@article{oai:nagoya.repo.nii.ac.jp:00014165, author = {YONEKAWA, YOSHIHARU}, issue = {suppl}, journal = {Nagoya Journal of Medical Science}, month = {May}, note = {Technical preventive measures against vibration syndrome in the field of industrial health are reviewed in the present paper. The first technical prevention measure is to reduce vibration transmission from the tools to the operators. This measure employs vibration isolators between the handles and vibration sources of machine tools. Handles of tools using Neidhalt dampers, shear type rubber mounts and springs have reduced frequency-weighted acceleration levels (Lh,w) from 2 dB to 10 dB (Lh,w (dB)=20 log a/ao; a: frequency-weighted acceleration (rms), ao = 10^-5 m/s^2 ) in Z direction, while no reduction was found in X, Y directions. The second measure is to reduce vibration at the source; New chain saws have been developed to reduce vibration with twin cylinder instead of a single cylinder engines. This cancels unbalanced movements inside the internal combustion engine. Such chain saws reduced Lh,w values more than 10 dB in both front and rear handles except in Z direction of the front handle. A new type of impact wrench has been devised with an oil pulse device to avoid direct metal contact inside the power source. This new impact wrench lowered Lh,w values more than 10 dB in three directions. The third measure is to use a remote control system or to substitute another machine generating less vibration. Vibration reduction at the handle lever of the remote control chain saw was more than 20 dB. A more effective means is to substitute other machines for conventional tools: a hydraulic wheel jumbo instead of a leg-type rock drill; a hydraulic breaker instead of a hand-held breaker. However, these heavy machines produce whole-body vibration which might give rise to other problems such as back pain.}, pages = {219--228}, title = {TECHNICAL PREVENTIVE MEASURES IN JAPAN}, volume = {57}, year = {1994} }