@article{oai:nagoya.repo.nii.ac.jp:00021653, author = {伊藤, 大 and 奥村, 崇之 and 谷口, 壮耶 and 赤池, 宏之 and 藤巻, 朗 and ITO, Hiroshi and OKUMURA, Takayuki and TANIGUCHI, Soya and AKAIKE, Hiroyuki and Fujimaki, Akira}, issue = {262}, journal = {電子情報通信学会技術研究報告. SCE, 超伝導エレクトロニクス}, month = {Oct}, note = {本誌では、磁性ナノ粒子膜を形成したSQUIDのインダクタンス変化のナノ粒子膜厚依存性及び共振ステップについて述べる。磁性ナノ粒子膜は、平均粒径5nmのFe_3O_4磁性ナノ粒子溶液の溶媒を蒸発させることにより形成した。SQUID は、インダクタンス評価用としてワッシャー型を、共振ステップ評価用として縦型を用いた。磁性ナノ粒子膜の膜厚効果を調べたところ、膜厚に比例するインダクタンスの増加があり、最大で19.7%の増加率を得た。また、共振ステップの変化を調べたところ、SQUIDのLC積(SQUIDインダクタンスL、SQUID等価接合容量C)が最大163%増加していることが分かった。, We present dependence of SQUID inductance variation on nanoparticle film thickness and SQUID resonant steps for SQUIDs with magnetic nanoparticle films. The magnetic nanoparticle films were formed by evaporating the solvent of magnetic nanoparticle solutions where Fe_3O_4 nanoparticles with an average size of 5nm were dispersed. Washer type and vertical type SQUIDs were used for inductance evaluation and resonant step measurement, respectively. Experimental results showed that SQUID inductance increased with the thickness of nanoparticle films, becoming as high as 19.7%. We also found that the LC product of SQUIDs was increased up to 163% by preparing nanoparticle films in measurement of resonance steps of SQUID, where L and C are SQUID inductance and equivalent capacitance, respectively., (超伝導エレクトロニクス基盤技術,一般), IEICE Technical Report;SCE2012-19}, pages = {13--18}, title = {磁性ナノ粒子薄膜を形成したSQUIDの閾値特性と共振ステップ}, volume = {112}, year = {2012} }