@article{oai:nagoya.repo.nii.ac.jp:00018526,
author = {Oguchi, Hiroshi and Obata, Yasunori},
issue = {1},
journal = {Medical Physics},
month = {Jan},
note = {This article describes the procedures for correction of the modulator thickness and commissioning of the XiO treatment planning system (TPS) for modulator-based intensity modulated radiation therapy (M-IMRT). This modulator manufacturing system adopts a method in which the modulator is milled using a floor-type computer-aided numerical control milling machine (CNC-mill) with modulator data calculated by XiO TPS. XiO TPS uses only effective attenuation coefficients (EAC) for modulator thickness calculation. This article describes a modified method for assessing modulator thickness. A two-dimensional linear attenuation array was used to correct the modulator thickness calculated by XiO. Narrow-beam geometry was used for measuring the linear attenuation coefficient (LAC) at off-axis positions (OAP) for varying brass thicknesses. An equation for the two-dimensional LAC ratio (2D-LACR) can be used to calculate the corrected modulator thickness. It is assumed that the broad beam EAC of a small field varies with the brass thickness and the OAP distance in the same way as that of LACR, so the two-dimensional EAC (2D-EAC) is equal to the EAC corrected using the LACR. The dose distribution was evaluated for three geometric patterns and one clinical case on low energy x ray (4MV) with a large field size(20×20cm2). The results using the proposed correction method of modulator thickness showed a good agreement between the measured dose distributions and the dose distributions calculated by TPS with the correction. Hence, the method is effective to improve the accuracy of M-IMRT in XiO TPS. An important problem for the brassmodulator is the milling condition, such as the drill diameter and the cutting pitch size. It is necessary to improve the accuracy of M-IMRT for the “softening” and “hardening” effects of the beam to be considered in dose calculation in patients and the modulator profile design.},
pages = {261--269},
title = {Commissioning of modulator-based IMRT with XiO treatment planning system},
volume = {36},
year = {2009}
}