WEKO3
AND
アイテム
{"_buckets": {"deposit": "9b7a4293-a7e0-4d91-91d5-65bfe4dc894d"}, "_deposit": {"id": "17966", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "17966"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00017966"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2012", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "4", "bibliographicPageEnd": "292", "bibliographicPageStart": "286", "bibliographicVolumeNumber": "12", "bibliographic_titles": [{"bibliographic_title": "Progress in Computational Fluid Dynamics, An International Journal"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "Recently, a diesel particulate filter (DPF) has been developed for the after-treatment of diesel exhaust gas. In simple explanation of DPF, it traps PM when exhaust gas passes its porous wall. However, since the filter would be plugged with soot particles to cause an increase of filter back-pressure, a filter regeneration process is needed. In this study, we simulated the flow with soot combustion by the lattice Boltzmann method (LBM). Here, a real filter was used in the simulation. The inner structure of the cordierite filter was scanned by a 3D X-ray CT technique. By conducting tomography-assisted simulation, we obtained local velocity and pressure distributions in the filter, which is hardly obtained by measurements. Especially, to consider the heat transfer to the solid wall of the filter substrate, the equation of heat conduction was solved, simultaneously. That is, the conjugate simulation of gas-solid flow was presented. Based on the temperature change and reaction rate in DPF, the heat and mass transfer in the filter regeneration process was discussed.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "DOI", "subitem_identifier_uri": "http://dx.doi.org/10.1504/PCFD.2012.048254"}, {"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/20055"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "Inderscience publishers"}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1468-4349", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Yamamoto, Kazuhiro"}], "nameIdentifiers": [{"nameIdentifier": "52417", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Nakamura, Masamichi"}], "nameIdentifiers": [{"nameIdentifier": "52418", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "102.pdf", "filesize": [{"value": "506.1 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 506100.0, "url": {"label": "102.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/17966/files/102.pdf"}, "version_id": "7a4d4885-aa69-4715-a856-1ceeaefa7564"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "numerical simulation", "subitem_subject_scheme": "Other"}, {"subitem_subject": "soot combustion", "subitem_subject_scheme": "Other"}, {"subitem_subject": "heat conduction", "subitem_subject_scheme": "Other"}, {"subitem_subject": "diesel particulate filters", "subitem_subject_scheme": "Other"}, {"subitem_subject": "DPF", "subitem_subject_scheme": "Other"}, {"subitem_subject": "lattice Boltzmann method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "LBM", "subitem_subject_scheme": "Other"}, {"subitem_subject": "after-treatment", "subitem_subject_scheme": "Other"}, {"subitem_subject": "diesel exhaust gas", "subitem_subject_scheme": "Other"}, {"subitem_subject": "velocity distribution", "subitem_subject_scheme": "Other"}, {"subitem_subject": "pressure distribution", "subitem_subject_scheme": "Other"}, {"subitem_subject": "heat transfer", "subitem_subject_scheme": "Other"}, {"subitem_subject": "mass transfer", "subitem_subject_scheme": "Other"}, {"subitem_subject": "gas-solid flow", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Simulation of heat conduction and soot combustion in diesel particulate filter", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Simulation of heat conduction and soot combustion in diesel particulate filter"}]}, "item_type_id": "10", "owner": "1", "path": ["320/321/322"], "permalink_uri": "http://hdl.handle.net/2237/20055", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2014-05-26"}, "publish_date": "2014-05-26", "publish_status": "0", "recid": "17966", "relation": {}, "relation_version_is_last": true, "title": ["Simulation of heat conduction and soot combustion in diesel particulate filter"], "weko_shared_id": null}
Simulation of heat conduction and soot combustion in diesel particulate filter
http://hdl.handle.net/2237/20055
292d952f-be80-4990-bb16-2bcecf2c0d08
名前 / ファイル | ライセンス | アクション | |
---|---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2014-05-26 | |||||
タイトル | ||||||
タイトル | Simulation of heat conduction and soot combustion in diesel particulate filter | |||||
著者 |
Yamamoto, Kazuhiro
× Yamamoto, Kazuhiro× Nakamura, Masamichi |
|||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | numerical simulation | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | soot combustion | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | heat conduction | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | diesel particulate filters | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | DPF | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | lattice Boltzmann method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | LBM | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | after-treatment | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | diesel exhaust gas | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | velocity distribution | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | pressure distribution | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | heat transfer | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | mass transfer | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | gas-solid flow | |||||
抄録 | ||||||
内容記述 | Recently, a diesel particulate filter (DPF) has been developed for the after-treatment of diesel exhaust gas. In simple explanation of DPF, it traps PM when exhaust gas passes its porous wall. However, since the filter would be plugged with soot particles to cause an increase of filter back-pressure, a filter regeneration process is needed. In this study, we simulated the flow with soot combustion by the lattice Boltzmann method (LBM). Here, a real filter was used in the simulation. The inner structure of the cordierite filter was scanned by a 3D X-ray CT technique. By conducting tomography-assisted simulation, we obtained local velocity and pressure distributions in the filter, which is hardly obtained by measurements. Especially, to consider the heat transfer to the solid wall of the filter substrate, the equation of heat conduction was solved, simultaneously. That is, the conjugate simulation of gas-solid flow was presented. Based on the temperature change and reaction rate in DPF, the heat and mass transfer in the filter regeneration process was discussed. | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
出版者 | Inderscience publishers | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1468-4349 | |||||
書誌情報 |
Progress in Computational Fluid Dynamics, An International Journal 巻 12, 号 4, p. 286-292, 発行日 2012 |
|||||
著者版フラグ | ||||||
値 | author | |||||
URI | ||||||
識別子 | http://dx.doi.org/10.1504/PCFD.2012.048254 | |||||
識別子タイプ | DOI | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/20055 | |||||
識別子タイプ | HDL |