WEKO3
アイテム
{"_buckets": {"deposit": "1844c037-7e3a-4c30-9864-0dc80b313acb"}, "_deposit": {"id": "13073", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "13073"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00013073", "sets": ["314"]}, "author_link": ["41138", "41139", "41140"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2008-03-01", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "3", "bibliographicPageEnd": "487", "bibliographicPageStart": "478", "bibliographicVolumeNumber": "E91-D", "bibliographic_titles": [{"bibliographic_title": "IEICE transactions on information and systems", "bibliographic_titleLang": "en"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "To precisely model the time dependency of features is one of the important issues for speech recognition. Segmental unit input HMM with a dimensionality reduction method has been widely used to address this issue. Linear discriminant analysis (LDA) and heteroscedastic extensions, e.g., heteroscedastic linear discriminant analysis (HLDA) or heteroscedastic discriminant analysis (HDA), are popular approaches to reduce dimensionality. However, it is difficult to find one particular criterion suitable for any kind of data set in carrying out dimensionality reduction while preserving discriminative information. In this paper, we propose a new framework which we call power linear discriminant analysis (PLDA). PLDA can be used to describe various criteria including LDA, HLDA, and HDA with one control parameter. In addition, we provide an efficient selection method using a control parameter without training HMMs nor testing recognition performance on a development data set. Experimental results show that the PLDA is more effective than conventional methods for various data sets.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "URI", "subitem_identifier_uri": "http://www.ieice.org/jpn/trans_online/index.html"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/14967"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Institute of Electronics, Information and Communication Engineers", "subitem_publisher_language": "en"}]}, "item_10_relation_43": {"attribute_name": "関連情報", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "http://www.ieice.org/jpn/trans_online/index.html", "subitem_relation_type_select": "URI"}}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "Copyright (C) 2008 IEICE", "subitem_rights_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0916-8532", "subitem_source_identifier_type": "PISSN"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "SAKAI, Makoto", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41138", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "KITAOKA, Norihide", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41139", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "NAKAGAWA, Seiichi", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "41140", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-20"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "394.pdf", "filesize": [{"value": "430.3 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 430300.0, "url": {"label": "394.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/13073/files/394.pdf"}, "version_id": "4c681d42-d30b-49cf-96af-aceee74b274f"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "speech recognition", "subitem_subject_scheme": "Other"}, {"subitem_subject": "feature extraction", "subitem_subject_scheme": "Other"}, {"subitem_subject": "multidimensional signal processing", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["314"], "permalink_uri": "http://hdl.handle.net/2237/14967", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2011-06-28"}, "publish_date": "2011-06-28", "publish_status": "0", "recid": "13073", "relation": {}, "relation_version_is_last": true, "title": ["Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition"], "weko_shared_id": -1}
Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition
http://hdl.handle.net/2237/14967
http://hdl.handle.net/2237/149671ba53acc-5c1c-4386-be5b-a037dcf1b9ca
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2011-06-28 | |||||
タイトル | ||||||
タイトル | Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition | |||||
言語 | en | |||||
著者 |
SAKAI, Makoto
× SAKAI, Makoto× KITAOKA, Norihide× NAKAGAWA, Seiichi |
|||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
権利 | ||||||
言語 | en | |||||
権利情報 | Copyright (C) 2008 IEICE | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | speech recognition | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | feature extraction | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | multidimensional signal processing | |||||
抄録 | ||||||
内容記述 | To precisely model the time dependency of features is one of the important issues for speech recognition. Segmental unit input HMM with a dimensionality reduction method has been widely used to address this issue. Linear discriminant analysis (LDA) and heteroscedastic extensions, e.g., heteroscedastic linear discriminant analysis (HLDA) or heteroscedastic discriminant analysis (HDA), are popular approaches to reduce dimensionality. However, it is difficult to find one particular criterion suitable for any kind of data set in carrying out dimensionality reduction while preserving discriminative information. In this paper, we propose a new framework which we call power linear discriminant analysis (PLDA). PLDA can be used to describe various criteria including LDA, HLDA, and HDA with one control parameter. In addition, we provide an efficient selection method using a control parameter without training HMMs nor testing recognition performance on a development data set. Experimental results show that the PLDA is more effective than conventional methods for various data sets. | |||||
言語 | en | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
言語 | en | |||||
出版者 | Institute of Electronics, Information and Communication Engineers | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
関連情報 | ||||||
関連タイプ | isVersionOf | |||||
識別子タイプ | URI | |||||
関連識別子 | http://www.ieice.org/jpn/trans_online/index.html | |||||
ISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 0916-8532 | |||||
書誌情報 |
en : IEICE transactions on information and systems 巻 E91-D, 号 3, p. 478-487, 発行日 2008-03-01 |
|||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://www.ieice.org/jpn/trans_online/index.html | |||||
識別子タイプ | URI | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/14967 | |||||
識別子タイプ | HDL |