{"created":"2021-03-01T06:35:10.781565+00:00","id":27202,"links":{},"metadata":{"_buckets":{"deposit":"4256ddd2-afd2-4b95-b819-b25db5e9e606"},"_deposit":{"id":"27202","owners":[],"pid":{"revision_id":0,"type":"depid","value":"27202"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00027202","sets":["697:698:699"]},"author_link":["89137"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2018-12","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"3-4","bibliographicPageEnd":"949","bibliographicPageStart":"915","bibliographicVolumeNumber":"372","bibliographic_titles":[{"bibliographic_title":"Mathematische Annalen"}]}]},"item_10_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"Consider the motion of a viscous incompressible fluid in a 3D exterior domain D when a rigid body R^3∖D moves with prescribed time-dependent translational and angular velocities. For the linearized non-autonomous system, Lq-Lr smoothing action near t=s as well as generation of the evolution operator {T(t,s)}t≥s≥0 was shown by Hansel and Rhandi (J Reine Angew Math 694:1–26, 2014) under reasonable conditions. In this paper we develop the L^q-L^r decay estimates of the evolution operator T(t, s) as (t−s)→∞ and then apply them to the Navier–Stokes initial value problem.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10_description_5":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"ファイル公開:2019/12/01","subitem_description_language":"ja","subitem_description_type":"Other"}]},"item_10_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Springer","subitem_publisher_language":"en"}]},"item_10_relation_11":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1007/s00208-018-1649-0","subitem_relation_type_select":"DOI"}}]},"item_10_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"“This is a post-peer-review, pre-copyedit version of an article published in [Mathematische Annalen]. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00208-018-1649-0”.","subitem_rights_language":"en"}]},"item_10_select_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_select_item":"author"}]},"item_10_source_id_61":{"attribute_name":"ISSN(print)","attribute_value_mlt":[{"subitem_source_identifier":"0025-5831","subitem_source_identifier_type":"PISSN"}]},"item_1615787544753":{"attribute_name":"出版タイプ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Hishida, Toshiaki","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"89137","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2019-12-01"}],"displaytype":"detail","filename":"nonauto13jan2018-hishida.pdf","filesize":[{"value":"212.5 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"nonauto13jan2018-hishida","objectType":"fulltext","url":"https://nagoya.repo.nii.ac.jp/record/27202/files/nonauto13jan2018-hishida.pdf"},"version_id":"ce5be7f9-52ff-4a72-9a92-3a9db6e85e66"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Large time behavior of a generalized Oseen evolution operator, with applications to the Navier–Stokes flow past a rotating obstacle","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Large time behavior of a generalized Oseen evolution operator, with applications to the Navier–Stokes flow past a rotating obstacle","subitem_title_language":"en"}]},"item_type_id":"10","owner":"1","path":["699"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2019-03-06"},"publish_date":"2019-03-06","publish_status":"0","recid":"27202","relation_version_is_last":true,"title":["Large time behavior of a generalized Oseen evolution operator, with applications to the Navier–Stokes flow past a rotating obstacle"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-01-16T04:42:05.214544+00:00"}