{"created":"2021-03-01T06:29:24.053286+00:00","id":21706,"links":{},"metadata":{"_buckets":{"deposit":"f179a732-b1a4-44cc-ad34-f8d1e82f6c5a"},"_deposit":{"id":"21706","owners":[],"pid":{"revision_id":0,"type":"depid","value":"21706"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00021706"},"item_10_alternative_title_19":{"attribute_name":"\u305d\u306e\u4ed6\u306e\u8a00\u8a9e\u306e\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_alternative_title":"A study on a method for stable pedestrian detection against pose changes with generative learning"}]},"item_10_biblio_info_6":{"attribute_name":"\u66f8\u8a8c\u60c5\u5831","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2011-05-12","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"49","bibliographicPageEnd":"132","bibliographicPageStart":"127","bibliographicVolumeNumber":"111","bibliographic_titles":[{"bibliographic_title":"\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a\u6280\u8853\u7814\u7a76\u5831\u544a. MI, \u533b\u7528\u753b\u50cf"}]}]},"item_10_description_4":{"attribute_name":"\u6284\u9332","attribute_value_mlt":[{"subitem_description":"\u8fd1\u5e74,\u8eca\u8f09\u30ab\u30e1\u30e9\u3067\u64ae\u5f71\u3055\u308c\u305f\u753b\u50cf\u304b\u3089\u6b69\u884c\u8005\u3092\u691c\u51fa\u3059\u308b\u7814\u7a76\u304c\u6ce8\u76ee\u3055\u308c\u3066\u3044\u308b.\u3057\u304b\u3057,\u59ff\u52e2\u5909\u5316\u304c\u5927\u304d\u304f,\u304b\u3064\u69d8\u3005\u306a\u80cc\u666f\u306b\u5b58\u5728\u3059\u308b\u6b69\u884c\u8005\u3092\u691c\u51fa\u3059\u308b\u3053\u3068\u306f\u5bb9\u6613\u3067\u306f\u306a\u3044.\u672c\u7814\u7a76\u3067\u306f,\u8eca\u8f09\u30ab\u30e1\u30e9\u753b\u50cf\u304b\u3089\u306e\u6b69\u884c\u8005\u691c\u51fa\u306b\u304a\u3044\u3066,\u591a\u69d8\u306a\u59ff\u52e2\u5909\u5316\u306b\u5bfe\u5fdc\u3059\u308b\u305f\u3081\u306e\u624b\u6cd5\u3092\u63d0\u6848\u3059\u308b.\u753b\u50cf\u4e2d\u306e\u6b69\u884c\u8005\u306e\u898b\u3048\u3092\u7279\u5fb4\u3068\u3057\u305f\u5f93\u6765\u306e\u6b69\u884c\u8005\u691c\u51fa\u624b\u6cd5\u3067\u306f,\u6b69\u884c\u8005\u306e\u59ff\u52e2\u5909\u5316\u3084\u6b69\u884c\u8005\u3092\u53d6\u308a\u5dfb\u304f\u74b0\u5883\u306e\u5909\u5316\u306b\u5bfe\u5fdc\u3059\u308b\u305f\u3081\u306b,\u5b66\u7fd2\u7528\u306b\u4e8b\u524d\u306b\u5927\u91cf\u306e\u6b69\u884c\u8005\u753b\u50cf\u3092\u4eba\u624b\u3067\u53ce\u96c6\u3059\u308b\u5fc5\u8981\u304c\u3042\u3063\u305f.\u63d0\u6848\u624b\u6cd5\u3067\u306f\u3053\u306e\u554f\u984c\u306b\u5bfe\u3057\u3066,\u5c11\u6570\u306e\u6b69\u884c\u8005\u753b\u50cf\u3092\u3044\u304f\u3064\u304b\u306e\u59ff\u52e2\u30af\u30e9\u30b9\u306b\u5206\u985e\u3057\u305f\u5f8c\u306b,\u59ff\u52e2\u30af\u30e9\u30b9\u3054\u3068\u306b\u591a\u69d8\u306a\u6b69\u884c\u8005\u753b\u50cf\u3092\u751f\u6210\u3057,\u3055\u3089\u306b\u3053\u306e\u59ff\u52e2\u30af\u30e9\u30b9\u3092\u30c6\u30f3\u30d7\u30ec\u30fc\u30c8\u3068\u3057\u305f\u30de\u30eb\u30c1\u30c6\u30f3\u30d7\u30ec\u30fc\u30c8\u578b\u306e\u8b58\u5225\u5668\u3092\u69cb\u7bc9\u3059\u308b\u3053\u3068\u3067\u89e3\u6c7a\u3092\u56f3\u308b.\u5b9f\u9a13\u306e\u7d50\u679c,\u5f93\u6765\u624b\u6cd5\u306b\u6bd4\u3079\u3066\u63d0\u6848\u624b\u6cd5\u306e\u691c\u51fa\u7cbe\u5ea6\u306f\u5927\u304d\u304f\u5411\u4e0a\u3057,\u305d\u306e\u6709\u52b9\u6027\u3092\u78ba\u8a8d\u3057\u305f.Recently, pedestrian detection from in-vehicle camera images is being focused. However, it is difficult to detect pedestrians due to the variety of their poses and backgrounds. To tackle this problem, we propose a method to detect various pedestrians from in-vehicle camera images. To deal with changes of pedestrians' pose and environment, most existing methods making use of their appearance require to prepare a lot of pedestrian images manually. The proposed method classifies a small number of pedestrian images into several pose classes and then generates various pedestrian images from each pose class. Finally, the proposed method constructs a classifier based on multiple templates from each pedestrian pose. Experimental results showed that the detection accuracy of the method outperformed existing methods, and we confirmed its effectiveness. [Note]This document is an informal handout distributed at an IEICE TC-PRMU workshop.","subitem_description_type":"Abstract"}]},"item_10_identifier_60":{"attribute_name":"URI","attribute_value_mlt":[{"subitem_identifier_type":"URI","subitem_identifier_uri":"http://ci.nii.ac.jp/naid/110008725866/"},{"subitem_identifier_type":"HDL","subitem_identifier_uri":"http://hdl.handle.net/2237/23855"}]},"item_10_publisher_32":{"attribute_name":"\u51fa\u7248\u8005","attribute_value_mlt":[{"subitem_publisher":"\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a"}]},"item_10_relation_40":{"attribute_name":"\u30b7\u30ea\u30fc\u30ba","attribute_value_mlt":[{"subitem_relation_name":[{"subitem_relation_name_text":"IEICE Technical Report;IE2011-31, PRMU2011-23, MI2011-23"}]}]},"item_10_rights_12":{"attribute_name":"\u6a29\u5229","attribute_value_mlt":[{"subitem_rights":"(c)\u4e00\u822c\u793e\u56e3\u6cd5\u4eba\u96fb\u5b50\u60c5\u5831\u901a\u4fe1\u5b66\u4f1a \u672c\u6587\u30c7\u30fc\u30bf\u306f\u5b66\u5354\u4f1a\u306e\u8a31\u8afe\u306b\u57fa\u3065\u304dCiNii\u304b\u3089\u8907\u88fd\u3057\u305f\u3082\u306e\u3067\u3042\u308b"}]},"item_10_select_15":{"attribute_name":"\u8457\u8005\u7248\u30d5\u30e9\u30b0","attribute_value_mlt":[{"subitem_select_item":"publisher"}]},"item_10_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0913-5685","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"\u8457\u8005","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"\u5409\u7530, \u82f1\u53f2"}],"nameIdentifiers":[{"nameIdentifier":"64371","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u51fa\u53e3, \u5927\u8f14"}],"nameIdentifiers":[{"nameIdentifier":"64372","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u4e95\u624b, \u4e00\u90ce"}],"nameIdentifiers":[{"nameIdentifier":"64373","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u6751\u702c, \u6d0b"}],"nameIdentifiers":[{"nameIdentifier":"64374","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u5f8c\u85e4, \u90a6\u535a"}],"nameIdentifiers":[{"nameIdentifier":"64375","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u6728\u6751, \u597d\u514b"}],"nameIdentifiers":[{"nameIdentifier":"64376","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"\u5185\u85e4, \u8cb4\u5fd7"}],"nameIdentifiers":[{"nameIdentifier":"64377","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"YOSHIDA, Hidefumi"}],"nameIdentifiers":[{"nameIdentifier":"64378","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"DEGUCHI, Daisuke"}],"nameIdentifiers":[{"nameIdentifier":"64379","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"IDE, Ichiro"}],"nameIdentifiers":[{"nameIdentifier":"64380","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"MURASE, Hiroshi"}],"nameIdentifiers":[{"nameIdentifier":"64381","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"GOTO, Kunihiro"}],"nameIdentifiers":[{"nameIdentifier":"64382","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"KIMURA, Yoshikatsu"}],"nameIdentifiers":[{"nameIdentifier":"64383","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"NAITO, Takashi"}],"nameIdentifiers":[{"nameIdentifier":"64384","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"\u30d5\u30a1\u30a4\u30eb\u60c5\u5831","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-02-21"}],"displaytype":"detail","filename":"110008725866.pdf","filesize":[{"value":"1.5 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"110008725866.pdf","url":"https://nagoya.repo.nii.ac.jp/record/21706/files/110008725866.pdf"},"version_id":"412d7bed-dbee-476f-8a93-dd98507c5833"}]},"item_keyword":{"attribute_name":"\u30ad\u30fc\u30ef\u30fc\u30c9","attribute_value_mlt":[{"subitem_subject":"\u6b69\u884c\u8005\u691c\u51fa","subitem_subject_scheme":"Other"},{"subitem_subject":"\u751f\u6210\u578b\u5b66\u7fd2\u6cd5","subitem_subject_scheme":"Other"},{"subitem_subject":"HOG","subitem_subject_scheme":"Other"},{"subitem_subject":"SVM","subitem_subject_scheme":"Other"},{"subitem_subject":"Pedestrian detection","subitem_subject_scheme":"Other"},{"subitem_subject":"Generative learning","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"\u8a00\u8a9e","attribute_value_mlt":[{"subitem_language":"jpn"}]},"item_resource_type":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)","item_titles":{"attribute_name":"\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_title":"\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)"}]},"item_type_id":"10","owner":"1","path":["312/313/314"],"pubdate":{"attribute_name":"\u516c\u958b\u65e5","attribute_value":"2016-03-16"},"publish_date":"2016-03-16","publish_status":"0","recid":"21706","relation_version_is_last":true,"title":["\u751f\u6210\u578b\u5b66\u7fd2\u6cd5\u3092\u7528\u3044\u305f\u59ff\u52e2\u5909\u5316\u306b\u9811\u5065\u306a\u6b69\u884c\u8005\u691c\u51fa\u306e\u691c\u8a0e(\u4e00\u822c\u30bb\u30c3\u30b7\u30e7\u30f3,\u533b\u7528\u753b\u50cf\u51e6\u7406\u5206\u91ce\u306b\u304a\u3051\u308b\u8a08\u6e2c\u30fb\u8a8d\u8b58\u30fb\u7406\u89e3)"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2021-03-01T15:15:17.963751+00:00"}