@article{oai:nagoya.repo.nii.ac.jp:00019085, author = {Yamamoto, Kazuhiro and Sakai, Tatsuya}, issue = {B}, journal = {Catalysis Today}, month = {Mar}, note = {For reduction of particulate matter (PM) including soot in diesel exhaust gas, a diesel particulate filter (DPF) has been developed. However, it would be plugged with PM to cause an increase of filter backpressure. If the backpressure is too high, the fuel consumption rate unexpectedly increases and the engine output may decrease. Then, the filter must be regenerated by oxidizing PM. The system where PM is trapped and oxidized simultaneously is called a continuously regenerating DPF. A catalyst such as platinum is used for the reduction of PM oxidation temperature. Since platinum is a precious and rare metal, the amount of catalyst must be suppressed. In this study, we simulated the continuously regenerating trap system with catalyzed DPF by a lattice Boltzmann method (LBM). For the soot oxidation rate with catalysts, reaction parameters such as activation energy were evaluated by an engine test bench. In the simulation, five cases with different catalyst-coating were considered. Based on the filter backpressure, the coating area for the reduction of catalysts was discussed.}, pages = {357--362}, title = {Simulation of continuously regenerating trap with catalyzed DPF}, volume = {242}, year = {2015} }