenotype Fitness  pselction Expected value  Selected

10100 20 400 0.33 1.16 1
01011 11 121 0.08 0.32 0
11001 25 625 0.43 1.72 2
01111 15 225 0.15 0.60 1

Second step is the crossover operator to generate new strings from two or more individuals.
Mating between two individuals randomly selected, and next, choosing crossing site of them
randomly, the crossover exchanges the partial substrings of strings cut by the crossing site
between them. To divide population into couples mating at random shown in Table 2.2, we
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choose each couple of crossing sites 2 and 4, respectively. The crossover is performed by the
crossover probability perossover = 1.0 here. Consequently, all individuals are recombined by the
crossover. The third step is the mutation operator for reversing the bit of string at random
according to mutation probability pmuaion = 0.05 here. In Table 2.2, the mutation occurs at the
one position, which bit ‘1’ is replaced ‘0" in the locus 4 on the third string here. And then, we
calculate the summation of all fitness value, which is 1818. The sum of all individuals
becomes better than that of the previous generation by 1371 and the highest fitness value
becomes better than the previous one by 49.

Table 2.2 One point crossover and mutation

Genotype  After crossover  After mutation Value Fitness

101100 10001 10001 17 289
111001 11100 11100 28 784
110101 11011 11001 24 576

01111 01101 01101 13 169

In this way, we illustrated three operations of the simple genetic algorithm by hand. As a
result, we obtained a better solution after one generation, though we used only some probability,
some bit operations and the roulette wheel selection. To summarize, only the simple symbolic
operations without using characteristics of the problem enable the solution of the problem.
All the population evolves toward a better solution set with increase of the average of fitness

values generation by generation.

Why can genetic algorithms obtain a better solution? The reason is that the number of
individual that the leftmost bit is ‘1°, increases after one generation in this case. The leftmost
bit is very significant, since the bit is the most influence to a fitness value. Because significant
substrings increase in a population, all the population can evolve toward an optimal solution.
In genetic algorithms, significant substrings increase in a population without considering
themselves. With genetic operators, the significant substrings often generate new better
significant substrings. This is called building block hypothesis. The evolution of a population,
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not an individual, is an essence of genetic algorithm. The crossover operator is the most
essential symbolic operation for generating better candidate solutions to search the solution
space of the problem effectively. Further discussions of genetic al gorithm in detail are presented
in the following section 2.3.5.

2.3 Genetic Algorithm Architecture

Genetic algorithms are often called ‘no prior knowledge required’ optimization techniques,
since genetic algorithms can obtain optimal or quasi-optimal solutions with only simple'
symbolic operations without considering characteristics of objective functions for optimization
problems. The simple genetic algorithm which was presented in the previous section, is
shown to be powerful for solving an optimization problem, though its procedure is very
simple. Simple genetic algorithm has the simplest architecture in genetic algorithms, but
genetic algorithms should be extended suitable for an optimization problem to be solved. A
number of genetic operators have been proposed in order to apply various optimization
problems. We then present the fundamental characteristics of genetic algorithm again as

follows:

1. Genetic algorithms work with strings coded the candidate solution.
2. Genetic algorithms work on a population of strings.
3. Genetic algorithms need only fitness value, not derivative information.

The reason why these genetic operators work effectively on a population, lies in the concept
of building block hypothesis. But genetic algorithms can not solve all of optimization problems.
These problems are called GA-hard problems, one of which is a minimal deceptive problem.
In the problem, a crossover operator can not work well on a population. Furthermore, there is
a problem of premature local convergence, which arises from the architecture of genetic
algorithms.

In this section, we present coding methods from the solution space of an optimization problem

into a string space, other genetic operators for applying various optimization problems, building
block hypothesis, and some problems concerning genetic algorithms.
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2.3.1 Coding

When we try to solve an optimization problem with genetic algorithms, first of all, we must
design how to encode the solution space for the optimization problem into a string space. The
coding means the mapping from the solution space into a finite-length string space. We
require a good coding design in order to solve the optimization problem effectively. Various
coding design methods have been proposed so far [48,77,79]. The most important condition
in coding is to cover all of the solution space with the string space without redundancy,
though living things in nature have some chromosomes which include a lot of redundant
genes. Consequently, the phenotype of the string space should be equal to the solution space
of the problem in order to solve the problem easily. In addition, the string space should be
generated as a set of feasible candidate solutions in order not to perform the useless search.

Genetic operators, however, directly work on the genotype, not phenotype in genetic algorithms.
Therefore, the performance of the genetic search depends on symbolic operations for the
genotype. Genetic algorithms work best when substrings have consistent benefit throughout
the string space. This is based on the concept that a coding method is deeply concerned in a
crossover operator. The neighborhood of a candidate solution in the solution space should be
similar to the neighborhood of the string correspondent to the candidate solution in the string
space (Figure 2.6). If new offspring generated by a crossover were not similar to their parents,
the population would proceed toward a different direction of the evolution, and the genetic
search would result in failure. To the contrary, if genetic algorithms generate good offspring,
the genetic search results in success. When we take into account the relation between coding
methods and genetic operators, we offer two principles [12] of the coding rule as follows:

1. We should select the smallest characters for representing a solution space.
2. We should design a coding method for generating consistent strings by genetic operators.

The former rule means the coding design should be a non-redundant representation. We then
consider the latter rule. As mentioned before, the building block hypothesis is very important.
Genetic algorithms perform best when significant substrings increase in a population without
the destroy of them by genetic operators. Though the genetic search is dependent on genetic
operators, the genetic information to be inherited from parents to offspring is dependent on
the coding design. Therefore, we should design a coding method so that genetic operators can
generate meaningful offspring. The details of the principles will be presented in the following

subsection.
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- Solution space ~ String space —

Crossover

Crossover

J . J

Figure 2.6 Coding solution space into string space

We then present some examples of coding techniques. First, we consider a binary coding in
case of a function optimization problem. The coding is to design genotype corresponding to
phenotype. When we assume the phenotype is integer, the integer x is represented by using
the following equation: '

-1
x=) gix2" 24)
i=0

where [ is the string length and gi is the i-th gene. We can represent genotype very simply
with the binary coding and it is easy to decode the genotype into the phenotype. As one of
other bit representations, there is Gray coding. The Gray coding represents a adjacent integer
as the binary string that the Hamming distance is 1 from a code to the next. There are some
reports concerning comparisons between the binary coding and the Gray coding (Table 2.3).
As the result of comparisons, the Gray coding is superior to the binary coding, because the
Gray codes have the smaller perturbations by many single mutations than the binary coding.
This shows that the performance of genetic algorithms is dependent on the similarity of
strings in the string space.
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Table 2.3 Representation of binary coding and Gray coding

Integer Binary code Gray code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Next, we consider a permutation problem. In general, a permutation is not permitted overlapping
of the same character on one string. In case of the permutation of the integer numbers from |
to 5, the permutation is defined as follows:

12345

In the permutation coding, we must design effective recombination operators. For example,
we illustrate a one-point crossover operator used in the simple genetic algorithm (Table 2.4).

Table 2.4 One-point crossover in permutation problem

String String after crossover
123145 12343
215143 21545

As the result of crossover, the characters “3” and “5” are overlapped in each string, respectively.
These generated strings are out of the solution space, that is, infeasible candidate solutions.
Consequently, genetic algorithms require good coding design and genetic operators in order
not to generate meaningless strings.
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2.3.2 Fitness Function

The goal of an optimization problem is often to find feasible solutions to maximize/minimize
a given objective function. Most of genetic algorithms find feasible solutions to maximize a
designed fitness function. The genetic algorithms basically require no more information than
fitness value for an optimization problem. However, we can be free to introduce some ideas
concerning the optimization problem into the fitness function. The reproduction operator
based on natural selection is to reproduce more individuals with higher fitness values in order

to obtain optimal solutions to maximize the fitness function.

We calculate the fitness value against its environment to generate a population of the next
generation. Decoding the genotype into the phenotype, genetic algorithms calculate fitness
function and obtain fitness value (Figure 2.7). A roulette wheel selection used in a simple
genetic algorithm is to select an individual with probability in proportion of its fitness value
to the summation of all individual fitness values. To the contrary, in the case of a minimization
problem, we must transform the minimization problem into the maximization problem to
apply a roulette wheel selection. We can transform a fitness function using the following
equation:

fitness!' = fitnessmax — fitnessi+ C (2.5)
where fitnessi denotes a fitness value of an individual i, fitness’ denotes a new fitness value,
fitnessme is the maximal fitness value in a population, and C denotes the offset for the range

of fitness value. In this way, we can transform the fitness function suitable for genetic

algorithms.

Genop)sGaenod->Cpines

Decoding Calculation

Figure 2.7 Calculation from genotype into fitness value
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In the genetic algorithms, the convergence of a population is controlled under selection
pressure [49~51]. The selection pressure is dependent on fitness values. If the selection
pressure is high, the convergence speed is also high. If the selection pressure is too low, the
selection randomly selects an individual without relation to its fitness value. Fitness scaling is
used as a scheme for increasing or reducing the difference between fitness values. There are
three fundamental schemes of fitness scaling: linear scaling, sigma truncation and exponential
scaling. The procedure of linear scaling is as follows:

fitness;'= A X fitness, + C (2.6)

where A denotes a coefficient for increasing or reducing the difference. The procedure of

sigma truncation is as follows:
fitness;' = fitness, — ( fitnessmeam — B X &) 2.7)

where fitnessne: denotes a mean average, B denotes constant, and ¢ denotes standard deviation.
The procedure of exponential scaling is as follows:

fitness,' = ﬁmess,.k (2.8)

where k denotes a coefficient of the exponent. To control fitness values is actually the same to
control selective pressure. With the control of fitness values, genetic algorithms can perform
adequate selection to search the solution space.

2.3.3 Selection

The procedure of genetic algorithms starts with reproduction, recombination, and mutation.
Selection simulates the process of natural selection, and genetic algorithms needs selection
operations to make a population evolve toward the better direction of optimal solutions. The
main process of a selection is to reproduce a next population with selecting an individual with
the selection probability proportional to its fitness value. In this kind of stochastic selection,
an individual with a higher fitness can reproduce more offspring. Because the selection is
carried out by stochastic techniques, a number of the same individual may be selected by
chance. As a result, some types of strings sometimes occupy a population. This is called
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‘genetic drift’ [14] or ‘random drift’ which often occurs in the case where the population size
is relatively small in genetic algorithms. Various selection schemes have been proposed in

order to prevent a population from genetic drift.

Selection schemes are classified into two main categories of proportional selection scheme
and competition selection scheme. Proportional selection scheme is based on the fitness
value of an individual against the total fitness value of all the population. On the other hand,
competition selection scheme is based on the comparison with fitness values of some other
individuals. We present some of the selection scheme as follows:

1. Roulette wheel selection scheme
2. Elitist selection scheme

3. Tournament selection scheme

4. Ranking selection scheme

5. Expected value selection scheme

Roulette wheel selection scheme [12], which presented in the previous section, is called
Monte Carlo method in another name. In short, this scheme selects an individual with probability
in proportion to its fitness values. This scheme is most basic and genetic algorithms use a
hybrid scheme of this scheme and some others. The weak point of this scheme is that there is
probability not to select an individual with a high fitness, or to select the individual many
times, since this scheme uses only selection probability without any other ideas.

Elitist selection scheme [12] which is one of the competition selection scheme, preserves the
fittest individual through all generation ¢, that is, the fittest individual is certainly selected to
prior to others into the next generation. Elitist possesses rate is defined as percentage to the
population size. This scheme prevents an individual with a higher fitness value from happening
to be eliminated from the population. However, this causes the lack of genetic diversity in a
population, because this scheme selects only the fittest individual. The most basic elitism
concept was proposed by [14] as follows:

Let a*(#) be the best individual generated up to time . If, after generating A(t+1) in the
usual fashion a*(z) is not in A(#+1), then include a*(t) to A(r+1) as the (N+1)-th member.

In general, to preserve the fittest individual is very important for optimization methods to

solve optimization problems, for we often want to obtain the best solution of the already
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obtained solution candidates.

Tournament selection scheme [12,13,51] which is also one of the competition selection scheme,
in general, selects an individual with the highest fitness value between m randomly selected
individuals where m is the number of competing members. A genetic algorithm reproduces a

new population with repeating this scheme # times where # is the population size.

Ranking selection scheme [12,50] is a scheme based on the rank sorted according to individual
fitness values. This scheme selects individuals by the number of the its reproduction into the
next generation based on the ranking table which is predefined.

Expected value selection scheme [12] is a scheme based on the expected value of individual
fitness. First, we calculate the expected value from an individual selected the probability
based on a roulette wheel selection scheme. Second, if an individual is selected, its expected
value is decreased by 0.5. This scheme relatively prevents an individual from being selected
more than twice in the population.

2.3.4 Genetic Operators

Genotype of an individual is changed by genetic operators such as genetic combination,
transcription, inversion, and duplication, while evolution is controlled under natural selection
in nature. Genetic algorithms require genetic operators for the purpose of evolution of all the
population. The recombination generates new individuals with some crossover operators. The
mutation generates new individuals with some perturbation operators. Each operator plays the
role of the specialized functions, respectively. In this subsection, we present the crossover

operators and mutation operators.

2.3.4.1 Crossover

Crossover operator generates new individuals as solution candidates in genetic algorithms
[12,52~54]. Genetic algorithms can search the solution space by mainly using crossover
operators. Without crossover, the genetic algorithm would be a random search algorithm. In
addition, if the crossover did not work on a population, the genetic search would be like a

random search or result in failure. The crossover operator replaces some or all of the population
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with individuals of new genotype. Fundamentally accepted, the crossover operator exchanges
each substring between two individuals. There have been various crossover operators peculiar
to optimization problems [12,79,80]. We present some of crossover operators as follows:

1. One-point crossover

2. Multi-points crossover

3. Uniform crossover

4. Cycle crossover

5. Partially matched crossover; PMX

One-point crossover, as mentioned in the previous section, is one of the basic crossover
operators. With choosing a break-point as a crossing site, the crossover recombines substrings
between two individuals.

Multi-point crossover is a crossover operator with some break-points on a string. This operator
recombines some substrings which cut by some break-points between individuals (Figure 2.8).

H1111 10010
01001010 01101
break-point

Figure 2.8 Multi-point crossover

Uniform crossover recombines two strings according to a string which called a mask pattern.
First, we generate randomly a mask pattern including “0” or “1”. We generate offspring with
the exchange of characters between individuals at the locus of “1” of the mask pattern
(Figure 2.9).

1111111
| 11001
0010010 00110
00110

mask pattern

Figure 2.9 Uniform crossover
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We often require crossover operators to satisfy constraints of permutation problems. These
crossover operators prevent a character of an individual from overlapping on a string. For
example, a travelling salesman problem is one of the combinatorial optimization problems
and we present the traveling salesman problem in the following chapter 4. In order to solve
the permutation problem we use crossover operators such as cycle crossover and partially
matched crossover (PMX).

The cycle crossover [12], first, chooses a starting point, not a crossing site. Second, the cycle
crossover makes a closed round of substrings between individuals. For example, we consider
two parents as follows:

P1:31245
P2:24351

We illustrate the procedure of this crossover as follows. We start with choosing a starting
point of the string and next choose the locus 2 of the P1 in this case. A closed round of
substring begins from this starting point. We copy the characters 1 and 4 in the locus 2 of the
P1, P2 to the same locus of offspring, respectively.

O1 : *]#x*
02 : *4xxs

Next, we copy the character of the locus existed the character 4 in the locus 2 of P2 .

O1: *1%4%
02 #4xes

We repeat this process until we return to the first chosen character of P1. Consequently, we
can obtain a closed round of substring in a sense.

O1: *1*45
02 : *4*51

Finally, we fill characters from the former parents to the latter offspring. As a result, we
obtain the complete offspring as follows:
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O1:21345
02: 34251

The partially matched crossover; PMX [12] is a crossover operator consisted of two process.
We illustrate the procedure of this crossover. First, we start with choosing randomly two
break-points as crossing sites. In this case, we also consider two parents as follows:

P1: 3112415
P2 : 241351
break-points

We choose substrings between two break-points in both the parents and exchange substrings
between the parents without overlapping of character.

O1 : ##35%x
02 : *#4 %

The character 2 in the locus 3 of P1 is exchanged the character 3 in the same locus of P2, that
is, we exchange the positions of the characters 2 and 3 in the P1, and the characters 3 and 2 in
the P2. Furthermore, the characters on the substring rounded by two break-points are also
operated by this exchange, respectively. Consequently, we can obtain the partially matching
substrings as follows:

01 :2%354
02 :3524*

At last, the remained character is copied from P1 to O1, and from P2 to O2. As a result, we
can obtain the complete offspring and as follows:

01:21354
02:35241

In this way, genetic algorithms can generate new individuals of feasible candidate solutions
satisfying the constraint of permutation problems. There have been other Crossover operators
satisfying the constraint of the permutation problems [78,80]. As mentioned before, there is

interdependent relation between coding and crossover. When we design the crossover operator,
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the most important is to design crossover operators which can generate meaningful individuals,
not meaningless individuals which are not feasible candidate solutions. Further, we must take
into account the inheritance of genetic information from parents to offspring. After crossover
operators, the offspring should inherit adequately genetic information from the parents. To
summarize briefly, crossover operator is the most important for genetic algorithms to search
the solution space effectively. And genetic search is dependent on the performance of crossover

operators.

2.3.4.2 Mutation

Mutation occurs as the error in replicating in nature. In genetic algorithms, the mutation
operator [12,55~57] replaces a randomly selected character on the string with the other one.
The mutation is performed independent of individual fitness values. A standard mutation 1s
one-point changing per individual. Mutation operator has several types in nature such as
inversion, translocation and duplication. We present some of the mutation operators as follows:

1. Inversion
2. Translocation
3. Duplication

Inversion partially changes a character sequence from one direction to the opposite. The
procedure of the inversion is as follows. First, we choose two points randomly and cut string
at the points. Next, we link the substring in the reverse direction into the remained substring.

For example, we assume a string included five characters. We choose two point of the locus 2
and 4.

1123415
With linking the substring, inversion results in the following state.
14325
Translocation (shift) changes the character sequence with moving to the different position. In

translocation, we choose a substring randomly the same as the procedure of the inversion. We
translocate the substring to a randomly chosen locus. For example, we assume the following
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string, and the substring is chosen the segment from the locus 1 to 2. The translocating point

1s chosen as the locus 4.
1121345

We insert the substring from the locus 4 to 5, and the remained substring of the string shift to
the leftmost point of the string.

34512

Duplication overlaps the same substring on a string. In the duplication, we choose a substring
randomly in the same way of the inversion. We overwrite the substring to a randomly chosen
locus. For example, We assume the following string, and the substring is chosen the segment
from the locus 1 to 2. The overlapping point is chosen as the locus 4.

1121345

We overwrite the substring over the locus 4 and 5 and the remained substring is not operated

as follows.
12312

However, this generated individual does not satisfy the constraint for permutation problems.

Therefore, duplication is not suitable for permutation problems.

We then consider the role of the mutation operator. While the crossover operator works well
on a population as the genetic search, the mutation operator second works on a population.
However, the mutation operator is also an important one for genetic algorithms, since the
mutation operator can reintroduce the characters eliminated from a population through the
long generations. We assume that the behavior of a genetic algorithm is defined as Markov
chain [13,58~62]. The Markov chain of the genetic algorithm composed of a selection scheme
and a crossover operator is possible to transit to an absorbing state. The absorbing state means
that a set of states can not escape from the own irreducible set. Figure 2.10 shows an example
of an absorbing state. In the example, state transitions from the state A to B, from B to A, and
from A to C are possible, but state transitions from C to any other states are impossible. The
state C is an absorbing state in this example.
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Absorbing state

Figure 2.10 Absorbing state in Markov chain

Figure 2.11 shows an example of a population of an absorbing state in a genetic algorithm.
The leftmost bit of all of the strings in the population are the character ‘1’ in Figure 2.11. The
individual that the leftmost bit is ‘0’ can not be generated from the population by using the
selection scheme and the crossover operator. However, the mutation operator can generate the
individual that the leftmost bit is ‘0’. This shows that genetic algorithms require reintroducing
operators like the mutation operator. Therefore, the mutation operator plays an important role

for the genetic search.

— Population ——
10101
§1001
Jorio
Jrii1i

\. J

Figure 2.11 A population of absorbing state in genetic algorithms.

Thus thee mutation operator also influences a population. In conclusion, the mutation operator
helps genetic algorithms to search a global solution space, since the mutation operator randomly
changes the strings of individuals. If mutation probability is high, the mutation operator often
happens to break an important substring on an individual easily. Therefore, genetic algorithms
should, in general, use a low mutation probability. Genetic algorithms, in fact, use very low
mutation probability such as 0.001 per character. There are many researches about the control
of a mutation probability. For example, one of them is the dynamic control of a mutation
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probability, in which the mutation probability is high at early generation, and decreases
generation by generation. The dynamic control makes us enable the genetic search without

considering the genetic bias of an initial population.

2.3.5 Building Block Hypothesis

The previous subsection presented genetic operators for various optimization problems. Why
can genetic algorithm improve fitness value of a population throughout generations? As
mentioned before, the reason is that significant substrings increase in a population without-
considering the genetic information of substrings. The significant substring is a segment for
increasing fitness values. The substring is called a schema [12]. As schemata increase in a
population generation by generation, all the population evolves toward the direction of optimal
solutions. In fact, the crossover operator between parents with higher fitness often results in
the generation of offspring with the higher fitness, that is, the schemata often generate new
better schemata with genetic operators. This is called building block hypothesis [12]. We
presented the role of genetic operators in the previous section, but we don’t consider the
performance of the genetic algorithms. We often treat schemata to analyze the behavior of the
genetic algorithms.

We analyze how a schema increases in a population. First, we must represent string as the
schema. Here we consider a problem with strings composed of characters {0, 1} over a binary
string of length . A schema H is defined as a string composed of three characters {0, 1,*}.
Asterisk or star “*’ refers to a ‘don’t care’ or ‘wild mark’ which maybe matches 0 or 1. For
example, we consider a schema H = 1*0*. This schema stands for four strings:

1000, 1001, 1100, 1101

Next, to analyze such a schema, we introduce schema order and defining length. The order of
the schema H, which is denoted by o(H), is the number of fixed position, that is, the order is
equal to the number of 0 or 1 on the schema. The order of the schema H = 1*0* is 2, because
the first and third characters are fixed. The defining length of the schema H, which is denoted
by 6(H), is the distance between the first and last fixed positions. For example, the defining
length of the schema H = 1*0* is 2 with the calculation of 6(H) =3 -1 =2, because the first
fixed position is 1 and the last fixed position is 3. In the case where the number of fixed
position is 1, that is, o(H)=1, the defining length is 0, §(H) =0, because the first and fixed
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positions are the same.

As we defined schema order and defining length, we analyze how a schema increases in a
population. As mentioned before, genetic algorithms are composed of reproduction,
recombination, and mutation. An iteration performs these three genetic operations. We use a
simple genetic algorithm as an example. We assume that the number of strings including
schema H at generation ¢ is denoted by m(H,¢), where the population size is n and the string
length is /. Then, we analyze how a schema increases in a population through genetic operators.

First, we consider reproduction. As the reproduction is roulette wheel selection scheme, we

can obtain m(H,t+1) after the selection scheme with calculating from m(H,?). Here we assume
that m(H.?) is the expected value of strings. The schema increment equation of m(H,+1) after

the selection scheme is as follows:

m(H,t+1) =m(H,1)- f(J_):f) (2.9)
f'(H)=%Zﬁ (2.10)

where f{H) is the average fitness of the strings the schema H and f; is the fitness value of the
string i. This equation indicates that the schema increases in proportion of the average fitness
of the schema against the average fitness of the population. In other words, the schema
increases in a population when the average fitness of the schema is higher than the average
fitness of the population. The reproduction can increase good schemata, but the reproduction
can not generate new schemata. Since a genetic algorithm is a stochastic search method, the
genetic algorithm requires recombination and mutation in order to generate new solution
candidates.

Though crossover operators can generate new schemata, the crossover operator, however, has
a possibility to break schemata at the same time. We illustrate how the crossover influences

schemata.

H =*10%x*]%*
H, =%*%%](**
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We choose crossing point between the locus 3 and 4, for example. As the result of the

crossover operator, the H, and H, becomes as follows.

H =*10|**]%*
H, =%%%] 1(**

When genetic algorithm performs crossover operator at the crossing point, the schema H, is
broken up, but the H, survives without being broken up. From the result of this example, the
schema will be broken up easily as the schema length is long. The probability P, that the

schema H survives after a crossover operator is as follows:

O(H)

P=1-P.
S c l_l

(2.11)

where P, Iand &6(H) denote crossover probability, the string length and the defining length

of a schema H, respectively. However, the survival probability is, in fact, higher than P,

because the same schema may be generated by the crossover operator. Then, we consider the
survival probability of a schema after mutation operator. The mutation operator changes a

character with the mutation probability P,. If a mutation occurs on the string without fixed

characters of the schema, the schema can survive after the mutation operator. Therefore, the
survival probability after a mutation operator is as follows:

P=(1-P )O(H) (2.12)

m

where O(H) is the order of the schema, that is the number of the fixed characters of the

schema. As the value of the probability P

m

, 1s very low relatively, we may approximate the

P of eq.(2.12) as follows:
P,=1-P -O(H) (2.13)

Therefore, we can obtain the schema increment equation of m(H,t+1) after selection, crossover
operator, and mutation operator is as follows:
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m(H,z+1)2m(H,z).L(]_?-[l-13.-51(—}112—3,,-O(H)} (2.14)

From eq.(2.14), the number of a schema increases when the schema is a short length and low
order. This conclusion is very important and is called schema theorem or Sfundamental theorem
of genetic algorithms [12]. Since some schemata generate new better schemata with the
crossover operator and the number of a schema increases in a population with the selection
operation, this is called building block hypothesis. Building up bits of blocks called schemata,
genetic algorithms can obtain optimal solutions. In addition, we should use low crossover
probability and low mutation probability from the conclusion of the €q.(2.14). However, the
schema theorem does not consider new individuals generated by crossover operator and
mutation operator, while a schema increases in a population. Consequently, the schema
theorem does not indicate whether or not genetic algorithm can obtain optimal solutions.
Whether or not genetic algorithm can obtain optimal solutions with finite time is an open
problem. In addition, genetic algorithms can not generate individuals of new strings if crossover
probability is low. Therefore, the crossover probability should be relatively high in order that
the genetic algorithms can search the solution space effectively.

2.3.6 Problems of Genetic Algorithm

We presented building block hypothesis in the previous subsection. In this subsection, we
present problems in genetic algorithms as follows:

1. Premature local convergence
2. Minimal deceptive problem

The premature local convergence is a phenomenon resulted from stochastic bias by a proportional
selection scheme. The proportional selection scheme selects individuals with higher fitness
priory, and as a result the population lacks genetic diversity. On the other hand, the minimal
deceptive problem is dependent on the solution space, in which the problem is that genetic
operators are not effective for searching the solution space.
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2.3.6.1 Premature Convergence

Selection operation simulates the process of natural selection and select an individual with the
probability proportional to its fitness value. In this kind of stochastic selection scheme, an
individual with a higher fitness value can reproduce more offspring. In general, selection
operation should realize two different aims. The first one is to select individuals with high
fitness values in order to select good candidate solutions. The other is to maintain genetic
diversity in population in order to generate new offspring with new genotype. However, there
is a trade-off between these aims. Genetic algorithms can control the trade-off with selection
pressure. The convergence of a population is controlled under the selection pressure which is -
dependent on fitness values [12]. If the selection pressure is high, the convergence of a
population proceeds fast. If the selection pressure 1S very low, the selection randomly selects
an individual without relation to its fitness value. The proportional selection scheme often
causes the genetic bias in a population, because the scheme is performed stochastically. As
mentioned before, this is called ‘genetic drift’ or ‘random drift’.

Premature local convergence which is one of genetic drifts, occurs when a population lacks
genetic diversity in early generation. The phenomenon of premature local convergence is that
a certain individual with a high fitness value occupies the population, though the individual is
far from the optimal solution. As a result, premature local convergence may mislead the
evolution of the population toward the different direction of the optimal solution. Genetic
algorithms have no convergence guarantees in arbitrary problems, but there is a convergence
theory proved by using a simulated annealing [68] and Markov chain analysis. We will
present this theorem in the following section 2.4.2.1.

Genetic algorithms should maintain genetic diversity within a population in order to prevent a
premature local convergence in solving an optimization problem. Because the standard
proportional selection such as roulette wheel selection, is dependent on fitness values of
individuals, the convergence of a population can be controlled with varying selection pressure.
For example, the selection pressure is lower in the early generation, and higher in the late
generation. By varying selection pressure, the global search and local search can be switched.

Other methods for preventing premature local convergence are fitness scaling, ranking selection
scheme, and so on. The fitness scaling is used as a method for increasing or reducing the
difference between fitness values. As mentioned before, there are fundamental methods of

fitness scaling such as linear scaling, sigma truncation and exponential scaling. The ranking
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selection scheme is based on a rank table sorted according to individual fitness. This selection
scheme selects individuals by the number of the reproduction into the next generation based

on the ranking table.

2.3.6.2 Minimal Deceptive Problem

In the schema theorem, the shorter length and the lower order a schema has, the more the
schema effectively increases in a population. In addition, in the building block hypothesis,
genetic algorithms can obtain optimal solutions with genetic operators for building up bits of
blocks. There are, however, optimization problems impossible to generate good offspring
from good parents with crossover operator. This kind of problem is called a deceptive problem.
A deceptive problem has been defined based on the schema analysis by Goldberg, which
stated that even the deceptive problems are often solved effectively by genetic algorithms.

We consider a simple example of a minimal deceptive problem. Figure 2.12 shows the case of
two bit’s combination problem. Table 2.5 shows the results of crossover operator between all
individuals. We assume the fitness values of strings ‘00, ‘01°, 10’ and ‘11 are 5, 3, 2 and 6,
respectively. ‘S’ in Table 2.5 means stable where the offspring generated after crossover are

the same as the parents.

6
p
A
3
5<
01 P
11
2

Fitness

00: 5

00 10 0l: 3

10: 2

11: 6

Figure 2.12  An example of minimal deceptive problem
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Table 2.5 Result of all crossover

String 00 01 10 11
00 S S S 01,10
01 S S 00,11 S
10 S 00,11 S S
11 01,10 S S S

In this example, the single crossover generates only bad individuals: *01” and ‘10’ from the
good individuals: ‘00’ and ‘11°. This shows that the crossover operator works ineffectively on
a population.

In this way, the minimal deceptive problem can not adopt the schema theorem. In order to
solve an optimization problem effectively with genetic algorithms, the solution space of the
optimization problem should satisfy the schema theorem, that is, the string space including
schemata which have a shorter length and a lower order, should be designed to point the way
towards optimal solutions.

2.4 Advanced Operators in Genetic Algorithm

Genetic algorithms have been applied to various optimization problems by introducing advanced
genetic and biological ideas and operators. This section presents advanced architectures and
genetic operators based on genetics, biology and ecology. Furthermore, this section presents
improving methods for genetic algorithms from the mathematical point of view.

2.4.1 Parallel Genetic Algorithm

Parallelism of genetic algorithm has been proposed by many researchers [63~68]. Parallelism
can be mainly divided into two types. The first one is to divide a population into some
subpopulations, and genetic operators in a subpopulation prevent local optima from widely
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propagating to other subpopulations. The other is to realize the fast computation by parallel
computers. We can realize both approaches simultaneously. In this subsection, we present
two implementations of genetic algorithm on parallel architectures of a grid model and a

subpopulation model.

2.4.1.1 Fine-Grained Parallel Genetic Algorithm

In a fine-grained parallel genetic algorithm [67], individuals in a population are placed on a
planar grid. Genetic operations such as selection and crossover are restricted to the
neighborhoods on that grid (Figure 2.13). Individuals of the next generation on a particular
location are selected from the individual in the neighborhood of its location. An individual is
replaced with the selected individual of its neighborhood. Crossover is performed between an
individual mated from its neighborhood. The procedure of the fine-grained parallel genetic
algorithm is as follows:

begin

Initialization

repeat
Selection by replacement
Crossover
Mutation
Evaluation

until Termination_condition = True

end.

The main deference from a standard genetic algorithm is the selection operation by replacement.
Fine-grained parallel genetic algorithm replaces each individual with an individual selected
from its neighborhood on the grid, if the selected individual has the higher fitness value.
Next, crossover operator is performed between individuals randomly selected mate from its
neighborhood with a crossover probability. Mutation operator is the same operator as the

standard genetic algorithm.
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Figure 2.13 Fine-grained parallel genetic algorithm

The concept of the fine-grained parallel genetic algorithm is based on the ecological and
technical reasons. The technical reason is easy to construct a parallel genetic algorithm
because of the consideration of only neighborhood, not a global population. The ecological
reason is no global selection in a population. In nature, natural selection is a local phenomenon,

which is taken place in the local environment of an individual.

2.4.1.2 Parallel Genetic Algorithm with Subpopulations

Parallel genetic algorithm divides a population with some subpopulations (Figure 2.14). The
genetic operations are carried out in the subpopulations independently, and each subpopulation
try to locate good local optima [64~66]. New offspring are generated by genetic operators
within each subpopulation. Therefore, each subpopulation evolves toward each different
direction like a hill-climbing algorithm. After some generations, the locally best solutions
found by a subpopulation are propagated to the neighboring subpopulations, which is called
migration. Every K generations, the best individual of each subpopulation is sent to its
neighbors as the migration. The migration frequency is very important. If the migration is
often done, the subpopulations are the same as one population. If any subpopulations does not
perform migration for a number of generations, individuals in the subpopulation will try only
local hill-climbing. The division into some subpopulation prevents premature local convergence
from occurring in a population. The genetic algorithms with subpopulations often are applied
on parallel computers with multi-processor, since each subpopulation can be assigned to each

processor easily.
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Figure 2.14 Parallel genetic algorithm with subpopulations

2.4.2 Hybrid Genetic Algorithm

In recently, various optimization methods have been proposed by many researchers [12,68~70].
Each method has both of effectiveness and weakness. Complete methods for solving any
optimization problems have not been proposed so far. In general, there are a global search
method and a local search method in optimization techniques. Local search methods search
for optima based on the specialized information peculiar to an optimization problem. The
more the specialized information is, the higher performance the local search methods can
obtain. However, it is very difficult to apply the specialized local search methods to other
optimization problems, since the local search methods lack the generality for any other

optimization problems.

When we solve optimization problems, it is very important to obtain high performance. As
mentioned before, genetic algorithms have a weakness in the local search. Genetic algorithms
can obtain optimal or quasi-optimal solutions, but can not efficiently search the neighborhood
of an candidate solutions. Since the genetic algorithm is a global search method, it is effective
to hybridize genetic algorithm with other local search methods.

Hybrid genetic algorithm incorporates the available domain-knowledge of local search methods
into genetic operators. There are traditional hill-climbing methods such as Quasi-Newton
methods [8] and random optimization methods [7,10] in local search methods. In this subsection,
we present a genetic algorithm with a simulated annealing algorithm and genetic algorithm

with a hill-climbing method.
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2.42.1 Parallel Recombinative Simulated Annealing

Genetic algorithm [12] and simulated annealing algorithm [11] are known as stochastic
optimization methods simulated process in nature. Both algorithms can be applied to a wide
variety of problems, and require little knowledge of optimization problems. Though both
algorithms have possibility to prematurely converge to local optima, the simulated annealing
algorithm possesses a formal proof of convergence by manipulating the cooling scheduling.
Genetic algorithm is a parallel algorithm with a population referred to as implicit parallelism.
In short, implicit parallelism refers to the fact that genetic algorithms implicitly process
schemata although genetic algorithms explicitly process strings. On the other hand, the parallel -
algorithm of simulated annealing is an explicit parallelism.

Parallel recombinative simulated annealing [68] retains the asymptotic convergence properties
of simulated annealing, and adding the population approach and recombinative power of
genetic algorithm. Parallel recombinative simulated annealing closely follows simulated
annealing with using population in parallel, mutation as a neighborhood operator, and crossover
for recombining independent solutions. The procedure of parallel recombinative simulated

annealing is shown as follows:

begin
Initialization
repeat
repeat: Replacement under cooling schedule
Pairing
Crossover
Mutation

Keep parents with probability, 1/(1+ e /")
end
until Termination_condition = True
end.

First we start with a randomly generated initial population. In the main loop, we generate new
offspring through neighborhood operator, and replace parents with offspring according to the

Metropolis or equivalent criterion. Metropolis algorithm uses the probability e¥’” where Af

is the difference between the fitness values of the parents and offspring. Another frequently
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used criterion is the Boltzmann probability distribution, 1/(1+e¥’7).

The proof of the convergence is shown by the following simulated annealing algorithm. We
prove global convergence by reducing the Metropolis algorithm. First, concatenate of all
strings of parallel recombinative simulated annealing. This string is considered as one string
and called ‘superstring’. Consider that we optimize the superstring with crossover-and-mutation
as a neighborhood operator. And fitness value of superstring is defined as sum of each
string’s fitness value. As such a special case, this algorithm inherits both of the convergence
guarantees and behavior of simulated annealing, provided the neighborhood operator meets
two conditions. The first condition requires that it can move from any state to an optimal
solution in a finite number of transition. This requirement is satisfied by the mutation operator.
The second condition requires that the transition probability at any temperature from state i to
J is as same as the probability from state j to i. This requirement is satisfied by crossover-plus-

mutation operator.

2.4.2.2 Genetic Algorithm with Hill Climbing

Simple genetic algorithm has no operators for improving performance by local changing on
strings. To improve the weakness of local search, it is required that genetic algorithms are
implemented genetic operators like hill-climbing methods [69,70].

Bit-climbing operator is the simplest method. Hill-climbing start with a string composed of
bits. When the new string flipped bits is better than the fitness value of the old one, replace
the old one with the new one. The bit-flipping continues until no improvement in trials or

until the predefined trial times.

Genetic algorithms are often applied to numerical optimization problems. When applying to
these problems, we use coding design with real number. In this case, we can hybridize genetic
algorithm with hill-climbing operators such as simplex crossover [70]. Let n be the number of
variables of the function to be optimized. A simplex is a geometrical figure consisting of
(n+1) vertices in an n-dimensional space. The simplex moves, contracts, and expands through
geometric transformations, and finally surrounds the optimum. The elementally transformation
is determined by the relative order between the values of the function. After each transformation,

the worst point is replaced with a better one.
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2.4.3 Steady-State Genetic Algorithm

There are currently two reproductive techniques in general use. The first one is a generational
reproduction model, which is probably the most widely used, and the other is a steady-state
reproduction model [71]. In short, the generational reproduction replaces all the population at
once, while the steady-state reproduction replaces only a few individuals at once. According
to schema theorem, the performance of genetic algorithm is highly dependent on its reproductive
operation. The generational reproduction replaces all the population with a new population.
This is done by selecting an individual from the current population according to fitness value,
and adding the individual to the next population, repeatedly.

The steady-state reproduction replaces only a few individuals during a generation. And next,
crossover and mutation is also performed against only a few individuals. These generated
individuals are immediately available for generating and selecting next individuals, while the
generational reproduction model can not immediately use the generated individuals. In general,
an individual is replaced with one generated by genetic operators in each generation. Therefore,
we must have methods for selecting an individual to be deleted. In this case, Syswerda
presents three alternative deletion methods as follows:

1. Delete least fitness: deletion of the individual with the least fitness in the population.

2. Exponential ranking: The worst individual has some probability, p of being deleted. If
it is not selected, then the next to the last also has p chance, and so on.

3. Reverse fitness: Each individual has probability of being deleted according to fitness

value.

2.5 Evolutionary Algorithms

As mentioned before, the three main categories of evolutionary optimization methods are
genetic algorithm, evolution strategy, and evolutionary programming. The procedure of these
algorithms are very similar. The main iteration loops of all evolutionary optimization methods
are basically the same, and it starts with the selection/reproduction or recombination/mutation.
The evolutionary algorithms, however, differ from genetic algorithms in the specific
representation, mutation, and selection. In this section, we present the evolution strategy and
the evolutionary programming briefly.
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2.5.1 Evolution Strategy

Evolution strategies [15,16,72] are applied to solve continuous parameter optimization problems,
for an evolution strategy represents an individual by means of integer or real variables,
neither binary nor string. Therefore, the evolution strategies directly operate with phenotype,
not genotype. The main evolutionary operator for searching is the mutation operator using a
normal random value with zero mean, not crossover operators. The reason is that crossover
operator is included in the mutation operator in evolution strategies, while a crossover operator
is generally utilized as genetic operator for the global search in the genetic algorithms.
However, crossover operators rarely are used in the evolutionary strategies. The evolutionary

strategies are divided into two types of (A+u)-evolutionary strategy and (A, M)-evolutionary

strategy. First, we present (A+u)-evolutionary strategy.

Reproduction in the evolution strategies is performed by a deterministic selection, though
genetic algorithm uses stochastic selection schemes such as roulette wheel selection. The

(A+u)-Evolution strategy reproduces the population of the next generation from the current

population which includes both parents and children created by the mutation (Figure 2.15).

The procedure of evolution strategy is as follows:

begin
Initialization
repeat

Creation (1) with Mutation

Evaluation

Selection (4)

until Termination_condition = True
end.

First, initialization randomly generates an initial population. In the iteration loop, x individuals
are selected as parents from the population of A individuals. And with creation (@) with
mutation, the parents create u children. As a result, the evolution strategies create an intermediate

population of A+ individuals. Finally, the population of the next generation is reproduced by
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selecting best A individual from the intermediate population. The iteration continues until the
Termination_condition is fulfilled. The notation (A+w)-evolutionary strategy refers to an
evolution strategy with the selection scheme which selects the M individuals from A individuals

to create new u children .

(A, w-evolutionary strategy is different from (A+u)-evolutionary strategy in a selection
scheme. (A, w)-evolutionary strategy also generates m individuals by mutation operator, but

replace all of Aindividuals with u generated individuals (A2 ).

From the viewpoint of stochastic search, we can state the correspondence between evolutionary

strategies and other stochastic search methods.

* (1, 1)-evolutionary strategy: random search
* (1+1)-evolutionary strategy: hill-climbing (iterative) search
* (A+A)-evolutionary strategy : beam search

Mutation p N Elite selection

t t+1

Figure 2.15 (A+w)-evolutionary strategy

Evolution strategies optimize not only objective variables but also strategic parameters. This
realizes a self-adaptation of the evolution strategies in itself. This is mainly used as self-adaptive

mutation. Let x; be a variable of an objective function for a numerical optimization problem.
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Xjn; =X;; + N(O,a; X fitness + b) (2.15)

jtn,i

where q; and b are coefficients for scaling and offset in order for the variance of normal

random variable not to be zero, respectively. This self-adaptive mutation adds small perturbation
when fitness value is small.

2.5.2 Evolutionary Programming

The evolutionary programming originated from the idea of building a finite state machine for
solving prediction tasks [13]. Nowadays it is mainly used for numerical optimization problems
[13,73,74] such as the optimization of weight parameters of neural networks. We present an
evolutionary programming for continuous optimization problems. The procedure of a standard

evolutionary programming is as follows:

begin
Initialization
repeat
Mutation
Evaluation (simulation)
Tournament_competition
until Termination_condition = True
end.

First, initialization randomly generates an initial population. Evolutionary programming
generates offspring from parents with a mutation perturbed by a normal random value with
mean zero. A population of the next generation is reproduced by stochastic tournament
selection (Figure 2.16).

We consider evolutionary programming in case of building a finite state machine to solve
prediction tasks, that is, the evolutionary programming generates the procedure for solving a
problem. Here we regard an individual in a population as a finite state machine. A finite state
machine receives an input symbol from the environment and produce an output symbol that is
likely to maximize the payoff with respect to the next symbol to emerge from the environment.
After the prediction is made, the payoff for each symbol becomes a fitness of the machine.
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Offspring is created by five mutations: change an output symbol, change a state transition,
add a state, delete a state, or change the initial state. Mutations are chosen concerning a
probability distribution, which is typically uniform. The number of mutations is also chosen
concerning a probability distribution. A population of the next generation is reproduced by
the tournament selection scheme. Fogel examined the use of the evolutionary programming

for strategy optimizations such as a series of two-player zero-sum gaming.

If each trial solution is viewed as a separate species, the recombination operator is unreasonable.
Fogel has stated that a crossover operator is merely a subset of all random mutations [14].
Further, evolutionary programming requires no gradient information to adjust objective-
variables. Therefore, evolutionary programming should be applied to optimization problems
in which such information is unavailable.

Mutation Tournament
selection

t t+1

Figure 2.16 Evolutionary programming

2.6 Classifier System and Genetic Programming

This section presents other topics of genetic algorithms in brief. Genetic algorithms are easy
to combine other techniques such as artificial intelligence, neural networks and fuzzy inference.
In fact, the genetic algorithms have been hybridized with neural network [25,26], fuzzy
reasoning [27,34,35], machine learning [12], and so on. Furthermore, the concept of genetic
search is applied to classifier system and genetic programming. In this section, we present the

classifier system and genetic programming in brief.
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2.6.1 Classifier System

Classifier system [12] is a machine learning system that learns syntactically simple string
rules to guide its performance in an arbitrary environment. The classifier system consists of
three main components: rule and message system, apportionment of credit system, and genetic
algorithm. A rule called a classifier, is represented as a production rule as follows:

if <condition> then <action>

The classifier is fired when the condition is satisfied. A classifier on genetic algorithms is
represented as the string of a fixed length using binary coding. The apportionment of credit
system ranks classifiers according to each reward from the environment using bucket brigade
algorithm [12,14]. Based on the fitness of classifiers, the genetic algorithm generates new
classifiers using reproduction, crossover, and mutation. In this way, a classifier system can

generate a set of rules adapted to the environment.

2.6.2 Genetic Programming

J.Koza has proposed genetic programming [75,76]. The genetic programming works on
hierarchically structured candidate solutions, while the genetic algorithm, in general, works
on the simple string. This hierarchical structure enables the various representations for

optimization problems.

The genetic programming provides a way to search the solution space of all possible programs
composed of certain terminals and primitive functions to find a function which solves, or
approximately solves a problem. The genetic programming has been applied to neural networks,
control systems for autonomous robots, and so on [75,76] In the genetic programming, a
population consists of hundreds or thousands of computer programs. The genetic programming
also uses genetic operators based on Darwinian theory of evolution like the genetic algorithm.
In general, a string of computer program has tree structure, and crossover operators are
performed based on the tree-structure. After searching, genetic programming generates certain
computer programs which can carry out the given task with sufficient performance.

The genotype of candidate solutions consists of primitive functions (+, -, *, /, and, or, etc.)
and terminals (variables, coefficients). As a selection scheme, proportional selection, ranking
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selection, and tournament selection are used. Crossover operator is performed by exchanging
sub-trees between parents (Figure 2.17). Mutation operator is defined as a random change in
the structure. The initial population is, in general, generated by three methods of ‘full’
method, ‘grow’ method, and ‘ramped half-and-half’ method. The ‘full’ method randomly
generates a candidate solution whose length between the root and the endpoint is equal to the
specific maximal depth. The ‘grow’ method randomly generates a candidate solutions whose
length between the root and the endpoint is no greater than the specific maximal depth.
Furthermore, the ‘ramped half-and-half’ is a hybrid method of the ‘full’ method and grow’
method.

Pl P2
Genotype(LISP): (*(+x02)y) (+(*0.1x)(-y03))
Phenotype: (x+0.2)*y (0.1*x)+y-0.3

Greak—point ° Brfak-point!
L 4

Crossover

Wele

Figure 2.17 An example of crossover in genetic programming
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2.7 Summary

This chapter presents evolutionary optimization methods in detail. Genetic algorithm works
on the encoded string space and therefore various genetic operators have been proposed for

improving the searching ability. The characteristic of genetic algorithms is as follows:

* Genetic algorithms, in general, require no prior knowledge of optimization problems,

such as derivative information and continuity of the objective function.

* Genetic algorithms can attain optimal or quasi-optimal solutions without trapping
local optimal solutions by simple symbolic operations.

* Selection schemes are classified into two main categories of a proportional selection
scheme according to relative fitness and a competition selection scheme according to

relative ranking in a population.

* There is interdependent relation between coding and crossover. The coding and
crossover should be designed with considering the inheritance of genetic information

from parents to offspring to effectively search the solution space.

* Some schemata generate new better schemata with the crossover operator and the
number of a schema increases in a population with the selection operation. Building
up bits of blocks called schemata, genetic algorithms can obtain optimal solutions
(building block hypothesis).

* Operators and extension based on genetics, biology, ecology and mathematics can be
easily incorporated into genetic algorithms to improve the searching ability.

=70 -



Chapter 3 Genetic Algorithm with
Age Structure

As mentioned in chapter 2, genetic algorithm simulates natural evolution and can find optimal
or quasi-optimal solution. Evolutionary optimization methods have two approaches to improve
searching ability. One is to mathematically improve optimization algorithms, and mathematical
or computational power often gives us the quick solution. The other is to introduce natural.
phenomena, and nature often gives us effective ideas. In fact, ecological models based on
Niche continuous alternation model of generation [63,67] and parallel models based on
subpopulation [64~66], have been proposed and their effectivenesses have been also
demonstrated through computer simulation. In the continuous alternation model of generation,
offspring generated by crossover and mutation coexist with their parents and as the result,
parents with high fitness are easy to survive. This fact indicates that the continuous alternation
model of generation can maintain individuals with high fitness through all generations, but
simultaneously the model has a possibility of premature local convergence. However, the
continuous alternation model of generation does not have age structure as seen in nature. A
population with age structure has an important characteristic of the death of an individual
without considering its fitness. This chapter therefore proposes a genetic algorithm with age
structure. Furthermore, the following sections discuss the effectiveness of the genetic algorithm

with age structure.

3.1 Age Structure in Nature

This section presents a population with age structure in nature. In nature, there are, in general,
two types of alternation models of generation: discrete model and continuous model [45].
Here the alternation of generation means an occurrence of within life cycle of an organism of
two or more distinct forms. In the discrete alternation model of generation, the span between
the birth of parents and the birth of offspring is one life cycle, that is, parents bear offspring
and soon die. On the contrary, continuous alternation model of generation has overlapping
span between the birth of parents and the birth of offspring, that is, the parents coexist with
their offspring.
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Figure 3.1 Population with age structure

Figure 3.1 shows a typical population with age structure in nature [45]. Here the age structure
is considered as a discrete model, that is, we assume that all individuals age at the same time.
Consequently, an individual of age x in generation 7 becomes age x+1 in generation #+1. In
addition, each individual has a lethal age which means dying age. In Figure 3.1, the parents in
generation 7 generate offspring at age 0 with recombination and then, parents at lethal age die
and are removed from the population (the lethal age is 5 in this case). The remained parents
and offspring are selected into the population in generation ¢+1. Let 7./ be the number of
individuals at age x in generation ¢. Therefore, the number of offspring no,: is as follows,

m-1

no,:=2b.r-nx,r (3.1)
x=1

where by and m are birth rate of individual at age x and lethal age, respectively. Consequently,
we obtain the population size at each age as follows,

Nxt +1= Px Ax - 1,1 (x=LL ,m-1) (3.2)
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nnz,1+1=0 (33)

where px is the survival rate at age x.

3.2 Genetic Algorithms with Age Structure

Genetic algorithm based on the idea that the better solution exists in the neighborhood of a
candidate solution with high fitness, mainly utilizes proportional selection scheme and genetic_
operators. Consequently, an individual with high fitness can be selected into the next generation
many times and this causes premature local convergence. We therefore propose genetic
algorithm with age structure, to maintain genetic diversity in a population.

3.2.1 Aged Genetic Algorithm

We first introduce the concept of age into a discrete alternation model of generation. The
discrete alternation model of generation forbids the coexistence of parents and their offspring.
Figure 3.2 shows aged genetic algorithm; AGA. One generation is defined as a discrete time
unit. Each individual in the AGA has parameters called age and lethal age. When its age
attains to the predefined lethal age, it is removed from a population. All offspring, which are
generated from parents by the crossover operator and mutation operator, is at age 0 and then
their parents die. Consequently, parents can not coexist with their offspring. And each remaining
individual increases in age every generation. Let N and nx: be a population size and the
number of individuals at age x in generation ¢, respectively. Therefore, the number of offspring,

no,:, 1s as follows,

m—1

no,r = bz Rx,t 3.4)
x=1

where b and m are the crossover possibility and lethal age, respectively. Furthermore, since
the parents generated offspring are removed from the population, the number of all individuals,

n', after aging is as follows,
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m~1
I’lx':N—nm,r =I’ll,r+(l—b)2m,r (35)

Furthermore, the next generation of a population is reproduced by the selection among the
remaining individuals. The procedure of the AGA is as follows.

begin
Initialization
repeat
Crossover
Mutation
Age_Operator
Evaluation
Selection
until Termination_condition = True
end.

First, initialization randomly generates an initial population at age 0. Crossover and mutation
generate offspring at age 0. Next, age_operator carries out aging process and removal process.
The aging process adds each individual’s age to one. Each individual therefore increases in
age by one every generation. The removal process removes the parents which attain to the

lethal age or generate offspring. Next, selection reproduces a new population from the remaining
individuals.

) Death
Population(t) Population(t+1)
Crossover Selection
————— —

Figure 3.2 Aged genetic algorithm
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3.2.2 Age Structured Genetic Algorithm

The AGA simply introduces the concept of age, but does not have coexistence of parents and
their offspring. We therefore propose age-structured genetic algorithm: ASGA which is a
continuous alternation model of generation (Figure 3.3). Each individual in ASGA has as
same parameters of age and lethal age as the AGA. One difference from the AGA is as
follows. When parents generate offspring, the parents don’t die in the ASGA. This means that
parents can coexist with their offspring. Therefore, though the number of offspring, no.: is

the same as that of the AGA, the number of all individuals, #/', after aging is as follows,

m=1
I’Lx'znl,t'l‘sz‘i’lx,t (3.6)

xr=z

Where p- is survival probability at age x. Each individual at age x survives into intermediate
population, n/, with survival probability px. This survival probability is introduced for

simulating age structure in nature. Furthermore, the a population of next generation is reproduced
by the selection among the remaining individuals. The procedure of the ASGA is as follows.

begin
Initialization
repeat
Crossover
Mutation
Age_QOperator
Evaluation
Selection
until Termination_condition = True
end.

First, Initialization randomly generates an initial population at age 0. Crossover and mutation
generate offspring at age 0. Age_Operator carries out aging process and survival process. The
aging process adds each individual’s age to one. Each individual therefore increases in age by
one every generation. The survival process eliminates the individuals according to survival
probability p:. Here pw is O because the individuals die of the lethal age. Next, selection

reproduce a new population from the survived individuals.
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Death
Populatio Population(t+1)
) —>
Selection

Crossover

Figure 3.3 Age structured genetic algorithm

3.3 Features of Genetic Algorithm with Age Structure

There are two major differences between standard genetic algorithm and the genetic algorithm
with age structure. First, the parents can survive into the next generation in the ASGA like
steady-state genetic algorithm. That is, the parents are permitted the coexistence with their
offspring. However, this feature is realized by steady-state model and genitor algorithm in the
research of genetic algorithms [50,71]. The other feature is the removal of individuals without
considering fitness value. An individual is removed from a population when its age attains to
the lethal age in the AGA. In addition, individuals survives according to survival probability
in the ASGA. However, the AGA has no age structure when crossover probability is 1.0,
since all individual is replaced with their offspring. Consequently, the AGA under the crossover
probability 1.0 corresponds to a standard genetic algorithm.

On the other hand, elitist selection scheme in genetic algorithms leaves the best individual
into the next generation unconditionally, and it is proved that a population of genetic algorithm
converges to the population with optimal solution under elitist selection scheme. However,
the elitist selection scheme can cause premature local convergence at the same time. On the
contrary, the AGA and the ASGA can control the increase of the same individual by lethal
age and survival probability, respectively. Therefore, in the AGA and the ASGA, the design
of lethal age and survival probability is very important. The selection pressure and convergence
of a population are dependent on the design of lethal age and survival probability.
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3.4 Application to Knapsack Problem

Knapsack problems, traveling salesman problems and scheduling problems are known as
conventional and traditional combinatorial optimization problems [3]. We can solve these
problems with an enumeration method in finite time, but an enumeration method takes much
time as a problem size is large. Approximate optimization methods such as random search,
simulated annealing and tabu search have been proposed for solving these problems. In this
section, we apply genetic algorithm with age structure to a knapsack problem and compare
genetic algorithm with age structure with other genetic algorithms.

3.4.1 Knapsack Problem

Combinatorial optimization problems can be fundamentally transformed into some types of
0-1 integer programming, but the transformed problems have a lot of constraint [3]. Knapsack
problem, which is known as an NP-hard problem, is an integer programming problem of 0-1
variables [3,77]. This problem is represented by only the values 0 or 1. Consider that an event
may or may not occur. If the event occurs, the value is 1. Otherwise, the value is 0. In this
way, the 0-1 integer programming represents yes-no decisions. We then explain a knapsack

problem.

Suppose n items are to be selected for carrying in a knapsack (Figure 3.4). The item i has
value viand weight wi. The objective of this problem is to select items to maximize their total
value while their total weight is equal to or less than W. Let x be decision variables. If the
item i is selected then xi=1. Otherwise, xi=0. The objective function is, therefore, defined as

follows:

n
maximize Vi = Z ViXi 3.7

i=]

subject to  Wum = Zw,.x, <Ww x,=0,1 i=1,.,n 3.8)

i=1

In this way, we can formulize the knapsack problem. We consider how to apply genetic
algorithms to the knapsack problem. The genotype is represented by binary code. The locus
(position) on a chromosome (string) represents the item number. For example, we consider a
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string ‘0110” where the string length is 4 (i.e. the number of all items is 4). The string ‘0110’
represents that the second and third of items are selected, while the first and fourth of items
are not selected. As mentioned in chapter 2, a simple genetic algorithm is composed of
roulette wheel selection, one-point crossover, and simple mutation. Simple mutation replaces
a character on a string with the other character according to mutation probability. In the
simulation, roulette wheel selection scheme and elitist selection scheme are used for the
knapsack problem. The fitness value is defined as follows:

qum l:f Wﬂlm S W

. 3.9)
Visum — o - (W — Wsum) Otherwise

fitmess = {

where « is coefficient for penalty in the case that the constraint is not satisfied. If fitmess is

less than zero, fitness is zero.

-
Oboy

Figure 3.4 Knapsack Problem

3.4.2 Simulation Results of Knapsack Problem

The parameter concerning the knapsack problem is as follow. The number of items is 30. The
weight and value of each item are randomly determined as the random value between 1 and
30. The upper bound of a selectable weight is 80% of the total weight of all items in this
simulation example.
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Crossover probability, mutation probability and maximal generation are 0.7, 0.001 and 150,
respectively. Figure 3.5 shows typical simulation results of the knapsack problem with roulette
wheel selection scheme. In Figure 3.5, the SGA represents a simple genetic algorithm. All
algorithms converge toward the optima with small oscillation, since these algorithms does not
keep the best individual at any generation. However, the AGA and the ASGA obtain better
solutions than SGA. Figure 3.6 shows typical simulation results with elitist selection. In
Figure 3.6, the EGA, the AGA_E and ASGA_E represent a genetic algorithm, AGA and
ASGA with elitist selection schemes, respectively. Though the EGA can keep the fittest
individual every generation, the EGA has a possibility to converge to local optima. However,
the AGA and the ASGA have with very small oscillation in the early generation because even -
the best individual at any generation can be eliminated by the aging process. The oscillation
of the AGA and ASGA in Figure 3.6 indicates that the best individuals eliminated from the
population could not generate good offspring inheriting effective schema during their survival.
Thus, the AGA and the ASGA can maintain genetic diversity more than the EGA. Table 3.1
shows simulation results of 30 trials. The AGA_E obtains the best solution in the simulation
results. Consequently, we can obtain higher performance by introducing elitist selection scheme

and aging process.

Fitness
550

5004

asod &F

400 1 1 | 1
0 50 100 150
Generation

Figure 3.5 Simulation results of Knapsack problem by roulette wheel selection
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Fitness
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Figure 3.6 Simulation results of Knapsack problem by elitist selection

Table 3.1 Simulation results of Knapsack Problem of 30 trials

SGA AGA ASGA
fitness 486.9 505.3 504.5

GA_E AGA_E ASGA_E
fitness 493.5 508.5 507.3

3.5 Convergence of Age Structured Genetic Algorithm

We show the simulation results of a knapsack problem by genetic algorithm with age structure

in the previous section. This section discusses the effectiveness of age structure and parameter

setting concerning genetic algorithm with age structure.

3.5.1 Effectiveness of Introduction of Age Structure

We discuss the effectiveness of the introduction of age structure into genetic algorithm. We
conducted a simple experiment. First of all, we consider only effect by the introduction of age
structure. Consequently, we use the binary string whose length is one, that is, the genotype is
‘0’ or ‘1". The individual’s fitness values of ‘0" and ‘1’ are 12 and 10, respectively. We first
prepare 100 individuals whose genotypes are ‘1°. Next, we compare how to increase the
number of individuals of ‘0’ by mutation and selection between the SGA and the AGA. The
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procedure of this experiment is as follow;

Step 1: Initialization. The strings of 100 individuals are generated as ‘1°.
Step 2: Mutation

Step 3: Selection

Step 4: Count the genotype of ‘0’

Step 5: Go to step 2

Figure 3.7 shows experimental results of the SGA and the AGA. The AGA removes some
individuals attaining the lethal age and as the result, the number of all individuals decreases in -
selection. Consequently, the selection pressure of the AGA is lower than that of SGA because
the number of individuals of the AGA are less then that of the SGA. In general, the change of
the number of a subpopulation size is dependent on its density in the population. Furthermore,
the number of small subpopulation size have a lot of oscillation in increase, while the large
population size is relatively stable in increase. Since the AGA reduces the selection pressure,
the small size of subpopulation can reproduce relatively many individuals (see Figure 3.7 ).
Thus, the AGA can control selection pressure by aging process.

Population of '0'
100

50

0 50 100
Generation

Figure 3.7 Change of population size of SGA and AGA

(fitness value of ‘0’ 112, fitness value of “1°:10 )

Next, we consider the distribution of the relation between fitness values and age of individuals.
Figure 3.8 shows fitness values of individuals against each age at generation 50 in solving the
knapsack problem where the lethal age is 5. This shows that the individuals with high fitness
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in the population survive into the next generation. And even the individuals with high fitness
are eliminated by aging process. Consequently, the AGA can prevent individuals with high
fitness from increasing in a population. On the other hand, there are some methods for
maintaining genetic diversity such as ranking selection scheme and fitness scaling. Though
these methods can reduce or increase the difference of fitness values between individuals,
these methods can not control the number of over-increasing individuals. To the contrary, the
AGA can control the number of over-increasing individuals by aging process, while the AGA
performs selection between remaining individuals below a lethal age. Figure 3.9 shows fitness
values of individuals against each age at generation 50 where the lethal age is 9. In this case,
most of individuals are eliminated before attaining the lethal age, since the lethal age is
relatively high. This indicates that the behavior of the AGA, whose lethal age is relatively
high, is similar to that of SGA because most of individuals are eliminated by selection
operation without relation to its age. To summarize, the AGA can control selection pressure
by aging process and maintain relatively genetic diversity in a population.

Fitness

550

5004 o ] ] b
3 3 e
3 $ .
L J

450 T T T T

1 2 3 4 Age

Figure 3.8 Fitness value of individual against age by AGA (lethal age = 5)
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Fitness
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Figure 3.9 Fitness value of individual against age (lethal age = 9)

3.5.2 Discussion Concerning Lethal Age and Selection Pressure

Though the AGA can maintain relatively genetic diversity in a population, the AGA has the
probability of the elimination of the best solution at each generation as same as genetic
algorithm with proportional selection scheme. In this subsection, we discuss the relation
between lethal age and crossover probability. Figure 3.10 shows the average of fitness values
of the best individuals at generation 150 of 50 trial against crossover probability 0.4, 0.6 and
0.8 of the AGA. From Figure 3.10, the best letha] ages against crossover probability 0.4, 0.6
and 0.8 are 6, 5 and 4, respectively. This indicates that the AGA can obtain high performance
when the lethal age is low as crossover probability is high. Figure 3.11 shows the average of
fitness values in the case of the ASGA. From Figure 3.11, the best lethal ages against crossover
rates 0.4, 0.6 and 0.8 are 6, 5 and 3, respectively. This result is the same as the AGA. Next,
we show the death rate of individuals by attaining the lethal age in Figure 3.12 and Figure 3.13.
These figures show that the death rate is low as the lethal age is high. From Figure 3.12 and
Figure 3.13, the death rate corresponding to the best lethal age against crossover probability
lie between 3% and 5%. To summarize, genetic algorithm with age structure has the close
relation between crossover rate and lethal age, and we should design genetic parameters so
that the death rate may lie between 3% and 5%.
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Figure 3.10 Average of fitness values concerning crossover probability of AGA
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Figure 3.11 Verge of fitness values concerning crossover probability of ASGA
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Figure 3.12 Death rate of individuals which attain the lethal age in case of AGA
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Figure 3.13 Death rate of individuals which attain the lethal age 1n case of ASGA

3.5.3 Discussion Concerning Lethal Age and Population size

In this subsection, we discuss the relation between lethal age and population size. Figure 3.14
and Figure 3.15 show the average of fitness values against the lethal age concerning population
sizes of the AGA and ASGA, respectively. Though the design of the lethal age affects the
performance of solutions in case of small size of population, the effect of lethal age reduces
as the population size increases. The reason is that the AGA can maintain genetic diversity in
a population without relation to lethal age since a large size of population naturally has
genetic diversity. To the contrary, even the small size of population can obtain high performance
by the design of lethal age and survival probability.

Fitness
550

500 o e e e ) s e v eervren
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Figure 3.14 Average of fitness values concerning population size of AGA
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Figure 3.15 Average of fitness values concerning population size of ASGA

3.6 Summary

This chapter proposes a genetic algorithm with age structure, which has two major differences
from a simple genetic algorithm. One is the coexistence of parents and their offspring. The
other is the removal of individuals by aging process without relation to fitness value. Furthermore,
the genetic algorithm with age structure is applied to a knapsack problem. Simulation results

indicate the following points.

* Genetic algorithm with age structure can prevent individuals with high fitness from

over-increasing in a population.

* Genetic algorithm with age structure can control selection pressure by aging process
and maintain relatively genetic diversity in a population.

* Genetic algorithm with age structure has the close relation between crossover probability

and lethal age, and we should design genetic parameters so that the death rate may lie
between 3% and 5%.
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Chapter 4 Evolutionary Optimization
Methods based on Virus Theory of Evolution

Optimization methods can be divided into two categories of exact and approximate methods,
as mentioned in chapter 1. Genetic algorithm fundamentally belongs to the approximate
method and its searching ability lies in crossover operator which combine schemata between
individuals. Schema theorem is well-known as a fundamental theorem of the genetic algorithm.
(see chapter 2). The increase of effective schemata enables the effective search of the solution
space and makes all the population evolve toward optimal solutions. Though the genetic
algorithm makes it possible to find optimal or quasi-optimal solutions with less computation
cost, genetic algorithm has a problem of a premature local convergence (see chapter 2). One
reason why the premature local convergence occurs in a population is that a proportional
selection scheme increases not only effective schemata but also ineffective schemata. Therefore,
this chapter proposes a virus-evolutionary genetic algorithm (VEGA) to improve searching
ability of the genetic algorithm by operating only effective schemata.

4.1 Virus Evolutionary Genetic Algorithm

Genetic algorithm is a stochastic optimization method based on Neo-Darwinism [42]. Neo-
Darwinism provides us effective ideas. In fact, the genetic algorithm has been extended by
applying biologically inspired operators, ecological niche, and so on. However, genetic
algorithm is based on the concept of natural selection. Natural selection plays the role of the
increase of better individuals. Recently, there have been many questions concerning natural
selection in evolution. One of the questions is that the driving force for evolution may not lie
in natural selection. With the progress of molecular biology, some evolutionary theories have
been proposed. We propose a genetic algorithm based on virus theory of evolution.

4.1.1 Virus Theory of Evolution

With the progress of molecular biology, various theories of evolution such as Neo-Darwinism,
neutral theory of molecular evolution, Imanishi’s evolutionary theory, serial symbiosis theory,
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virus theory of evolution, have been proposed for explaining the mechanism of evolution
[42~46]. However, most of evolutionary theories can not explain all evolutionary evidences,
though they can explain the process of evolution in a sense.

The virus theory of evolution is based on the view that virus transduction is a key mechanism
for transporting segments of DNA across species [43]. Here the transduction means the
genetic modification of a bacterium by genes from another bacterium carried by abacteriophage.
Most of viruses can easily cross species barriers, and are often transmitted in nature directly
from individuals of one phylum to another. This fact means that a virus can transmit its gene
to a host population as horizontal propagation. Furthermore, whole virus genomes may be
incorporated into germ cells and transmitted from one generation to the next generation as
vertical inheritance.

&

Infection (reverse
transcription)

Selection

Virus individual

time t+] ————

Figure 4.1 Virus-evolutionary genetic algorithm; VEGA

time t

4.1.2 Virus-Evolutionary Genetic Algorithm Architecture

This subsection proposes a virus-evolutionary genetic algorithm; VEGA. In virus theory of
evolution, living things evolve with horizontal propagation and vertical inheritance of genetic
information. To realize horizontal propagation and vertical inheritance on genetic algorithm,

- 88 -



Chapter 4

we use two types of populations; host population and virus population (Figure 4.1). Here the
host population and virus population are defined as a set of candidate solutions and a substring
set of the host population, respectively. And virus individuals transmit partial genetic information
among host individuals by virus infection. To incorporate the virus infection mechanism, we
adopt a steady state genetic algorithm; SSGA (see chapter 2). The SSGA is continuous
generation model and is easy to regulate generation gap. The SSGA, in general, replaces a
pair of individuals with new individuals generated by genetic operators every generation.
Thus, the VEGA is composed of crossover, mutation, selection and virus infection. The

procedure of the VEGA is as follows:

Initialization

repeat
Selection
Crossover
Mutation
Virus _infection
Replacement

until Termination _condition = True

end.

Initialization randomly generates an initial host population, and then a virus individual is
generated as a substring of a host individual. 'Delete least fitness' [71] is used as the selection
scheme. Crossover and mutation are genetic operators dependent on an optimization problem.
Virus infection operator is introduced as new searching operators. Here new individuals
which virus individuals infected, are generated as children. After all virus' infections, if a
fitness of a host individual is improved, then the generated child is replaced with its parent
(Figure 4.2). Consequently, the successfully infected host individuals survive into the next
generation. This indicates the virus infection operator is regarded as a local hill climbing
operator. The string length of a host individual is predefined as a constant. And the length of
a virus individual, which is defined as a variable, extends with evolution of the host population.
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Figure 4.2 Virus infection and replacement in VEGA

4.1.3 Virus Infection Operators

Virus infection operators are main processes in the VEGA. As mentioned before, a virus has
a capability to transmit segment of DNA in a host population. The virus infection operators
are (a) the reverse transcription operator and (b) the transduction operator (Figure 4.3).

(a) Reverse transcription operator: A virus overwrites its substring on the string of a host
individual for generating new host individuals.
(b) Transduction operator: A virus takes out a substring from the string of a host individual

for generating new virus individuals.

Host Host

Reverse

. Transduction
transcription

Virus Virus

(a) Reverse transcription operator (b) Transduction operator

Figure 4.3 Virus infection operators
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A virus individual also has fitness value. Each virus has fitvirusi as a strength about the virus
infection. We assume that fithost and Jfithost; are the fitness values before and after infections
of an infected host individual j, respectively. The fitvirusi; denotes the difference between
fithost and fithost'j, which is equal to the value obtained by infecting to the host individual:

Sitvirusi = Zﬁ'tvims;,j (4.1)
jes
Jitvirusi,j = fithost! — fithost; (4.2)

where i is the virus number and S is a set of the host individuals that the virus i infected.
Therefore, fitvirus: denotes the improvement of the fitness values of all the infected host
individuals. The number of virus infections is controlled under its virus infection rate.

Each virus has infection rate, infrate;, satisfying 0 <infrate: < 1.0, for performing a reverse

transcription operator to a host population.

(+ @) - infratei,: if fitvirusi 20

. ) . (4.3)
(1-a)-infratei, if fitvirusi <0

infratei, +1= {

where « (>0) is coefficient. When Jitvirusi is high, infrate; becomes high. Furthermore, each

virus has life force as follows:
lifei.r +1=rx lifei, + fitvisus, 4.4)

where ¢ and r means the generation and the life reduction rate, respectively. The life force
means an index of the contribution to a host population. In initialization in the procedure of
the VEGA, these virus parameters are initialized as follows;
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infratei,o = infrateini 4.5)

lifeio=0 (4.6)

The procedure of a virus infection is shown in Figure 4.4. First, a virus performs the reverse
transcription to a host individual randomly selected out of the host population. Next, the
VEGA evaluates the fitness of the infected host individual and calculates lifei+1. If lifeir+1
takes a negative value, the virus individual transduces a new substring with the transduction
operator from a randomly selected host individual. Otherwise, the virus individual transduces
a partially new substring from one of the infected host individuals with the transduction
operator for evolving for itself. Thus, the host and virus populations coevolve through the
genetic operators and virus infection operators.

| Select_host

v

Reverse_transcription

Y

Evaluation

N
Termination condition

Transduction

Figure 4.4 The procedure of virus infection
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4.2 Features of Virus-Evolutionary Genetic Al gorithm

The most significant characteristic of the VEGA is to increase schemata directly in a host

population by virus infection, though a standard genetic algorithm increases schemata in a

population as the results of crossover and selection. The virus infection operators enable the

increase of effective schemata with reverse transcription and transduction. The reverse

transcription plays the roles of crossover and selection simultaneously, since the reverse

transcription generates new individuals overwriting on host individuals according to the virus

infection rate. That is, the virus infection rate is equal to the frequency increasing a schema in

a population. Furthermore, the transduction generates new virus individuals, and makes a -
virus population evolve. The roles of virus infection are simply summarized as follows,

1. Reverse transcription directly increases effective schemata.
2. Reverse transcription directionally generates new host individuals.
3. Transduction changes virus individuals every generation.

Coevolution of the virus population and host population enables the quick solution of an

optimization problem.

Global search Local search
by genetic operators by virus infection
— —
low E Virus infection rate Lhigh

Virus infection | success

Figure 4.5 Searching ratio in VEGA

S

Furthermore, a virus infection rate is a key parameter for searching solution space (Figure 4.5).
When a virus succeeds in its infection, the virus infection rate becomes high. As the result,
the VEGA mainly performs local search by virus infection operators. To the contrary, when
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the virus individual fails in its infection, the virus infection rate becomes low. Consequently,
the VEGA mainly performs global search by genetic operators. In this way, the VEGA can
self-adaptively change the searching ratio between global search and local search according
to the current state of the virus and host populations.

PR i, Biology : F—
JDNA L 00 TRNAT

I Preseryative | Adaﬁtive I
Candidate [ Local
solution information

I Iterative I Useful

Optimization

Figure 4.6 VEGA from view points from biology and optimization

We discuss the features of the VEGA from the view points of optimization and biology
(Figure 4.6). First, we discuss the feature of the VEGA from the biological point of view. The
structure of DNA is stable and hard to break, while the structure of RNA is unstable and easy
to break in nature. That is, living things should basically inherit genetic information (DNA)
adapted to their environments. The inheritance of genetic information from parents is performed
by the reproduction in the VEGA. On the other hand, a virus can change its substring for
itself and immediately adapts to its host population. From the view point of optimization, this
kind of population-based search corresponds to multi-point and iterative search. The virus
population has local information of a candidate solution and searches the solution space based
on the local information. The local information is very important and useful for searching the
solution space because the local information often gives a direction or index for search. For
example, a subtour as local information is often used for solving a traveling salesman problem.
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4.3 Ecological Virus Evolutionary Genetic Algorithm

Standard genetic algorithm is based on the concept of crossover, mutation and natural selection,
but the concept of ecology is not introduced into the standard genetic algorithm. Ecological
models of genetic algorithm have been proposed (see chapter 2) and their simulation results
indicate the ecological model prevents a population of candidate solutions from converging to
local optima and realizes the localized evolution of population. Therefore, this section proposes
an ecological model of VEGA (E-VEGA).

The E-VEGA also has virus and host populations. A host individual is placed on a planar grid_
(Figure 4.7). Genetic operations such as selection and crossover are restricted to neighborhoods
on the planar grid. A virus can move on the planar grid with its direction vector, and transmit
local genetic information as a substring among host individuals.

The procedure of the E-VEGA is fundamentally the same as the VEGA. The selection
replaces a host individual with the host individual selected from its neighborhood on the
planar grid. Next, the crossover operator is performed between host individuals randomly
selected from its neighborhood with crossover probability. Next, each virus infects to host
individuals of its neighborhood according to virus infection rate. These processes are repeated

until the termination condition is satisfied.

OOOO@€)]| © Virus individual
OQROOOO| O Host individual

00 O] o
(c) Infection
& O @ O
o o) |

(a) Crossover  (b) Replacement

Figure 4.7 Ecological model of virus-evolutionary genetic algorithm
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4.4 Virus Evolutionary Algorithm

In evolutionary programming, an individual is regarded as species and evolutionary
programming does not use crossover operator because different species can not cross over
[13,73]. However, virus theory of evolution states that a virus can transmit genetic information
among different species. Accordingly, this section proposes virus evolutionary algorithm;
VEA. The VEA also has a host population and virus population. An individual is represented
as a set of variables since the VEA is mainly applied to numerical optimization problems.
And a virus individual is a subset of variables and transmits the subset among host individuals
by virus infection. The procedure of the VEA is as follows:

Initialization
repeat
Selection
Mutation
Virus _infection
Replacement
until Termination _condition = True
end.

Initialization randomly generates an initial host population with uniform random values, and
then a virus individual is generated as a subset of a host individual. 'Delete least fitness' [7] is
used as the selection scheme. As a mutation operator, self-adaptive mutation is used. Let xi be
a variable of objective function.

Xjni = X;; + N(O,a; X fitness + b) 4.7)

where a; and b are a coefficient for scaling and offset in order for the variance of normal

random variable not to be zero. This self-adaptive mutation adds small perturbation when
fitness value is small. And a normal random value is used in the case of numerical minimization
problem where the optimal value is zero. However, we don’t know optimal value in real
optimization problems. Therefore, we use the following mutation with which the maximal

fitness value of a population is normalized to one.
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fitness

Xjini =X;;+ N(O,q; X +b) (4.8)

/ max fitness

Virus infection operators are also used here. A virus overwrites its substring on a host
individual with reverse transcription.

4.5 Application to Conventional Optimization Problems

This section applies a virus-evolutionary genetic algorithm; VEGA, and a virus evolutionary
algorithm; VEA, to conventional and traditional optimization problems. First, we apply the
VEGA to a knapsack problem and a traveling salesman problem. Next, we apply the VEGA
and VEA to a function optimization problem. Furthermore, we discuss the effectiveness of
virus infection through computer simulation and analyze the behavior of the VEGA on a
Markov chain.

4.5.1 Application to Knapsack Problem
4.5.1.1 Knapsack Problem
Knapsack problem is an integer programming problem of 0-1 variables, as mentioned chapter

3. This problem is represented by only the values O or 1. As mentioned in chapter 3, the

objective function is as follows:

n
maximize Vi = ZV{)Ci (4.9)

i=]

SUbjeCt to Wem = ZW’»X,- <w X = 0,1 i= 1,...,71 (410)

i=]

We then consider how to apply the VEGA to a knapsack problem as follows. The genotype is
represented by binary code. The fitness value is defined as follows:
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ﬁ 5 {Vsmn - (W - Wmm) Otherwise ( )

where « is coefficient for penalty in the case that the constraint is not satisfied. If fitness is
less than zero, fitness is zero. We use uniform crossover (see chapter 2) and simple mutation
(see chapter 2) as genetic operators. The uniform crossover generates new individuals according
to a randomly generated mask pattern. As mentioned before, a virus individual can transmit a
substring among host individuals. A substring of a virus individual consists of three characters
{0,1,*} and is the same length as that of the host individual. The character "*' denotes don't
care mark. A virus individual does not perform the reverse transcription in the same position
where there is a "*'. In this case, while the length of the virus individual is constant, the order
of the virus is variable. Figure 4.8 shows an example of the reverse transcription. The reverse
transcription overwrites the substring of the virus individual on a randomly selected host
individual. The transduction for evolving virus individuals has two types of
operators(Figure 4.9). The first one is to copy genes from a host individual according to a
copy probability per gene. The other is to replace some genes with the character '*' according
to a cut probability per gene. If the virus improves the fitness values of host individuals, the
copy operator is performed at the transduction probability. Otherwise, the replacement operator
is performed. An initial virus population is generated from the host population with the use of

the transduction operator.

Host: 10011 — 11010

Reverse transcription
Virus: *10*0

Figure 4.8 A reverse transcription operator for binary natation

Virus: *10*0 —» 110*%0

Copy Virus: *10%0 —p **0*0
Host: 10011 Replacement
(a) Copy operator (b) Replacement operator

Figure 4.9 A transduction operator for binary natation
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4.5.1.2 Simulation Results of Knapsack Problem

The number of items in the knapsack problem is 50. The weight and value of each item are
randomly determined as the random value between | and 30. The upper bound of a selectable
weight is 80% of the total weight of all items in this simulation example. Table 4.1 shows the
parameters of the SSGA, VEGA and virus infection. The number of evaluations is used in the
numerical simulation so that the search times of the VEGA is equal to that of the SSGA. Here
the search times means the sum of the times of crossover operator and reverse transcription.
The infection rate means the rate at which a virus transcribes to a host population. The
transduction rate means the rate at which a virus transduces after infection.

Table 4.1 Parameters of SSGA, VEGA, and virus infection

SSGA VEGA Virus infection

Population size 100 100 Virus population size 10
String length 50 50 Life reduction rate(r) 0.9
Crossover rate 0.8 0.8 Max infection rate 0.1
Mutation rate 0.001 0.001 Initial infection rate 0.05
Evaluations 10000 10000 Transduction rate 0.6
Copy /Cut rate 0.05

Figure 4.13 and Figure 4.11 show simulation results of the SSGA and VEGA, respectively.
The fitness value in each figure is the average of 50 trials. On the whole, the convergence of
the VEGA is faster than that of the SSGA. Furthermore, when the population size is small in
both the SSGA and VEGA, on the average the SSGA and VEGA attain local minima because
the premature convergence often occurs. On the contrary, the convergence of a large population
size is slower, but the VEGA and SSGA reach global minima. Figure 4.12 shows the comparison
of on-line performance which is the average of the highest fitness value at each generation.
The on-line performance of the VEGA outperforms the SSGA in all population sizes. Table 4.2
shows the average of fitness values obtained after 10000 evaluations. The VEGA, whose
population size is 100, attains the highest average of fitness values.
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Figure 4.10 Simulation results of knapsack problem (SSGA)
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Figure 4.11 Simulation results of knapsack problem (VEGA)
(virus population size is 10% of host population, maximal infection rate = 0. 1)

On-line performance

900
870

EISSGA
840 < % BVEGA

X

810

100 120 160 200
Population size

20 40 60 80

Figure 4.12 On-line performance of knapsack problem

Table 4.2 Maximal fitness value obtained at the last generation

Host pop. size 20 40 60 80 100 120 160 200
SSGA 848.74 879.78 885.23 887.82 888.80 889.11 888.66 887.15
VEGA 857.12 885.72 888.94 889.10 889.43 889.02 888.48 887.20
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Next, we apply the SSGA and VEGA to the knapsack problem with 100 items as a more
difficult problem. Consequently, the string length of an individual and the number of evaluations

are altered into 100 and 20000, respectively.

Figure 4.13 shows simulation results of the mutation, SSGA and VEGA. In the case of the
mutation, only a bit mutation is performed as the genetic operator. A fitness value in this
figure is the average of 50 trials. On the whole, the convergence of the VEGA is fastest and

best in the simulation results.

Fitness

2000 -

1800 |-4#
; WSSGA
H EMutation
¥ VEGA

1600F & o B

100 20000

Evaluations

Figure 4.13 Simulation results of knapsack problem

4.5.1.3 Optimal Virus Infection Probability

The performance of the VEGA depends on the virus infection operators, since the times of
reverse transcription of a virus individual to host individuals determines the frequency of the
horizontal propagation in a host population. We discuss the effectiveness of the virus infection
operators through numerical simulation of the knapsack problem.

Figure 4.14 shows the simulation results concerning virus population sizes, where the host
population size and the infection rate are 100 and 0.1, respectively. The larger a virus population
size is, the slower the convergence is. Next, we consider the case of a large size of virus
population size. Figure 4.15 shows simulation results concerning high infection rates, where
the host and virus population sizes are 100 and 200, respectively. When the infection rate is
high, the virus infects almost host individuals. As a result, premature local convergence is

easy to occur.
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Figure 4.14 Comparison of simulation result concerning virus population size

(host population size = 100, maximal infection rate = 0.1
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900
Wio
" Bos
850 06
04
Max infection rate
800 s3
1 5000 10000

Evaluations

Figure 4.15 Comparison of simulation result concerning virus population size

(host population size=100, virus population size=200)

Next, in order to discuss optimal parameters concerning the virus infection, we carry out
some simulations concerning a small virus population size. Figure 4.16 shows the comparison
of simulation results in the case of 60 host individuals. The VEGA attains the best fitness

value when the virus population size and the maximal infection rate are 6 and 0.1, respectively.
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Figure 4.16 Comparison of simulation results concerning small virus population size

(host population size=60)

These simulation results indicate that the VEGA attains the best solution when the host
population size and maximal infection rate are about 10% of host population size and about
0.1, respectively. The reason would be as follows. When the maximal infection rate is high, a
virus individual infects to almost host individuals. As a result, a genetic diversity lacks in the
host population. To the contrary, when the maximal infection rate is very low, a virus
individual can not quickly propagate effective schemata in the host population. Consequently,

the virus infection is similar to crossover operator and selection operation.

4.5.2 Application to Traveling Salesman Problem

4.52.1 Traveling Salesman Problem

A traveling salesman problem (TSP) is also well-known as an NP-hard problem. In the TSP,
a traveling salesman must visit each of # cities exactly once in order to minimize a total cost
of the travel. Here we apply the VEGA to a plane TSP with 25 cities, and 3 dimensional
lattice TSPs with 27 cities and 64 cities. The objective of the TSP is to minimize the length of
a round tour. The sequence of a round tour is represented by various ways [79~82]. Here an
explicit list of cities is used. Therefore, the traveling salesman problem can be transformed
into the permutation optimization problem which has (NV-1)!/2 possible solutions for N cities.

The application of genetic algorithms to the traveling salesman problem is shown as follows.
The representation of a tour is defined as a list of cities. Consequently, the genotype is
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defined as the positive number between 1 and N. The locus (position) on the chromosome
(string) represents the traveling order in a tour, that is, the number i on the string denotes the
city number. And the overlapping of the same number is prohibition on the string. In
addition, the tour is closed by returning from the last city on the string to the first one. For
example, consider that we solve a TSP with 5 cities from the number 1 to 5 as follows,

12345
This permutation is the same as a reverse order as follows:

54321

As mentioned in chapter 2, if we apply one-point crossover to the TSP, the crossover may
create meaningless strings which have overlapping genes. Consequently, the overlapping of
the same number is prohibition on the string. Therefore, we apply cycle crossover and partial
matched crossover (PMX). As mutation operators, we use an exchanging mutation and an
inversion. The exchanging mutation exchanges two randomly selected genes. And the inversion

reverses the order of a substring of a randomly selected string.

4.5.2.2 Simulation Results of Traveling Salesman Problem

We compare simulation results of the TSP among the SSGA, VEGA and standard GA (SGA)
which is utilized a roulette wheel selection. As selection schemes, the VEGA and SSGA use
‘delete least fitness’ [71], namely, the individual with the least fitness value is removed from
the population. However, the VEGA and SSGA remove the individual with the highest
fitness value from the population, since the TSP is a minimization problem.

First, we show the simulation results of 25 cities plane TSP (Figure 4.17). The population
sizes of the simulations are 100. The crossover probability is 0.8 and the mutation probability
is 0.001 per gene. The virus population size is 10. The maximal infection rate and initial
infection rate are 0.1 and 0.05, respectively. Figure 4.18 shows an example of the reverse
transcription which performs like PMX.
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&

Figure 4.17 Typical solution of plane TSP with 25 cities

Host: 24531 —p» 241 35

Virus: 41

Figure 4.18 Reverse transcription for TSP

Figure 4.19 and Table 4.3 show a typical result and the average of 20 trials of the plane TSP
and, respectively. In early generation, the VEGA is latest to reduce the fitness value, for there
are little effective virus when a virus individual infects to a host individual. The reason is that
a virus individual can not transduce effective schemata, since the host population have little
effective schemata. In the last generation, the VEGA reduces the fitness value without trapping
to local minima, since the virus population can transmit effective schemata in the host population.
On the average, the VEGA obtains better solutions than others. Furthermore, we compared
the average of computational time required for fulfilling the aspiration level (Table 4.3).
These values of the lowest row in Table 4.3 are normalized by defining the average of the
computational time of the VEGA as the value 1.0. The smaller the value is, the more quickly
the genetic algorithm fulfills the aspiration level. The VEGA is superior to others in the
comparison of the average of computational time.
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Figure 4.19 Typical simulation result of plane lattice TSP with 25 cities

Table 4.3 Simulation results of plane TSP

SGA

Min_length 614
Mean_length 954
Max_length 1288

Time 22

SSGA  VEGA
614 610
854 683
1020 749
1.9 1.0

Next, we apply genetic algorithms to the 3 dimensional lattice TSP with 27 cities (Figure 4.20)
and its optimal length is 700. Here, we compare the virus infection operator with other
genetic operators. Figure 4.21 shows simulation results of the cycle crossover, PMX, inversion,
exchanging mutation, and VEGA. VEGA performs only the virus infection operators in this
simulation. In the simulation of the crossover, the exchanging mutation is also used because
the genetic algorithm with only crossover converges to local optima soon. Fitness values in
Figure 4.21 are the average of 50 trials. The VEGA attains global optima in all trails. The
introduction of the virus infection improves the searching ability of genetic algorithms, since
the virus population possesses schemata like subtours in the TSP. Furthermore, Figure 4.21
indicates that the inversion is a useful operator for solving the TSP and can perform the local

search effectively.

- 106 -
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4.5.2.3 Coevolution of Host and Virus Population

Chapter 4

The above simulation results show that the VEGA attains the optimal solutions. We discuss

whether VEGA transmits effective schemata or not by applying to the plane TSP with 25

cities. Figure 4.22 shows the evolutionary transitions of the host individual with the highest

fitness value and Figure 4.23 shows that of the virus individual with the highest life force. In

the early generation (a), the virus individual does not possess any schemata to seem to be

effective. Then, the virus individual begins to be a substring of the host individual like an

effective schema. The virus possesses a longer length substring generation by generation, and

at last (d), the virus individual possesses the almost optimal solution.
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Figure 4.23 Evolutionary transitions of the virus individual
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The host individual includes a subtour similar to the virus individual at each generation. This
fact shows that the host population and the virus population have coevolved, since the virus
individuals transduce from the host individuals and horizontally propagate their substrings
into host individuals.

4.5.3 Application to Function Optimization Problem

Function optimization problems have been often applied as benchmark tests for genetic
algorithms [12,66,83]. In this subsection, we apply the VEGA to two cases of function
optimization problems. Case 1 is as follows:

f,y)=x"+2y* —0.3cos(3mx) — 0.4 cos(4my)+0.7 (4.12)
where ~1.0<x,y<1.0. This function is highly multimodal. The aim of this problem is to

minimize the objective function. The global minimum is at x=0, y=0, which produces fix,y)=0.
Figure 4.24 shows the shape of this objective function.

Figure 4.24 3D-space characterized by objective function f(x,y)

(The negative of f(x,y) is depicted.)

We use the binary code as the representation of genotype. A string includes two variables in
this objective function. Decoding the string, we obtain two integer numbers, and substituting
the numbers into the X of following eq.(4.13), we obtain two variables.
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(4.13)

Z denotes half the value of the maximal integer of X represented by the binary code. A
uniform crossover and a bit mutation are used as genetic operators.

Figure 4.25 and Figure 4.26 show the simulation results of Case 1 of the SSGA and VEGA,
respectively. The fitness value in each figure is the average of 50 trials. The convergence of
the VEGA is faster than that of the SSGA, on the whole. Table 4.4 shows the average of
fitness values obtained after 10000 evaluations. Since Case 1 is easy to solve, we apply to a
more difficult function as Case 2,

g(x) =54+ (Ax, — Acos(2mx,) 4.14)

i=]

Table 4.5 shows the average of fitness values after 20000 evaluations of 50 trials. When the
host population size is 100, the VEGA attains the best value in these simulation results.
Figure 4.27 shows the comparison of simulation results concerning virus population size.
When the virus population size and the maximal infection rate are 10 and 0.1, respectively,
the VEGA attains the best fitness value.

Fitness
1.0()e+OL
Population size
1.00e-2 o
R N ® 120
1.00e-4]  TE¥™, O\, ™ égo
.......... B 60
1.00e-6 20
1.00e-8 :
1 5000 10000
Evaluations

Figure 4.25 Simulation results of Case 1 (SSGA)
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Figure 4.26 Simulation results of Case 1 (VEGA)

Table 4.4 Average of fitness value after 10000 evaluations in Case 1

Host pop. size 20 60 80 100 120 160
SSGA 1.00e-4 3.06e-7 3.42¢-7 3.59e-7 4.0de-7 3.42e-7
VEGA 8.12e-5 4.24e-7 2.44e-7 2.12e-7 2.28e-7 3.23e-7

Table 4.5 Average of fitness value after 20000 evaluations in Case 2

Host pop. size 20 60 80 100 120 160
SSGA 3.71e-5 3.74e-5 4.46e-5 3.89¢-5 3.72e-5 4.99¢-5
VEGA 4.38e-5 3.70e-5 3.41e-5 2.65e-5 3.65¢-5 1.51e-4

Fitness

5.00e-5

4.00e-5 Max infection rate

E30.18
E30.14
£30.10
E0.06
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3.00e-5
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0.00e+0
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Figure 4.27 Comparison of simulation results concerning virus population size in Case 2
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In general, it is known that one point or multi-point crossover is not effective in numerical
optimization problems. Therefore, advanced genetic operators such as uniform intermediate
crossover and self-adaptive mutation have been proposed for solving numerical optimization
problems. In general, evolutionary programming outperforms to genetic algorithms in numerical
optimization problems, but evolutionary programming does not use crossover operators.
Therefore, we compare genetic algorithms introduced self-adaptive mutation with evolutionary
programing. Evolutionary algorithms are based on the concept of species and evolutionary
operators work on the phenotype of individuals, which is represented by real number, integer,
and so on. The main operator of evolutionary algorithms is mutation. One of mutation operators

is self-adaptive mutation as follows,

fitness

X +b) (4.15)

J+n,i

=x..+NO,a x
g i v
max fitness

On the other hand, as mentioned in the section 4.4, we propose a virus-evolutionary algorithm
(VEA). The VEA is composed of self-adaptive mutation, tournament selection and virus

infection operators.

Here we apply evolutionary algorithms to two cases of numerical minimization problems as

follows.

m

fitness =0.1lm + Z‘(x,.2 +0.1cos(37mx,)) (4.16)

i=1

m-1 m—1
fitness=0.1m+ " (x, - x,,,)” + 0.1 cos(3m(x, —x,,,)) (4.17)

i=1 i=1

where m is problem size (m = 50 in this case). In €q.(4.16), there is no association among
variables and eq.(4.16) is easy to solve. To the contrary, €q.(4.17) has association among
variables.

The individual is represented as variables, that is, each individual has m variables. The
objective is to minimize fitness value. Figure 4.28 and Figure 4.29 show simulation results of
€q.(4.16) and eq.(4.17), respectively. Fitness value in each figure denotes the average of 30
trials. EP_C in these figures denotes the evolutionary algorithm with elitist crossover. In the
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elitist crossover, an individual selects a mating individual by using roulette wheel selection.
In the EP_C, self-adaptive mutation is performed after the elitist crossover. From Figure 4.28,
EP_C outperforms to others because good individuals have independent and good variables
and elitist crossover can generate good individuals. These results indicate that the elitist
crossover can inherit good genetic information from parents for the self-adaptive mutation.
From Figure 4.29, the VEA outperforms to others. The convergence speed of the EP_C is the
fastest in the early generation, but the VEA attains the best solution at the last generation. The
reason is that the performance of the EP_C depends on the elitist crossover, the elitist
crossover does not successfully work on the population at the last generation since the
population in the last generation converge to local solutions and as the result, the elitist -
crossover results in failure. To the contrary, VEA can control virus infection rate and therefore
the virus infection rate is very small in the last generation.

Fitness

100
10
o

0.01}

0.0011L
1 30000
Evaluations

Figure 4.28 Simulation results of eq.(4.16)

Fitness
100

1 30000
Evaluations

Figure 4.29 Simulation results of eq.(4.17)
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4.6 Evolutionary Transition of Virus Evolutionary Genetic Algorithm

The previous section showed the effectiveness of the VEGA by applying conventional and
traditional optimization problems. In general, the performance of algorithms depends on the
relation among coding design, genetic operators, selection scheme, and control parameters.
Especially, the coding design has a very close relation with the genetic operators. However, it
is difficult to discuss these elements simultaneously. When considering the behavior of genetic
algorithms, we often use Markov chain analysis [58~62]. Markov chain can completely
model the behavior of a genetic algorithm when the size of the optimization problem is
comparatively small, but it is physically impossible to model real large problems and also
impossible to describe all evolutionary transitions of the large problems. Other approaches
are to analyze the fitness correlation coefficient of a genetic operator [62] and to discuss the
probability of improvement by genetic operators [61]. These approaches are comparatively
simple, but the experimental results are very effective for evaluating the performance of
genetic operators. In this section, we discuss the evolutionary transition by genetic operators
based on these approaches.

4.6.1 Markov Chain Analysis and Fitness Landscape Analysis

Markov chain analysis is very important because its results often indicate good theories. A
finite Markov chain is characterized by a finite set of states and a matrix of transition
probabilities from state i to state j [5]. Let p(¢) be a population of candidate solutions at time
step ¢. We can describe the behavior of a GA as the following state transition from p(f) to

p(r+1),
pt+1)=s(g(p(1))) (4.18)

where s(¢) and g(*) are intermediate transition matrices of the selection operations and genetic
operators, respectively (Figure 4.30). The genetic operators explore the search space generated
by all the population, while the selection operations exploit the search space for generating
new candidate solutions. However, we can not describe all evolutionary transitions in the case
of the large number of the problem size. In this section, we therefore focus on how much

improvement, i.e. the difference between fitness values of parents and their children, Af, and

the probability of improvement by genetic operators, P (Af > 0).
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Figure 4.30 Evolutionary state transition of population by genetic operators and selection

( p(t): population at generation t, g(+): genetic operators, s(¢): selection operations)

On the other hand, Manderick [62] discussed a fitness landscape analysis by the following
correlation coefficient of genetic operators,

C(fit,, fir,)

» : (4.19)
o(fit,)o(fit.)

pUfit,, fit,) =

where fit, and fir, is fitness values of parent and its child, C( Jit,, fit.) is the covariance
between the values fit, and fit, and o( fit,) and o(fit,) are the standard deviations of the
values fit, and fir.. This analysis demonstrates the relation between the fitness values of

parents and children by genetic operators. However, the selection is not considered in
Manderick’s analysis, but the selection limits the search space. In fact, a population evolved
by a set of genetic operations, is different from a population evolved by another set of genetic
operations because of the difference in the generation method of candidate solutions. A
population, in general, evolves through the interaction of the selection and genetic operators.
In this section, we discuss evolutionary transitions concerning fitness values by genetic operators
considering the role of selection. The component individuals of the population evolved by
genetic operations are different from random generated individuals and a population varies
from generation to generation. Therefore, a phase of evolution of a population (evolutionary
phase) is represented using average fitness value of the component individuals. Consequently,
we evaluate genetic operators on the population with average fitness value, Ave_fif(x), which
is evolved by a set of particular genetic operations. Here x is defined as an evolutionary phase

number. The procedure of simulation concerning fitness value is as follows.
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Step 1 Initialization: generate randomly initial population, p(0), and initialize evolutionary
phase number; x=0.

Step 2 Evolution: make p(x) evolve with a set of genetic operations; G, until the average
fitness value of p(x) is Ave_fit(x).

Step 3 Evaluation: perform each genetic operator to the individuals of p(x), and evaluate
the improvement from its parents 10000 times.

Step 4 x=x+1.

Step 5 go to step 2.

In step 3, the generated children are not replaced with their parents here in order to keep the
simulation condition of a population evolved by particular genetic operations. In this way, a
population gradually evolves by a set of genetic operations and we evaluate genetic operators
on the limited search space of the population.

4.6.2 Evolutionary Transition in Knapsack Problem

This subsection discusses the performance of genetic operators for the knapsack problem in
the previous section. The sets of genetic operations, G, are as follows,

G1: SSGA (bit mutation)
G2: SSGA (uniform crossover + bit mutation)

D>

Gs: VEGA (virus infection + uniform crossover)

The population size is 100 and Ave_fir(x)={ 1100, 1200, ---, 1700}. Figures 4.31~4.33 show
simulation results of each 50 runs of the above experiments by initializing a population. We
compare simulation results of (uniform) crossover, (bit) mutation and virus infection. Pimprow
denotes the probability of improving fitness values of randomly selected parents in 500000
trials (10000 times * 50 runs). Improvement denotes the average of improvement when fitness
value is improved by a genetic operator. Expected improvement denotes the product of Pimprove
and Improvement. Here we don't consider negative improvement because we basically use the
SSGA which eliminates the worst individuals. Correlation coefficient 1s the average of
correlation coefficients calculated by eq.(4.19).
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From the simulation result on the whole, the value of each index in these figures decreases as
the average of fitness values of the population (evolutionary phase number) increases. This is
clear because the state transition probability of an individual to bad one is, in general, higher
in the case of the population with the higher average of fitness values due to the stochastic
search. However, it is desirable that the Piprov by genetic operators is high even in the case of

good individuals. The simulation results concerning Pimprove

indicate that the virus infection

succeeds well to improve the fitness values of candidate solutions with higher probability
than others, since the successful viruses have high virus infection rate and overwrites their

effective substrings on the strings of candidate solutions. Next, from the simulation results
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concerning Improvement, the improvement by the crossover in the population evolved by Gs
is more than others, since the virus infection increases effective schemata in the population
and the crossover combines these schemata. In addition, Pinprove and Improvement of crossover
are better than those of mutation in all cases. This reason is inferred from the building block
hypothesis [12], and the crossover generates new candidate solutions based on genetic
information between individuals, not random exchanging. On the other hand, we could not
obtain the good results concerning Correlation coefficient. This is probably due to the design
of fitness function, especially, the design of penalty when the constraint is not satisfied. In the
knapsack problem, much penalty is given to a candidate solution which does not satisfy the
constraints, and therefore the correlation between fitness values is weak. This correlation is
very important for GAs, but the design of fitness function for constraints is out of scope in

this simulation.

4.6.3 Evolutionary Transition in Traveling Salesman Problem

This subsection discusses the performance of genetic operators for the TSP in the previous
section. Since the TSP is a permutation optimization problem, genetic operators must generate
feasible candidate solutions. The sets of genetic operations, G, for the TSP are defined as

follows,

Ga4: SSGA (exchanging mutation)
Gs: SSGA (cycle crossover + PMX)
Ge: VEGA (virus infection)

And the population size is 100 and Ave_fir(x)={2800, 2600, ---, 1800}. We use a round tour
length as fitness value in this simulation.

Figures 4.34~4.36 show simulation results of each 50 runs of the above experiments by
initializing a population. We compare simulation results of genetic operators; cycle crossover,
PMX, inversion, exchanging mutation, and virus infection. The indices in the figures are
those of Figures 4.31~4.33. From the simulation results concerning Pimprove, the improving
probability of virus infection is only higher than 0.5 at first, and succeeds to improve fitness
values with high probability. In addition, the improving probability of the exchanging mutation
is the lowest in the all cases since the exchanging mutation is easy to break subtours in the
TSP. In the population evolved by Gs, the cycle crossover and PMX succeed to improve
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fitness value with high probability through all evolutionary phases and this result indicates
that the population evolved with crossover operators is robust to crossover operators. This
reason is also inferred from the building block hypothesis [12] and the crossover generates
new candidate solutions based on the subtours between individuals. In the population evolved
by Ge, Improvement of the crossover operators are higher than those of G+ and Gs, and this
result indicates that the population evolved by the virus infection has many effective schemata

and successful crossover operators can easily obtain high improvement.
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Figure 4.34 Results against Figure 4.35 Results against ~ Figure 4.36 Results against
population evolved by Case 1 population evolved by Case 2 population evolved by Case 3

In this simulation, a population evolves with a single type of operator, and therefore a
population are easily trapped to local minima. Next, we conduct experiments by using the

following sets of genetic operators,
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G7: SSGA (inversion + exchanging mutation)
Gs: SSGA (cycle crossover + PMX + inversion + exchanging mutation)
Go: VEGA (virus infection + cycle crossover + PMX)

Each set of genetic operators is often used for solving the TSP. And the population size is 100
and Ave_fit(x)={3000, 2600, ---, 1000}.
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Figure 4.37 Results against ~ Figure 4.38 Results against Figure 4.39 Results against
population evolved byGs population evolved by G7 population evolved by G~

Figures 4.37~4.39 show simulation results of each 50 runs of the above experiments by
initializing a population. The tendencies of G7 ~ G are relatively similar to those of Gs ~ G,
respectively. This indicates that the population evolved by multi-operators also inherits the
fundamental feature of the main genetic operator. In the population evolved by G, the
correlation coefficients of the inversion through all evolutionary phases are relatively high.
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The reason would be as follows. The population includes many individuals which can be
improved by the inversion since Gs does not include the inversion. In fact, we apply the
VEGA with inversion to the TSP, and Figure 4.40 shows the simulation result of the VEGA
with inversion (VEGA* in Figure 4.40). This simulation result indicates that the introduction
of the inversion causes the improvement of the performance. Furthermore, the correlation
coefficients of the mutation and inversion are relatively high at first. This is due to the design
of fitness function and small change by the mutation and inversion as the local search. The
mutation and inversion generate new individuals as local searches and the distance concerning
genotype between parents and children is comparatively short. On the other hand, the crossover
can generate feasible children which partially inherit the stings of their parents as the global -
search, but it is possible that the crossover may generate children far away from their parents.
Consequently, the correlation coefficients of crossover operators concerning fitness values
can be low.

M Inversion
10501 BAVEGA
EBIVEGA*
"
I
700 T
100000

Evaluations

Figure 4.40 Simulation results of VEGA with inversion

To conclude, the virus infection has comparatively high probability for improving fitness
value at evolutionary phases of populations evolved with any genetic operators and its
improvement is also comparatively high. This indicates that the virus infection operators can
generate effective schemata and propagate them well. Furthermore, these simulation results
indicate that particular genetic operators give a population their peculiar potentiality of
generating candidate solutions, that is, genetic operators determine the direction of evolution.
In addition, the performance of a genetic operator depends on the evolutionary phase of a
population. However, these simulation results indicate that a genetic operator can improve
fitness values of individuals effectively, but do not indicate that the genetic operator can
generate optimal solutions. In fact, the GAs have selection operation which selects individuals

from the current population according to fitness values, and genetic operators generate new
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individuals from the selected individuals. Consequently, the selection pressure and generational
model also influence the performance of the GA. The behavior of any evolutionary computation
can not be anticipated by analyzing its components [61].

4.7 Summary

This chapter proposes two types of evolutionary optimization methods based on virus theory
of evolution; virus evolutionary genetic algorithm (VEGA) and virus evolutionary algorithm
(VEA). Furthermore, this chapter discuss the role of virus infection in the VEGA. The VEGA
has two features of horizontal propagation and vertical inheritance of genetic information.
The essential of the VEGA lies in the virus infection operators which perform a complex
hill-climbing search in the long run. The reverse transcription plays the role of a crossover
and a selection simultaneously. The VEGA searches the solution space with reverse transcription
operator by generating new candidate solutions with overwriting host individuals partially.
The virus infection is similar to a proportional selection scheme since a virus individual
performs the reverse transcription with the frequency of virus infection rate. However, the
VEGA differs from other genetic algorithms in the generation of new individuals. The reverse
transcription directly generates a candidate solution with overwriting its substring on host
individuals, though a crossover generates new candidate solutions with randomly combining
substrings in a standard genetic algorithm. Therefore, the VEGA can generate new candidate

solutions with a directionality in the search.

The VEGA simulates coevolution of a virus population and a host population. A virus
individual evolves by transducing from the infected host population. Therefore, the best
parameters concerning virus infection operators exist and the convergence of the host population
depends on the frequency of the virus infection operators.

Furthermore, we discuss evolutionary transitions by the virus infection in the VEGA. The
simulation results indicate two points. The first one is that genetic operators determine the
direction of evolution, especially, a population evolved with crossover operators is robust to
crossover operators. In addition, the performance of a genetic operator depends on the
evolutionary phase of a population. The other is that virus infection operators can generate
effective schemata and propagate them to a population evolved with any genetic operators.
However, these simulation results do not indicate that genetic operators can generate optimal

solutions.
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Chapter 5 Application to Engineering

Optimization Problems

Evolutionary optimization methods have been successfully applied to various fields of
engineering such as robotics, manufacturing system and mechatronics. The roles of the

evolutionary optimization methods in en gineering are as follows.

1. Design of hardware and software.
2. Tuning of control parameters
3. Modeling and planning in software level

The design and parameter tuning are to determine the performance of hardware and software,
and the modeling is to build a model based on the results of the cause-effect analysis of the
problem, and the planning is to determine how to perform a given task and to solve a

problem.

This chapter applies evolutionary optimization methods to some engineering optimization
problems. First, we present trajectory planning for redundant manipulators. The form of the
reconfigurable redundant manipulator is dynamically reconfigured according to its environment
and given tasks. Virus-evolutionary genetic algorithm; VEGA, is applied to a trajectory
planning problem based only on forward kinematics. The simulation results of trajectory
planning show that the VEGA can generate a collision-free trajectory. Second, we present a
pallet allocation problem as an example of self-organizing manufacturing systems, in that a
process effectively self-organizes according to other processes. The simulation results show
the effectiveness of the proposed problem Finally, we present a self-tuning fuzzy controller
as an example of a hybrid method with other soft computing. The VEGA is applied to the
tuning of fuzzy controller with radial basis function for a Cart-Pole system.

5.1 Application to Trajectory Planning for Redundant Manipulator

Recently, robots have been seen in various fields. In general, robots can be divided into

mobile robots and arm robots (robot manipulator). The main aim of the mobile robot is to
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carry materials, products, tools and others, while the aim of the robot manipulator is to handle
them. Lately, the mobile robots with manipulators have been developed for improving the

performance and flexibility.

A robot receives a task from a human operator and performs the task in the workspace
including a lot of obstacles such as human bodies, machining centers and other robots. The
robot should therefore take into account the collision avoidance with these obstacles.
Furthermore, the robot should automatically generate its motion for performing the task
without human assistance. Consequently, the problems for performing given tasks are
fundamentally path planning problems, trajectory planning problems and task planning problems
(Figure 5.1). Here we define these planning problems as follows. The path planning problem
is to generate a collision-free path of the robot from a given starting point to goal points,
which satisfies the spatial constraints. The trajectory planning problem is to generate a trajectory
of the robot satisfying the time constraints. The task planning problem is to decide a sequence
of primitive motion commands for solving a given task. In fact, each definition of these
problems is conceptually differentiated from other planning problems and therefore each
planning problem shares the some elements of other planning problems. This section focuses

on trajectory planning of redundant manipulators to a given task.

Task planning

Trajectory

Figure 5.1 Motion planning of robot for performing a given task

Various kinds of approaches for trajectory planning and collision avoidance planning have
been proposed [84~87]. Lozano-Perez proposed the V-graph algorithm for finding the shortest
path which does not collide with any obstacles in the workspace of a robot manipulator [84].
Brooks developed a method for finding the free passageway called "Freeway" [85]. Recently,
new approaches have been proposed [87].
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Redundant degrees of freedom enable a manipulator to perform various works where a
workspace includes a number of obstacles. However, it is difficult to solve collision avoidance
problems in such cases. To solve these problems, we propose a hierarchical trajectory planning
method for a reconfigurable redundant manipulator. The hierarchical trajectory planning
generates some intermediate positions of the reconfigurable redundant manipulator. Combining
these intermediate positions, the hierarchical planning generates a collision-free trajectory. In
this section, we apply the VEGA to the trajectory planning.

5.1.1 Self-Organizing Manipulator System

A cellular manipulator system is composed of a large number of tools and parts which are
called cells. The form of a cellular manipulator system is dynamically reconfigured according
to its environment and given tasks (Figure 5.2). However, it is difficult to generate a trajectory
to achieve the given task in a workspace including a number of obstacles. In inverse kinematics
using Jacobian matrix, problems such as singularity avoidance must be took into account.
One of trajectory planning methods without Jacobian is a trajectory planning method using
genetic algorithm. The trajectory planning uses only a forward kinematics concerning the

redundant manipulator.

Qbjective point

-

Reconfiguration Addition
— ey Y
Jointing cell Endeffecter cell
o+ =>4
Bending ceil Revolving cell

Figure 5.2 Reconfiguration example of cellular manipulator system
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5.1.2 Hierarchical Trajectory Planning

The trajectory planning problems partially overlap the path planning problems. For example,
a trajectory planning problem for a robot manipulator often includes a path planning problem
of the end-effector from an initial position to a final position. In general, forward kinematics
maps the joint angle space of the robot manipulator into the Cartesian space, while inverse
kinematic maps the Cartesian space into joint angle space. The trajectory planning problem is
to solve the inverse kinematics of the robot manipulator. It is generally difficult to represent a
robot manipulator as a point because of some degrees of freedom (DOF), though a mobile
robot can be regarded as a point in the work space. Furthermore, the trajectory planning
problem is more difficult as the DOF increases, since the number of configurations of the
robot manipulator corresponding to a point in the Cartesian work space increases (Figure 5.3).

2 DOF

Figure 5.3 Configurations corresponding to a point in the Cartesian space

In this section, we consider trajectory planning and collision avoidance planning of a redundant
manipulator made up of only revolving and bending joints in the workspace which includes
some static obstacles (Figure 5.4). Various method for finding a collision-free trajectory of a
redundant manipulator have been proposed so far. One of them is a trajectory planning
method by connecting collision-free intermediate positions of a manipulator from an initial
position to a final position. In general, these intermediate positions are generated step by step.
And the method has a problem that some deadlocks may occur. A trajectory planning of a
redundant manipulator is closely related to its collision avoidance planning. Therefore, we
propose a trajectory planning method in the case that initial and final positions are only given.
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Figure 5.4 Trajectory planning in the work space including some static obstacles
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Figure 5.5 Trajectory planning and collision avoidance planning

We propose a top-down approach of trajectory planning based on initial and final positions

(Figure 5.5). Here a position is expressed by a set of joint angles. First, the first intermediate

position of the manipulator is generated based on the initial and final positions which are

given. As a next search level, the second intermediate position is generated based on the

initial and the first intermediate positions. The intermediate positions into the lower level are

generated between two positions, if the trajectory connecting these two positions can not

avoid the obstacles (Figure 5.6). In this way, collision-free intermediate positions are

hierarchically generated. Last, applying a spline interpolation method to the joint angles of

these intermediate positions, we obtain a collision-free trajectory.
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Figure 5.6 Collision check between manipulator and obstacles

An appropriate intermediate position for the collision avoidance is generated by VEGA which
optimizes a objective function based on the distance between the manipulator and obstacles.
To measure the distance between the manipulator and obstacles, we apply the concept of
pseudo-potential [86]. We assume that the workspace is divided into N*N*N cells. Furthermore,
let us assign a pseudo-potential value p to each cell to evaluate its closeness to the obstacles
in the workspace. A pseudo-potential value of a cell can only take positive integer or zero.
The closer the distance from the obstacles is, the larger the pseudo-potential value is. A cell
with the pseudo-potential value zero is comparatively far away from obstacles.

We apply VEGA to the generation of intermediate positions of a reconfigurable redundant
manipulator. As mentioned before, an intermediate position is hierarchically generated. Assume
two positions, pa and ps be already generated. We consider a generation of an intermediate
position pc between position pa and ps into a lower level. The variables to be optimized are
joint variables of the redundant manipulator. The objective is to generate a trajectory realizing
minimum distance from the initial point to the final point and farther from the obstacles. To

achieve the objective, we use the following fitness function,

fimess =w,f, +w,f, + wf, + w, max,,*+wssum,,,, (5.1)

pot
where w,, -, w, are weight coefficients. The first term, Jo, 1n €q.(5.1) denotes the sum of

squares of the distance between the manipulator's end of pa and that of pc, and the distance
between that of ps and of pc, that is defined as:
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fP = (pA_end - pC_em/)2 +(pB_end —pC_end)2 (52)

where px e is the end of a position px. The second term fa1n eq.(5.1) denotes the sum of
squares of the difference between the each joint angle of p4 and that of pc, and the difference
between that of ps and that of pc, that is defined as:

Ja= Z{(QAJ _QC_i)z G Oc_;)z} (5.3)

where By is the i-th joint variable of a position Px. The third term, f, in eq.(5.1) denotes the
sum of the evaluation function using a normal distribution(Figure 5.7) to make each joint be
within an available range, which is defined as:

fr=n=3 fr (5.4)
i=1

where fii is the evaluation value of a joint i. To evaluate the distance between the manipulator
and the obstacles, we introduced the concept of pseudo-potential space, as mentioned before.
Let us take some sampling points on the manipulator to measure the distance between the
manipulator and obstacles. The fourth term, maxpor in €q.(5.1) denotes the maximum value in
the pseudo-potential values on the sampling points. If the maxyo is the maximal pseudo-potential
value p, the manipulator collides with obstacles. The last term, sumpor in eq.(5.1) denotes the
sum of pseudo-potential values on all sampling points, which is defined as:

sum,,, = Z pot. (5.5)

ieSP

where SP is a set of all sampling points and pot, is the pseudo-potential value of an element i
included in SP. Using these terms, we solve the multi-objective optimization problem of
collision avoidance. Therefore, the objective of the trajectory planning is to obtain intermediate
positions to minimize the fitness value.
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Figure 5.7 Evaluation function using normal distribution
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Figure 5.8 The representation of joint angle in VEGA

Intermediate positions are generated by the VEGA in the top-down approach of trajectory
planning. To apply the VEGA, we need to determine the coding method into the string space

first of all. Each joint variable & is represented as binary coding (Figure 5.8). A string

(individual) includes all joint variables. Decoding the string, we obtain an integer number x;.

Inserting the xi into eq.(5.6), we obtain each joint angle.

+o N (5.6)

0' =9 rmg_i X

i min_i

Bhin_i 1s the lower bound of the joint angle 8, G, is the movable range of the i-th joint, and X
is the maximal value obtained by decoding into integer. For example, if the length of a bit
string per joint variable is 10, then X = 2'°= 1024. Consequently, this optimization problem
results in a 0-1 combinatorial optimization problem.

As mentioned before, a virus individual can transmit a substring between host individuals,
that is, the virus has two virus infection operators: the reverse transcription and the transduction.
A substring consists of three characters {0,1,*} and is the same length as a host individual.
The character ‘*’ denotes ‘don't care mark’. A virus individual does not carry out the reverse
transcription in the same position where there is **’. In this case, the length of a virus is
constant, but the order of a virus is variable. Figure 5.9 shows an example of the reverse
transcription. The reverse transcription overwrites the virus' substring on a randomly selected
host individual. The transduction has two types of operators(Figure 5.10). One is to copy
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genes from a host individual with a copy rate per gene. The other is to replace some genes
with character “** with a cut rate per gene. If the virus improves the fitness of host individual,
the copy operator is carried out with the transduction rate. If not, the replacement operator is
carried out. An initial virus population is generated from a host population using the transduction

operator.

Host: 10011 ——» 11010

Reverse transcription
Virus:  *10%0
Figure 5.9 Reverse transcription operator

Virus:*10*0 = 110%0

1 Virus:*10%0 —»  **0%()
Copy

Host:10011 Replacement

(a) Copy operator (b) Replacement operator

Figure 5.10 Transduction operator
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Intermediate position 123456789
Deta-set string 010110000

\T‘T rajecto
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Initial position

Local
information

Intermediate
Position 2

Intermediate
Position 5

Position generator
Figure 5.11 Hierarchical trajectory planning

The top-down approach for trajectory planning does not always obtain an optimal trajectory,

since the top-down approach does not have any global evaluation function about the trajectory.

To obtain an optimal trajectory, we propose a hierarchical trajectory planning method which
is composed of two layers: a trajectory generator and a position generator (Figure 5.11).
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The position generator generates some intermediate positions of the redundant manipulator
between the given initial and final positions. All intermediate positions are generated based
on their before and after positions simultaneously by using the intermediate position generator
in the top-down approach. An intermediate position satisfied the aspiration level in VEGA is

sent to the string on some individuals of the trajectory generator.

The trajectory generator generates a collision-free trajectory combining some intermediate
positions generated in the position generator. We also apply the VEGA to the trajectory
generator. VEGA in the trajectory generator has a set of candidate solutions including joint
angles. Figure 5.12 shows a deta-set string for intermediate positions and a set of joint angles
of some intermediate positions. The VEGA initially sets zero on all deta-set strings. Each
individual gradually evolve by receiving a set of joint angles of intermediate position from
the position generator. A mutation operator changes a randomly selected gene on the deta-set
string to 0. A virus individual has a subset of intermediate positions and transmits among the
host individuals (candidate solutions).

Data-set [1_ 1 0 1|
Swuing 13012 | 0.125 |+] 1 - -135 -

61
<— Position 1 —P» [ —Position 71—

Figure 5.12 Coding in trajectory generator

The intermediate positions of the best individual are the constraint for generating intermediate
positions, that is, the position generator generates other intermediate positions based on the
intermediate positions of the best individual in trajectory generator. Therefore, the hierarchical
trajectory planning results in a co-optimization problem of a trajectory and intermediate
positions.

5.1.3 Simulation Results

This section presents some numerical simulation of the trajectory planning. We consider the
trajectory planning problem of three types of redundant manipulators in the workspace where
there are some obstacles (Figure 5.13, Figure 5.14, Figure 5.15). The reconfigurable redundant

manipulators have 7 degrees of freedom (DOF) similar to a human arm and 10 DOF, respectively.
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The objective is to generate a collision-free trajectory from an initial position to a final
position. The workspace is divided into 30%30%30 cells. The pseudo-potential space has a
maximum 5.

We compare VEGA with SSGA and EP. Table 5.1 shows the parameter of the SSGA, VEGA
and the EP. Table 5.2 shows the parameters of the virus infection and Table 5.3 shows the
link parameters of the 7 DOF manipulator.

C——2p /—

X Goal point
(a) Initial position (b) Final position

Figure 5.13 Simulation example (case A) of 7 DOF manipulator

b

X Goal point

(a) Initial position (b) Final position

Figure 5.14 Simulation example (case B) of 10 DOF manipulator

C—2 ——

’BIENIR

X Goal point

(a) Initial position (b) Final position

Figure 5.15 Simulation example (case C) of 7 DOF manipulator
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Table 5.1 Parameters of the VEGA, the EP

SSGA, VEGA EP
Population size 100 100
String length 70 7variables
Crossover rate 1.0 -
Mutation rate 0.006 1.0
Opponent - 10
Generation 300 300

Table 5.2 Parameters of the virus infection

Virus population size 20
Life reduction rate(r) 0.9
Initial infection rate 0.2
Max infection times 5
Transduction rate 0.6
Copy /Cut rate 0.05

Table 5.3 Link parameters of 7 DOF manipulator

i 1 2 3 4 5 6 7
(07 -90 90 90 90 -90 -90 90
a 0 0 0 0 0 0 0
di 0 0 10 0 6 0 1
Oi_initial 0 90 90 0 0 0 0
Oi_final 0 90 90 -90 90 0 0
Brmin -180 -90 -180 -120 -180 -140 -5
Omax 180 135 180 120 180 140 140
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(a) Front view (b) Side view (c) Top view

Figure 5.16 Collision-free trajectory in example A

!

(a) Front view (b) Side view (c) Top view

Figure 5.17 Collision-free trajectory in example B

Figure 5.16 and Figure 5.17 show simulation results of the top-down trajectory planning of
the case A and case B by using the VEGA, respectively. In these figures, the side view shows
that each redundant manipulator avoids colliding with the obstacles. Each redundant manipulator
achieves the final position without colliding with obstacles and the obtained trajectories are
farther away from obstacles. Furthermore, the generated trajectory in Figure 5.16 seems similar
to the motion of a human arm (left arm in this case). Furthermore, Figure 5.18 shows the joint

angles obtained by the top-down planning with the VEGA.
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Figure 5.18 Joint angles obtained by top-down planning with VEGA
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Figure 5.19 shows the simulation result of hierarchical trajectory planning of the simulation
example A. No.1~3 in Figure 5.19 show the evolutionary transitions of a trajectory generated
by the VEGA. At the early generation (No.1), though the hierarchical trajectory planning
obtains a collision-free trajectory, the combination of the intermediate positions is not optimal.
Finally (No.3), the hierarchical planning obtains the best trajectory.

Base
=
i j
<«
N
(a) Front view (b) Side view (c) Top view

No.1 (generation 50)

(a) Front view (b) Side view (c) Top view

No.2 (generation 75)

(a) Front view (b) Side view (c) Top view

No.3 (generation 100)

Figure 5.19 Evolutionary transition of collision-free trajectory generated by hierarchical
trajectory planning with VEGA
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The advantage of the hierarchical trajectory planning is to find better solution than the
top-down approach quickly, since the hierarchical trajectory planning can search all the
solution space simultaneously. Figure 5.20 and Figure 5.21 show simulation results of case C
by the top-down approach and hierarchical approach, respectively. In case C, the tow-down
approach is difficult to generate the first intermediate position between the given initial and
final positions, since it is difficult that feasible intermediate positions without colliding with
the obstacles in the workspace is generated to satisfy the minimization of f, and fu in fitness
function eq.(5.1) simultaneously. On the other hand, the hierarchical trajectory planning is
easy to generate a collision-free trajectory because of the simultaneous generation of some

intermediate positions.

(a) Front view (b) Side view (c) Top view

Figure 5.20 Simulation result of case C by the top-down trajectory planning

(a) Front view (b) Side view (¢) Top view

Figure 5.21 Simulation result of case C by the hierarchical trajectory planning
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And a large population size would obtain higher performance. However, the trade-off between
the quick search and the performance of the solution exists. Furthermore, it is difficult to
design and to evaluate a multi-objective fitness function itself. Here we focus on the quick
search with the aspiration level. Therefore, the hierarchical trajectory planning realizes the
quick generation of a trajectory based on only forward kinematics. In fact, the hierarchical
trajectory planning can generate a trajectory satisfied the aspiration level about three times as
quickly as the top-down trajectory planning in the average.

Furthermore, we compare the VEGA with the SSGA and EP. The objective of this simulation
is to obtain the first intermediate position between the initial and final positions in the -
top-down approach. In the EP, an individual has real variables of joint angles. Figure 5.22
shows the comparison of simulation results of the VEGA, SSGA and EP. The fitness values
in Figure 5.22 are average values of 30 trials. At first, the EP outperforms others since the
virus population in VEGA does not have effective schemata. Therefore, the virus population
can not effectively carry out reverse transcriptions. The virus population gradually become to
have effective schemata and propagate them between host individuals. At last, the VEGA
obtains best solution than EP. One reason of this fact is as follows. Since the problem space is
approximated to a combinatorial space in the VEGA, the solution space of the VEGA is
smaller than the real problem space. In addition, the VEGA finds a solution satisfied the
aspiration level more quickly than the EP concerning computational time. However, the EP
can obtain the optimal solution in numerical optimization problems by tuning mutation’s
parameters. To summarize, the VEGA is effective in the case of obtaining better solutions
with shorter calculation time, not best solutions.
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BEP
Essca

1500 -

1000 -

1 100 200 300
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Figure 5.22 Comparison of simulation results
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5.1.4 Summary

This subsection applied evolutionary optimization methods to trajectory planning of
reconfigurable redundant manipulator. We proposed a hierarchical trajectory planning method
using the VEGA. First, we proposed a trajectory planning method based on only forward
kinematics. Next, we proposed a hierarchical trajectory planning which generates some
intermediate positions and optimizes the combination of the intermediate positions
simultaneously. The simulation results of the hierarchical trajectory planning show that the
VEGA can generate effective intermediate positions and a collision-free trajectory. Since the
trajectory planning uses only forward kinematics, the trajectory planning is an effective
method for a reconfigurable redundant manipulator system. As future subjects, we must
develop the optimization methods of the structure and the form of cellular manipulator system.

5.2 Application to Intelligent Manufacturing System

Intelligent manufacturing system comprises a new concept for coping with a large number of
products and manufacturing processes in a flexible manufacturing system (FMS) [88~98].
We have proposed a self-organizing manufacturing system (SOMS), in which processes
self-organize effectively according to other processes. The SOMS is based on the concept of
the self-organizing cellular robotic system (CEBOT) which is composed of a number of

autonomous robotic units with simple functions [88].

A machine scheduling problem is one of the most important issues in the FMS. In general, the
machine scheduling problem is to order n operations on m machines for minimizing cost
functions. There are, for example, a job-shop scheduling problem, a flow-shop scheduling
problem, a open-shop scheduling problem. The job shop scheduling problem is a special case
of the machine scheduling problems and has been solved as a typical problem of machine
scheduling problems. However, there are many restrictions concerning usable resource,
transportation methods and the location of machining centers in the real manufacturing systems.
The problems concerning these restriction are resource allocation problems, path planning
problems and optimal location problems, respectively. As to the optimal location problems,
the large size of machining centers can not be easily relocated to other space. In general, it is
required to take these restrictions into account when performing a task. In fact, a lot of
machining lines in the real manufacturing system are controlled under a flow shop scheduling.
If machining centers are sequentially located according to given jobs, the path planning of
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automated guided vehicles or the locations of belt conveyers becomes easier to design.
Therefore, we consider the optimization of a manufacturing system based on the flow shop
scheduling defined as a sequencing. Furthermore, there are many researches about scheduling
problems according to the several available machines in the FMS, but there are few researches
to optimize the location of machining centers according to a given job schedule. Consequently,
in this section, we apply a virus-evolutionary genetic algorithm (VEGA) to a manufacturing
design problem in the SOMS.

RN

Location problem

Resource allocation problem Path planning problem

Scheduling problem

Figure 5.23 Optimization problems in manufacturing system

This section presents an application to a pallet allocation problem in intelligence manufacturing
system. In order to create an ideal manufacturing environment, the optimization of each
process in the flexible manufacturing system is required. The flexible manufacturing system
includes many optimization problems which are ill-defined structures.

5.2.1 Self-organizing Manufacturing System

In general, flexible manufacturing system (FMS) is composed of numerically controlled
machines, machining centers, assembling stations and robots, and so on. Furthermore, belt
conveyors, transportation vehicles, monorail cars are handled in FMS as automatic transportation
methods. The purpose of the FMS is to perform the processes automatically such as design,
machining, control, and management by integrating flexible machines and computerized control.
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The effectiveness of FMS lies in the processing capability corresponding to high variety.
However, FMS has very difficult optimization problems which are ill-defined structures,
since FMS has a lot of constraints such as space capacity, machining ability, and time
restriction. These problems can not be easily solved and therefore optimization methods such
as dynamic programming, branch-and-bound method, neural network, simulated annealing,
and evolutionary computation, have been applied for solving these problems.

To create an ideal manufacturing environment, we have been proposed the self-organizing
manufacturing system (SOMS) that a process self-organizes according to other processes
(Figure 5.24). A module in Figure 5.24 represents a process in the manufacturing system. The
module self-organizes based on inputs from other modules and generates outputs. The SOMS
is capable of reorganizing hardware as well as software of the manufacturing system.

The flow of the machining process is generally summarized as follows: (1) design of the
machining center, (2) planning of a manufacturing schedule, and (3) producing products
according to the schedule. In SOMS, it is important to optimize all modules in order to reduce
the manufacturing cost. However, the optimization of all modules is very difficult, and the
optimized system is vulnerable to breakdowns of the system, delays in the schedules, and so
on. Therefore, the self-organization according to other processes in the SOMS is effective
with regard to the flexibility of all the manufacturing system.

As an example of the SOMS, we consider a manufacturing system composed of a number of
automated guided vehicles (AGVs) and machining centers (Figure 5.25). A machining center
has the capability to perform a variety of operations with exchangeable tools. Further, the
machining center can produce various products, since the machining center has a redundancy
as to operations. Here a redundancy means that a machining center has a capability to equip
with more tools than required.

In the SOMS, machining control and manufacturing management are performed not by the
centralization but by the decentralization. An AGV transmits not only materials/products but
also exchangeable tools. The machining information about a material is kept by the bucket
holding the material. Therefore, the AGV can transmit a bucket to the machining center
according to its machining information. Since the AGVs £0 on transmitting a material to an
determinate machining center, the machining speciality occurs in the machining center.
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Figure 5.24 Self-organizing Manufacturing system
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Figure 5.25 Typical self-organizing manufacturing system

5.2.2 Application to Press Machining Line

As an application example of the SOMS, the VEGA is applied a pallet location problem for a
press machining line (Figure 5.26). The press machining line is capable of reorganizing in
itself and has a redundancy from the viewpoint of the machining process. Here the redundancy
of the press machining line means that the number of press machines on the machining line is

more than the number of the operations per job. Consequently, the press machining line can
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process several different types of jobs. A material is transported from the place for material to
the press machine by an AGV. After machining, the product is transported to the place for
product by the AGV. Therefore, the machining is performed according to a flow shop scheduling.
The assumptions of the press machining line are as follows:

*A work is composed of n jobs and the job sequence is fixed.

*A job requires pressing operations by m molds and its pressing sequence is fixed.

*A pallet on a press machine can be equipped with three types of molds.

*A press machine takes in a material from the entrance, and puts the material on the exit
after pressing.

*The mold which a job requires is automatically selected on the pallet and its pressing
operation is performed.

The assumptions of the AGV are as follows:

*If there is a material on the exit of a press machine or the place for material, the AGV
loads with the material.

*If the press machine in front of the AGV is in process, the AGV stands by till finishing
the pressing operation and loads with the material.

*If there is not the mold which the job requires in the press machine, the AGV passes by
the press machine.

A location optimization problem is to select molds on the pallet to suit to a given work. Here
the objective is to reorganize molds on the pallet for minimizing the makespan defined as

consuming time until finishing all jobs. Let F; be a finishing time of job i. Makespan F is
defined as follows:

F=max(F,E,-- F,) (5.7)

Assume that the transporting time of the AGV is ignored in comparison with the pressing
time on a press machine and the loading/unloading time of material is the constant.
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In this problem, an individual has three strings whose length is equal to the number of the
press machine. A gene stands for the mold type and the gene’s locus, i, denotes the position
of the press machine. That is, the set of the i-th genes on each string in the individual is the
pallet of the molds on the i-th press machine (Figure 5.27). Furthermore, the overlapping of
the same type of mold on the pallet is not permitted. We use a multi-point crossover operator,
a mutation, and transposition as genetic operators. The multi-point crossover performs between
the same number of string of each individual (Figure 5.28). The mutation operator replaces a
randomly selected gene with one of other genes except genes on the pallet. The transposition
operator replaces the position of strings in an individual. The VEGA and SSGA replace the
individuals with the highest fitness value with the individuals generated by the multi-point
crossover. The fitness function; fitness: of an individual x is as follows:

fitness = max E —aF, (5.8)

where a is a scaling score defined as the constant.

5.2.3 Simulation Results

This subsection shows simulation results and comparison results. We compare simulation
results of the VEGA with ones of the SSGA, standard GA (SGA), age structured GA (ASGA).
Table 5.4 shows the parameters of work1~3. Table 5.5 shows the machining sequence of the
given jobs on work 1. Table 5.6 shows the machining time of each mold on work 1. The
population size of SSGA/host and the virus population size are 100 and 10, respectively. The
string length of each work is the number of press machine in each work, respectively. The
crossover rate and the mutation rate per gene are 0.8 and 0.001, respectively.

Table 5.4 Parameters of work1~work3

Work1 Work2 Work3
Jobs 10 10 10
Pressing operations 5 7 10
Press machines 8 12 15
Mold types 5 7 7
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Table 5.5 Machining sequence of the given jobs on work 1

Job

Sequence of machining

1

10

2

1

5

5

4

4

1

5

5

3

4

2

2

Table 5.6 Machining time of each mold on work 1

Mold type

1

2

3

4

5

Machining time 7

6

8

4

1

Chapter 5

Here the simulation results are compared among the SGA, ASGA, SSGA and VEGA .Figure 5.29
and Table 5.7 show simulation results of workl and simulation results of 10 trials of all

works, respectively. From Figure 5.29, the makespans before and after the reorganization are

129 and 114, respectively. The reorganization of molds enables shortening of the makespan

by 15. This result shows that the reorganization of a machining center can improve the

performance. Furthermore, the VEGA also obtained the best solutions concerning the work 3

which is more difficult works.
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Figure 5.29 Simulation results of pallet location problem

Table 5.7 Simulation results of 10 trials

SGA ASGA SSGA VEGA

Min 115 114 114 114
Work1 Mean 120 116 116.40 115.10
Max 128 123 121 117
Min 271 257 259 257
Work?2 Mean 281.10 264.20 270.30 262.5
Max 295 273 280 269
Min 326 307 310 307
Work3 Mean 338.60 320.40 325.20 318.80
Max 352 331 333 329

5.2.4 Summary

This subsection presented the application to a self-organizing manufacturing system; SOMS.
As an example of SOMS, VEGA is applied to a pallet location problem of a press machining
line. Simulation results show that the SOMS is capable of shortening the makespan of the
press machining. The essential of SOMS lies in the reorganizing ability.

- 148 -



Chapter 5

5.3 Application to Fuzzy Controller

Fuzzy systems such as fuzzy logic controllers, fuzzy reasoning, and fuzzy modeling are
applied in many fields for engineering, medical engineering, and even social sciences. Some
fuzzy control systems are already applied and can be seen in some of home appliance,
transportation systems, manufacturing systems, and so on. Fuzzy systems have a characteristic
to represent human knowledge or experiences as fuzzy rules. However the fuzzy systems
have some problems. In most fuzzy systems, the shape of membership functions of the
antecedent, the consequent, and the fuzzy rules have been determined and tuned through trial
and error by operators, and it therefore takes much time to determine and tune them, and it is
very difficult to design the optimal fuzzy system in detail. This problem is more serious,

when the fuzzy system is applied to more complex systems.

In order to solve this problem, some self-tuning methods have been proposed such as a fuzzy
neural network [29~33] that applies the back propagation algorithm for learning, a fuzzy
learning controller applying radial basis functions [32], a fuzzy logic controller utilizing GAs
for deciding the shapes of membership functions and fuzzy rules [27,34,35]. These methods
can learn faster than neural networks. However an operator must determine the number and
shapes of membership functions before learning, and the learning ability and accuracy of
approximation are related to the number or shape of membership functions. Fuzzy inference
with many membership functions and fuzzy rules has high learning ability, however there are
some redundant rules or unlearned rules. The number of rules is the product of the number of
membership function for each input, and the number of rules is increased as exponential with
increase of the input dimension. Therefore operators must pay much attention to decide the

structure of the membership functions.

The fuzzy inference based on the Radial Basis Function which adds a new rule for the
maximal error point through learning process, has been proposed. In these methods, fuzzy
rules depend on the learning data set and if the learning data is biased, there are some
unlearned areas or redundant fuzzy rules, therefore the learned fuzzy rules are not optimized.
Besides, these methods do not integrate or delete a fuzzy rule, only add a new fuzzy rule.
Therefore they also have the problem of the increasing number of fuzzy rules that is the cause
of consuming more calculation time and memory. Self-tuning fuzzy inference has been proposed
for solving these problems. The membership function of the antecedent is expressed by the
radial basis function with an insensible range. The supervised/unsupervised learning algorithms

are based on the genetic algorithm, and the supervised learning are also utilized the gradient
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decent method to tune the shapes of membership functions and the consequent values. We
apply the VEGA for a self-tuning fuzzy controller as a learning method to obtain fuzzy rules
and membership functions which can carry out with high performance. Furthermore, the
proposed fuzzy controller is applied to the cart-pole problem, and its effectiveness is shown

through computer simulation.

5.3.1 RBF based Fuzzy System with VEGA
5.3.1.1 Fuzzy System Based on Radial Basis Function
First of all, we present the calculating formulas of the RBF between input variables and

output variables. The fitness value of the rules and the output value Y are expressed by egs.
(5.9) and (5.10),

Y =4t (5.9)

U, = H/uij (5.10)

jeJ

where i, j, and p are the input number, the fuzzy rule's number, and the data set's number,
respectively. The consequence is expressed by real number Wi. The shapes of the membership
functions are the RBF with an insensible range ¢ that is useful for reducing the membership
functions and fuzzy rules (Figure 5.30). The membership function in the i-th input value and

the j-th fuzzy rule is expressed by

—b.j((Ij—aijl—c,.j)2 if ,Ij— a,.j’> ¢,

f,-(If)={ . I (5.11)

#y = exp{ £(1,)} (5.12)
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where a, b, and ¢ are the coefficients that decide the shape of membership functions shown in
Figure 5.30.

X
aij

Figure 5.30 Membership function based on RBF

5.3.1.2 Coding, Selection, and Genetic Operators

We use a binary coding to encode membership functions. An antecedent part is expressed by
a binary number of (3n+1) bits every membership function in this simulation: each coefficient
a, b, ¢ needs n bits, 1 bit is used as a flag of the membership function's validness. A
consequent part is encoded to the m bits binary number. The following egs ,(5.13), (5.14), and
(5.15), are used to decode the binary number into the parameters of membership functions
(Figure 5.30 and Figure 5.31). Equation (5.16) is used to decode into the value of the consequent
parts.

230 5 (5.13)
a, = — U0 .
T

Sb, Y

b, = A —1 5.14
1Y [zn_l) ( )
o =5 (5.15)
7 B(2"-1) '
W= 05 (5.16)

2"~ 1

where A and B are coefficients of a slope of the membership function and a range of the

insensible region, respectively.
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Figure 5.31 Coding of fuzzy rule

Fitness function consists of the performance index and the numbers of the membership
functions and fuzzy rules as following equations:

F=oP+fR,+M, (5.17)

where P, R», M, and @, B, y means the performance index, e.g. the difference between the

output of the system and the desired performance, the number of rules, the number of membership
functions, and the coefficients, respectively. In this equation, coefficients are classified into

two types, one is the performance (), the other is the size of fuzzy system (8 and ).

The objective is to acquire a well performed fuzzy controller without redundant fuzzy rules
and membership functions. Therefore, the objective results in the minimization problem of
the fitness function F. The VEGA uses the 'delete least fitness' method as a selection operator.
Thus VEGA removes host individuals with the worst fitness value from the host population.
The selection operation can acquire the preferable fuzzy system such as small fuzzy system

(B and yare larger than @), or high accurate fuzzy system (« is larger than Band ), by setting

these coefficients.
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Figure 5.32 Crossover operator for fuzzy system

In order to generate a new set of membership functions and rules, we apply the two-point
crossover operator (Figure 5.32). The crossover operator randomly selects the target individuals.
The crossover is carried out between two individuals, and then some rules are exchanged
each other. We use two types of mutation operators, (A) uniform distribution random set
based mutation operator (Figure 5.33 ) and (B) normal distribution random number based
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* mutation operator (Figure 5.34). In both cases, the target strings and mutation sites are randomly
selected. The mutation operator A changes some bits of the strings and uses for global and
rough search. This operator can change the enable/disable flag of the membership function.
The mutation operator B does not change the bits of the chromosomes, but adds (or subtracts)
random values to (from) the parameters of the membership functions, Se, Ss, and S, and the

consequent values W.
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Figure 5.33 Mutation operator A on genotype
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A virus has the information of some rules, membership functions, and a central point of the
transduction/reverse transcription area on the input space. A virus transduces some substrings
from a host individual(Figure 5.35). This operator selects effective schemata (effective fuziy
rules here) to be transmitted between host individuals. A substring of a virus is generated by
selecting some fuzzy rules from the string of a host individual. The fuzzy rules to be selected
are the most frequently used ones in the fuzzy rules of the host individual. At the same time,
the central point of the virus is defined according to the transduced fuzzy rules. An example
of reverse transcription operator is shown in Figure 5.36. In this example, the virus individual
and the host individual are one fuzzy rule and three fuzzy rules, respectively. First, the virus
deletes the fuzzy rules that include the central point of the virus. Next, the virus overwrites its -

fuzzy rules on the host's string.

Mostfrequent fuzzyrule

M
I o X
Host individual
Transduction
Central point of virus
M
|
X

Virus individual

Figure 5.35 Transduction operator for fuzzy rules
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Figure 5.36 Reverse transcription operator on membership function

5.3.2 Application to RBF Fuzzy Controller for Cart-Pole System

We apply the proposed fuzzy control system for a cart-pole system (Figure 5.37). The pole is
controlled from pendant position to upright position and then keep it up by the RBF fuzzy
controller (Figure 5.38). The cart-pole system is described by following equations :

Ve F—,LLL,SlgnEI”)-}-F (5.18)
M+m
iy 6
0=——3— 1"'cos,9+gsin9+'uL (5.19)
4] ml

where
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~. '2 . 3 l"lpgz M

F=mlO sin6 + —mcosB| ——+ gsinb (5.20)
4 ml

~ 3 5

mzm(l—zcosﬁ) (5.21)

and M = 1.0(kg), g = 0.0005(N), pp= 0.000002(kgem), r, 0, 1=0.2(m), and m mean the cart

mass, the friction of the cart on track, the friction at hinge between the cart and the pole, the
cart position, the pole deviation from vertical, the pole length, and the pole mass, respectively. -

Figure 5.37 Cart-pole system
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Figure 5.38 RBF Fuzzy Controller
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The fitness function used in this simulation is as follows:

T
Object = smndup ﬁz 7/2 —r [) 5Rn - T]Mn (522)
1=0

where T'is simulation time for fuzzy controller. The second and third terms in €q.(5.22) mean
the summation of the error of the pole angle and the cart position, respectively. The fourth
and fifth terms mean the number of fuzzy rules and the number of membership functions,

respectively.

The Iteration times of generation is 500. The population size is 200 and the virus population
size is 20. Figure 5.39 and Figure 5.40 show one of simulation results of the acquired fuzzy
controller. These figures show that acquired fuzzy controller can swing up and keep the pole
at the upright position with desired cart position.

5.3.3 Simulation Results

Figure 5.41, Figure 5.42 and Figure 5.43 show the change of the number of membership
functions, the number of fuzzy rules, and the fitness value through the iterations, respectively.
VEGA can reduce the rules more effectively than the previous study obtaining the same
performance. The number of final rules is 7 with 17 membership functions. In Figure 5.43,
the GA outperforms the VEGA at first, since the virus population in the VEGA does not have
effective schemata. The virus population can not carry out effective reverse transcriptions.
Then, the virus population gradually become to have effective schemata and propagate them
between host individual. At last, both of the VEGA and GA obtain better solutions, but the
VEGA can reduce the rules more effectively than the GA. The reason why the VEGA reduces
the rules lies in the reverse transcription operator, which removes some redundant rules from
a host individual. As the result of reverse transcription operator, the fuzzy rules of host
individual are refined without redundancy.
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Figure 5.43 Change of fitness value

5.3.4 Summary

In this section, we proposed a new fuzzy control system using radial basis functions and a
learning method based on the VEGA. Further, we showed the effectiveness of the fuzzy
controller through simulation results of a cart-pole problem. The VEGA can reduce redundant
fuzzy rules effectively without performance decline. Therefore, the acquired fuzzy controller

can carry out the tasks with small fuzzy rules.
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5.4 Summary

This chapter presents the three types of engineering applications of evolutionary optimization

methods and its effectiveness through computer simulation.

First, we present the application to trajectory planning for redundant manipulators and propose
a hierarchical trajectory planning method composed of a position generator and a trajectory
generator, which are based only on forward kinematics. The simulation results of the hierarchical
trajectory planning show that the VEGA can generate effective intermediate positions and a

collision-free trajectory.

Second, we propose a self-organizing manufacturing system (SOMS) in which a process
effectively self-organizes according to other processes and present a pallet allocation problem
and present the application to a pallet location problem of a press machining line. Simulation
results show that SOMS is capable of shortening the makespan of the press machining and
the VEGA can reduce the makespan.

Last, we propose a new fuzzy control system using radial basis functions and a learning
method based on the VEGA. Furthermore, we showed the effectiveness of the fuzzy controller
through simulation results of a cart-pole problem. The simulation results show that the VEGA
can reduce redundant fuzzy rules effectively without performance decline. Therefore, the

acquired fuzzy controller can carry out the tasks with small fuzzy rules.
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Chapter 6 Conclusions

6.1 Concluding Remarks

Biology and evolution often provide effective but simple ideas and we can apply these ideas
to various fields in the human society. In this dissertation, we propose biologically inspired
evolutionary optimization methods, which are age-structured genetic algorithm, virus-
evolutionary genetic algorithm and virus evolutionary algorithm. Furthermore, we discuss
their effectivenesses through some computer simulation results of conventional and traditional
optimization problems and engineering optimization problems.

However, evolution is sure to proceed to a better state or organism, not the best one. On the
other hand, optimization has a trade-off between the performance of the solution and searching
speed. The evolutionary optimization methods are basically composed of a selection operation
and genetic operators. The genetic operators explore the search space generated by all the
population, while the selection operation exploits the search space for generating new candidate

solutions. The evolutionary optimization methods have two essentials concerning optimization.

The first one is the availability to apply to various optimization problems and solve them with
better solutions satisfying their aspiration levels. Various techniques of coding and genetic
operators make it possible to search a feasible solution space effectively. Furthermore, the
evolutionary optimization methods can be easily incorporated with local search methods. In
addition, if we would know the features of optimization problems in detail, optimization
methods dependent on the problem can solve the problem better than evolutionary optimization
methods which have much vain in the search. However, the real problems have a lot of
uncertainty, vagueness and ambiguity. The evolutionary optimization methods can be
successfully applied to these kinds of problems which are defined as black boxes.

The other is the solvability of better solution with less computational time. The solvability
lies in the symbolic operations based on schemata. The crossover operators can efficiently
search the potential solution space with simple symbolic operations inheriting genetic
information from parents. This feature is different from simple random searches, and building
block hypothesis indicates that the crossover operators accelerate the evolution of a population.
In addition, genetic operators determine the direction of evolution, and particular genetic
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operations give a population of individuals their peculiar potentialities for generating new
individuals. Furthermore, the virus infection operator can increase effective schemata in a
population and realizes the quick solution of optimization problems with the directionality in
search.

However, the evolutionary optimization methods have the following disadvantages. The first
one is the certainty of solutions obtained by evolutionary optimization methods. We can
discuss the feasibility of the solutions by using the designed aspilation level against the
optimization problem, but we can not estimate the certainty of solutions since the solution
space is dependent on the optimization problems. If the optimization problem is clear, we can -
estimate the certainty of solutions. The other is that it is difficult to discuss the effectiveness
of genetic operators and selection operations. The evolutionary optimization methods does
not have general criteria to evaluate them, since the solution space is problem-dependent and

the behavior of any evolutionary computation can not be anticipated by analyzing its components.

Nowadays, natural evolution has not understood clearly and precisely, and the research of
evolution has still continued. And the genetic algorithms are simple applications of the
evolutionary theories. Therefore the genetic algorithm will evolve by the new theory of the
evolution in nature. Furthermore, we hope that future genetic algorithms can explain the

mechanism of evolution in nature.

6.2 Future Works

Evolutionary optimization methods are very difficult to analyze. We intend to analyze the
behavior of evolutionary optimization methods by using Markov chain and other methods. In
addition, we require optimization methods robust to any types of optimization problem with
minor change of the optimization method but powerful and quick. This is a very difficult
problem. To the contrary, we can model optimization problems suitable for optimization
methods. In fact, human being can alter its environment in nature. We therefore intend to
develop a co-evolutionary method optimizing both of the solution space of the optimization
problem and optimization method toward the optimal solutions.
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