{"created":"2021-03-01T06:20:10.667812+00:00","id":13170,"links":{},"metadata":{"_buckets":{"deposit":"a679dccb-9831-41a9-806f-a3e6313231a1"},"_deposit":{"id":"13170","owners":[],"pid":{"revision_id":0,"type":"depid","value":"13170"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00013170","sets":["320:321:322"]},"author_link":["41559","41560"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2006-01-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"339","bibliographicPageStart":"334","bibliographicVolumeNumber":"E89-A","bibliographic_titles":[{"bibliographic_title":"IEICE transactions on fundamentals of electronics, communications and computer sciences","bibliographic_titleLang":"en"}]}]},"item_10_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"This paper focuses on algorithms for an efficient scalar multiplication. It proposes two algorithms for computing points of the form 2^kP in affine coordinates. One works for k=2, and the other works for an arbitrary natural number k. The efficiency of these algorithms is based on a trade-off between a field inversion and several field multiplications. Montgomery trick is used to implement this trade-off. Since a field inversion is usually more expensive than 10 field multiplications, the proposed algorithms are efficient in comparison with existing ones.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10_identifier_60":{"attribute_name":"URI","attribute_value_mlt":[{"subitem_identifier_type":"URI","subitem_identifier_uri":"http://www.ieice.org/jpn/trans_online/index.html"},{"subitem_identifier_type":"HDL","subitem_identifier_uri":"http://hdl.handle.net/2237/15065"}]},"item_10_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Institute of Electronics, Information and Communication Engineers","subitem_publisher_language":"en"}]},"item_10_relation_43":{"attribute_name":"関連情報","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"http://www.ieice.org/jpn/trans_online/index.html","subitem_relation_type_select":"URI"}}]},"item_10_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"Copyright (C) 2006 IEICE","subitem_rights_language":"en"}]},"item_10_select_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_select_item":"publisher"}]},"item_10_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0916-8508","subitem_source_identifier_type":"PISSN"}]},"item_1615787544753":{"attribute_name":"出版タイプ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"ADACHI, Daisuke","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"41559","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"HIRATA, Tomio","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"41560","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-02-20"}],"displaytype":"detail","filename":"464.pdf","filesize":[{"value":"105.2 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"464.pdf","objectType":"fulltext","url":"https://nagoya.repo.nii.ac.jp/record/13170/files/464.pdf"},"version_id":"6d14b536-f6d0-47c9-a0a9-d639e1cd252e"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"scalar multiplication","subitem_subject_scheme":"Other"},{"subitem_subject":"elliptic curve arithmetic","subitem_subject_scheme":"Other"},{"subitem_subject":"Montgomery trick","subitem_subject_scheme":"Other"},{"subitem_subject":"window method","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Refined Computations for Points of the Form 2kP Based on Montgomery Trick","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Refined Computations for Points of the Form 2kP Based on Montgomery Trick","subitem_title_language":"en"}]},"item_type_id":"10","owner":"1","path":["322"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2011-07-13"},"publish_date":"2011-07-13","publish_status":"0","recid":"13170","relation_version_is_last":true,"title":["Refined Computations for Points of the Form 2kP Based on Montgomery Trick"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-01-16T04:00:16.343009+00:00"}