{"created":"2021-03-01T06:36:16.984183+00:00","id":28217,"links":{},"metadata":{"_buckets":{"deposit":"2b88f21a-9dd3-423b-9429-845b009013dd"},"_deposit":{"id":"28217","owners":[],"pid":{"revision_id":0,"type":"depid","value":"28217"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00028217","sets":["312:313:314"]},"author_link":["91861","91862"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2019-01","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"1","bibliographicPageEnd":"176","bibliographicPageStart":"131","bibliographicVolumeNumber":"36","bibliographic_titles":[{"bibliographic_title":"Japan Journal of Industrial and Applied Mathematics","bibliographic_titleLang":"en"}]}]},"item_10_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"We aim to identify the geometry (i.e., the shape and location) of a cavity inside an object through the concept of thermal imaging. More precisely, we present an identification procedure to determine the geometric shape of a cavity with convective boundary condition in a heat-conducting medium using the measured temperature on a part of the surface of the object. The inverse problem of identifying the cavity is resolved by shape optimization techniques, specifically by minimizing a least-squares type cost functional over a set of admissible geometries. The computation of the first-order shape derivative or shape gradient of the cost is carried out through minimax formulation, which is then justified by the Correa–Seeger theorem coupled with function space parametrization technique. We further characterize its boundary integral form using some identities from tangential calculus. Then, we utilize the computed expression for the shape gradient to implement an effective boundary variation algorithm for the numerical resolution of the shape optimization problem. To avoid boundary oscillations or irregular shapes in our approximations, we execute the gradient-based scheme using the H^1 gradient method with perimeter regularization. Also, we propose a novel application of the said method in computing the mean curvature of the free boundary appearing in the shape gradient of the cost functional. We illustrate the feasibility of the proposed method by testing the numerical scheme to several cavity identification problems. Additionally, we also give some numerical examples for the case of corrosion detection since its inverse problem interpreted in the framework of electrostatic imaging is closely related to the focused problem.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10_description_5":{"attribute_name":"内容記述","attribute_value_mlt":[{"subitem_description":"ファイル公開:2020/01/01","subitem_description_language":"ja","subitem_description_type":"Other"}]},"item_10_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"Springer","subitem_publisher_language":"en"}]},"item_10_relation_11":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1007/s13160-018-0337-5","subitem_relation_type_select":"DOI"}}]},"item_10_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"“This is a post-peer-review, pre-copyedit version of an article published in [Japan Journal of Industrial and Applied Mathematics]. The final authenticated version is available online at: http://dx.doi.org/10.1007/s13160-018-0337-5”.","subitem_rights_language":"en"}]},"item_10_select_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_select_item":"author"}]},"item_10_source_id_61":{"attribute_name":"ISSN(print)","attribute_value_mlt":[{"subitem_source_identifier":"0916-7005","subitem_source_identifier_type":"PISSN"}]},"item_10_source_id_62":{"attribute_name":"ISSN(Online)","attribute_value_mlt":[{"subitem_source_identifier":"1868-937X","subitem_source_identifier_type":"EISSN"}]},"item_1615787544753":{"attribute_name":"出版タイプ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_ab4af688f83e57aa","subitem_version_type":"AM"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"T. Rabago, Julius Fergy","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"91861","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Azegami, Hideyuki","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"91862","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2020-01-01"}],"displaytype":"detail","filename":"main.pdf","filesize":[{"value":"1.3 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"main","objectType":"fulltext","url":"https://nagoya.repo.nii.ac.jp/record/28217/files/main.pdf"},"version_id":"8616e619-0eb4-4e00-bc3c-44c27ebae8c2"}]},"item_keyword":{"attribute_name":"キーワード","attribute_value_mlt":[{"subitem_subject":"Shape identification","subitem_subject_scheme":"Other"},{"subitem_subject":"Shape optimization","subitem_subject_scheme":"Other"},{"subitem_subject":"Geometric inverse problem","subitem_subject_scheme":"Other"},{"subitem_subject":"Lagrange multiplier method","subitem_subject_scheme":"Other"},{"subitem_subject":"Minimax formulation","subitem_subject_scheme":"Other"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement","subitem_title_language":"en"}]},"item_type_id":"10","owner":"1","path":["314"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2019-06-11"},"publish_date":"2019-06-11","publish_status":"0","recid":"28217","relation_version_is_last":true,"title":["Shape optimization approach to defect-shape identification with convective boundary condition via partial boundary measurement"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-01-16T04:20:40.357091+00:00"}