@article{oai:nagoya.repo.nii.ac.jp:00023762, author = {Okamoto, Satoru and Tabata, Ryo and Matsubayashi, Yoshikatsu}, journal = {Current Opinion in Plant Biology}, month = {Dec}, note = {Organ-to-organ communication is indispensable for higher organisms to maintain homeostasis over their entire life. Recent findings have uncovered that plants, like animals, mediate organ-to-organ communication by long-distance signaling through the vascular system. In particular, xylem-mobile secreted peptides have attracted much attention as root-to-shoot long-distance signaling molecules in response to fluctuating environmental nutrient status. Several leguminous CLE peptides induced by rhizobial inoculation act as ‘satiety’ signals in long-distance negative feedback of nodule formation. By contrast, Arabidopsis CEP family peptides induced by local nitrogen (N)-starvation behave as systemic ‘hunger’ signals to promote compensatory N acquisition in other parts of the roots. Xylem sap peptidomics also implies the presence of still uncharacterized long-distance signaling peptides. This review highlights the current understanding of and new insights into the mechanisms and functions of root-to-shoot long-distance peptide signaling during environmental responses.}, pages = {35--40}, title = {Long-distance peptide signaling essential for nutrient homeostasis in plants}, volume = {34}, year = {2016} }