WEKO3
アイテム
{"_buckets": {"deposit": "990de0e3-3ef3-4544-96c5-760d8b2bd46e"}, "_deposit": {"id": "17980", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "17980"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00017980", "sets": ["699"]}, "author_link": ["52457", "52458"], "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2011", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "111", "bibliographicPageStart": "73", "bibliographicVolumeNumber": "11", "bibliographic_titles": [{"bibliographic_title": "MOSCOW MATHEMATICAL JOURNAL"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "Let L(s,χ) be either log L(s,χ) or L\u0027/L(s,χ), associated with an (abelian) L-function L(s,χ) of a global field K. For any quasi-character ψ: ℂ→ℂ× of the additive group of complex numbers, consider the average “Avgfχ=f” of ψ(L(s,χ)) over all Dirichlet characters χ on K with a given prime conductor f. This paper contains (i) study of the limit as N(f)→∞ of this average, (ii) basic studies of the analytic function Ms(z1,z2) in 3 complex variables arising from (i) (here, (z1,z2)∈ℂ2 is the natural parameter for ψ), and (iii) application to value-distribution theory for {L(s,χ)}χ. Our base field K is either a function field over a finite field, or a special type of number field: the rational number field ℚ or an imaginary quadratic field. But in the number field case, the Generalized Riemann Hypothesis is assumed in (i) and (iii).", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/20072"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "Independent University of Moscow", "subitem_publisher_language": "en"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "1609-4514", "subitem_source_identifier_type": "PISSN"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "IHARA, YASUTAKA", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "52457", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "MATSUMOTO, KOHJI", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "52458", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-21"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "13.pdf", "filesize": [{"value": "652.6 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 652600.0, "url": {"label": "13.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/17980/files/13.pdf"}, "version_id": "12f52440-88e6-4983-81cd-cadef7cf0de3"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "On log L and L\u0027/L for L-Functions and the Associated “M-Functions”: Connections in Optimal Cases", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "On log L and L\u0027/L for L-Functions and the Associated “M-Functions”: Connections in Optimal Cases", "subitem_title_language": "en"}]}, "item_type_id": "10", "owner": "1", "path": ["699"], "permalink_uri": "http://hdl.handle.net/2237/20072", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2014-06-04"}, "publish_date": "2014-06-04", "publish_status": "0", "recid": "17980", "relation": {}, "relation_version_is_last": true, "title": ["On log L and L\u0027/L for L-Functions and the Associated “M-Functions”: Connections in Optimal Cases"], "weko_shared_id": -1}
On log L and L'/L for L-Functions and the Associated “M-Functions”: Connections in Optimal Cases
http://hdl.handle.net/2237/20072
http://hdl.handle.net/2237/200725acbdc43-f072-4fa1-8e41-1124a0e0c291
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2014-06-04 | |||||
タイトル | ||||||
タイトル | On log L and L'/L for L-Functions and the Associated “M-Functions”: Connections in Optimal Cases | |||||
言語 | en | |||||
著者 |
IHARA, YASUTAKA
× IHARA, YASUTAKA× MATSUMOTO, KOHJI |
|||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
抄録 | ||||||
内容記述 | Let L(s,χ) be either log L(s,χ) or L'/L(s,χ), associated with an (abelian) L-function L(s,χ) of a global field K. For any quasi-character ψ: ℂ→ℂ× of the additive group of complex numbers, consider the average “Avgfχ=f” of ψ(L(s,χ)) over all Dirichlet characters χ on K with a given prime conductor f. This paper contains (i) study of the limit as N(f)→∞ of this average, (ii) basic studies of the analytic function Ms(z1,z2) in 3 complex variables arising from (i) (here, (z1,z2)∈ℂ2 is the natural parameter for ψ), and (iii) application to value-distribution theory for {L(s,χ)}χ. Our base field K is either a function field over a finite field, or a special type of number field: the rational number field ℚ or an imaginary quadratic field. But in the number field case, the Generalized Riemann Hypothesis is assumed in (i) and (iii). | |||||
言語 | en | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
言語 | en | |||||
出版者 | Independent University of Moscow | |||||
言語 | ||||||
言語 | eng | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
ISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 1609-4514 | |||||
書誌情報 |
MOSCOW MATHEMATICAL JOURNAL 巻 11, 号 1, p. 73-111, 発行日 2011 |
|||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/20072 | |||||
識別子タイプ | HDL |