ログイン
言語:

WEKO3

  • トップ
  • ランキング
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "e92150c7-1a56-47f4-aac0-4fb40479f428"}, "_deposit": {"id": "2000944", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "2000944"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:02000944", "sets": ["1341"]}, "author_link": [], "item_9_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2020-04-29", "bibliographicIssueDateType": "Issued"}}]}, "item_9_description_4": {"attribute_name": "内容記述", "attribute_value_mlt": [{"subitem_description": "In his celebrated Erlangen Program in 1872, F. Klein opened a way to synthesize geometric objects based on group symmetry. Since then the notion of group has been playing significant roles in the study of various geometries. Among them, fundamental is the so-called projective geometry, which is intimately related to that of vector spaces. Interrelations of geometric positions of flat objects such as lines and planes in Euclidean spaces are described most aesthetically in the framework of projective geometry. The fundamental theorem of projective geometry then states that the three-point collinearity is enough to recover the linear group structure behind them. Its importance is not just restricted within purely mathematical subjects and we shall review here, in quantum theory and special relativity, two fundamentals in physics, how their symmetries can be realized as linear groups as applications of the fundamental theorem.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_9_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "名古屋大学オープンコースウェア委員会", "subitem_publisher_language": "ja"}]}, "item_9_relation_43": {"attribute_name": "関連情報", "attribute_value_mlt": [{"subitem_relation_type": "isVersionOf", "subitem_relation_type_id": {"subitem_relation_type_id_text": "https://ocw.nagoya-u.jp/courses/687-数理科学展望III-2015/", "subitem_relation_type_select": "URI"}}]}, "item_9_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "本資料は、名古屋大学の教員山上滋によって作成され、名大の授業Webサイトに掲載された「数理科学展望III-2015」 (2015)をもとに(一部改変して)作成されたものです。Copyright(C)2015 山上滋", "subitem_rights_language": "ja"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "山上, 滋", "creatorNameLang": "ja"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_access", "date": [{"dateType": "Available", "dateValue": "2021-06-11"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "symmetry-in-physics.pdf", "filesize": [{"value": "111 KB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "mimetype": "application/pdf", "size": 111000.0, "url": {"label": "Projective Geometry and Symmetry in Physics", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/2000944/files/symmetry-in-physics.pdf"}, "version_id": "452fd03b-7070-4399-a956-791a733f7a70"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "learning object", "resourceuri": "http://purl.org/coar/resource_type/c_e059"}]}, "item_title": "数理科学展望III", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "数理科学展望III", "subitem_title_language": "ja"}]}, "item_type_id": "40001", "owner": "1", "path": ["1341"], "permalink_uri": "http://hdl.handle.net/2237/0002000944", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2021-06-11"}, "publish_date": "2021-06-11", "publish_status": "0", "recid": "2000944", "relation": {}, "relation_version_is_last": true, "title": ["数理科学展望III"], "weko_shared_id": -1}
  1. B100 理学部/理学研究科
  2. B100f 教材
  3. オープンコースウェア

数理科学展望III

http://hdl.handle.net/2237/0002000944
http://hdl.handle.net/2237/0002000944
6d07ed04-1eb1-4e7e-9044-b43e3a48ea43
名前 / ファイル ライセンス アクション
symmetry-in-physics.pdf Projective Geometry and Symmetry in Physics (111 KB)
Item type itemtype_ver1(1)
公開日 2021-06-11
タイトル
タイトル 数理科学展望III
言語 ja
著者 山上, 滋

× 山上, 滋

ja 山上, 滋

Search repository
アクセス権
アクセス権 open access
アクセス権URI http://purl.org/coar/access_right/c_abf2
権利
言語 ja
権利情報 本資料は、名古屋大学の教員山上滋によって作成され、名大の授業Webサイトに掲載された「数理科学展望III-2015」 (2015)をもとに(一部改変して)作成されたものです。Copyright(C)2015 山上滋
内容記述
内容記述 In his celebrated Erlangen Program in 1872, F. Klein opened a way to synthesize geometric objects based on group symmetry. Since then the notion of group has been playing significant roles in the study of various geometries. Among them, fundamental is the so-called projective geometry, which is intimately related to that of vector spaces. Interrelations of geometric positions of flat objects such as lines and planes in Euclidean spaces are described most aesthetically in the framework of projective geometry. The fundamental theorem of projective geometry then states that the three-point collinearity is enough to recover the linear group structure behind them. Its importance is not just restricted within purely mathematical subjects and we shall review here, in quantum theory and special relativity, two fundamentals in physics, how their symmetries can be realized as linear groups as applications of the fundamental theorem.
言語 en
内容記述タイプ Abstract
出版者
言語 ja
出版者 名古屋大学オープンコースウェア委員会
言語
言語 jpn
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_e059
タイプ learning object
関連情報
関連タイプ isVersionOf
識別子タイプ URI
関連識別子 https://ocw.nagoya-u.jp/courses/687-数理科学展望III-2015/
書誌情報
発行日 2020-04-29
戻る
0
views
See details
Views

Versions

Ver.1 2021-06-09 06:36:09.801113
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3