WEKO3
AND
アイテム
{"_buckets": {"deposit": "f65a4284-a01a-4afd-870a-167b3b84fb74"}, "_deposit": {"id": "10488", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "10488"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00010488"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2009-05", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "61", "bibliographicPageStart": "52", "bibliographic_titles": [{"bibliographic_title": "Mobile Data Management: Systems, Services and Middleware, 2009. MDM \u002709. Tenth International Conference on"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "A nearest neighbor query is an important notion in\nspatial databases and moving object databases. In the emerging\napplication fields of moving object technologies, such as mobile\nsensors and mobile robotics, the location of an object is often\nimprecise due to noise and estimation errors. We propose\ntechniques for processing a nearest neighbor query when the\nlocation of the query object is specified by an imprecise Gaussian\ndistribution. First, we consider two query processing strategies\nfor pruning candidate objects, which can reduce the number\nof objects that require numerical integration for computing the\nqualification probabilities. In addition, we consider a hybrid\napproach that combines the two strategies. The performance of\nthe proposed methods is evaluated using test data.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/12311"}, {"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.1109/MDM.2009.16"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "IEEE CS Press."}]}, "item_10_relation_8": {"attribute_name": "ISBN", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "978-1-4244-4153-2", "subitem_relation_type_select": "ISBN"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright \u00a9 2009 IEEE. Reprinted from Mobile Data Management: Systems, Services and Middleware, 2009. MDM \u002709. Tenth International Conference on. 2009, p.52-61.\n This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University\u2019s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Iijima, Yuichi"}], "nameIdentifiers": [{"nameIdentifier": "31798", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Ishikawa, Yoshiharu"}], "nameIdentifiers": [{"nameIdentifier": "31799", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-20"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "mdm.pdf", "filesize": [{"value": "814.8 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 814800.0, "url": {"label": "mdm.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/10488/files/mdm.pdf"}, "version_id": "541b4355-9c8e-4308-837c-5e629cb28066"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/12311", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2009-10-29"}, "publish_date": "2009-10-29", "publish_status": "0", "recid": "10488", "relation": {}, "relation_version_is_last": true, "title": ["Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations"], "weko_shared_id": null}
Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations
http://hdl.handle.net/2237/12311
91054fd0-8755-4c8c-b94a-0d9c1a2a8fbb
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2009-10-29 | |||||
タイトル | ||||||
タイトル | Finding Probabilistic Nearest Neighbors for Query Objects with Imprecise Locations | |||||
著者 |
Iijima, Yuichi
× Iijima, Yuichi× Ishikawa, Yoshiharu |
|||||
権利 | ||||||
権利情報 | Copyright © 2009 IEEE. Reprinted from Mobile Data Management: Systems, Services and Middleware, 2009. MDM '09. Tenth International Conference on. 2009, p.52-61. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. |
|||||
抄録 | ||||||
内容記述 | A nearest neighbor query is an important notion in spatial databases and moving object databases. In the emerging application fields of moving object technologies, such as mobile sensors and mobile robotics, the location of an object is often imprecise due to noise and estimation errors. We propose techniques for processing a nearest neighbor query when the location of the query object is specified by an imprecise Gaussian distribution. First, we consider two query processing strategies for pruning candidate objects, which can reduce the number of objects that require numerical integration for computing the qualification probabilities. In addition, we consider a hybrid approach that combines the two strategies. The performance of the proposed methods is evaluated using test data. |
|||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
出版者 | IEEE CS Press. | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
ISBN | ||||||
関連識別子 | ||||||
識別子タイプ | ISBN | |||||
関連識別子 | 978-1-4244-4153-2 | |||||
書誌情報 |
Mobile Data Management: Systems, Services and Middleware, 2009. MDM '09. Tenth International Conference on p. 52-61, 発行日 2009-05 |
|||||
フォーマット | ||||||
application/pdf | ||||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/12311 | |||||
識別子タイプ | HDL | |||||
URI | ||||||
識別子 | http://dx.doi.org/10.1109/MDM.2009.16 | |||||
識別子タイプ | DOI |