ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "3f3e647f-ab87-4b30-a057-abf89ebcf012"}, "_deposit": {"id": "28842", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "28842"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00028842"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2019-08-15", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "1", "bibliographicPageEnd": "29", "bibliographicPageStart": "1", "bibliographicVolumeNumber": "117", "bibliographic_titles": [{"bibliographic_title": "Journal of Engineering Mathematics"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "We propose a new shape optimization formulation of the Bernoulli problem by tracking the Neumann data. The associated state problem is an equivalent formulation of the Bernoulli problem with a Robin condition. We devise an iterative procedure based on a Lagrangian-like approach to numerically solve the minimization problem. The proposed scheme involves the knowledge of the shape gradient which is established through the minimax formulation. We illustrate the feasibility of the proposed method and highlight its advantage over the classical setting of tracking the Neumann data through several numerical examples.", "subitem_description_type": "Abstract"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "Springer"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "https://doi.org/10.1007/s10665-019-10005-x", "subitem_relation_type_select": "DOI"}}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "author"}]}, "item_10_source_id_61": {"attribute_name": "ISSN\uff08print\uff09", "attribute_value_mlt": [{"subitem_source_identifier": "0022-0833", "subitem_source_identifier_type": "ISSN"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Rabago, Julius Fergy T."}], "nameIdentifiers": [{"nameIdentifier": "94921", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Azegami, Hideyuki"}], "nameIdentifiers": [{"nameIdentifier": "94922", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2020-08-15"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "main.pdf", "filesize": [{"value": "2.1 MB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 2100000.0, "url": {"label": "main", "url": "https://nagoya.repo.nii.ac.jp/record/28842/files/main.pdf"}, "version_id": "6e88abea-3ea2-4fb3-99b0-b3ca2b306a53"}]}, "item_keyword": {"attribute_name": "\u30ad\u30fc\u30ef\u30fc\u30c9", "attribute_value_mlt": [{"subitem_subject": "Bernoulli problem", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Domain perturbation", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Free boundary", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Lagrangian method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Minimax formulation", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape derivative", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape optimization", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data"}]}, "item_type_id": "10", "owner": "1", "path": ["312/313/314"], "permalink_uri": "http://hdl.handle.net/2237/00031029", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2019-12-20"}, "publish_date": "2019-12-20", "publish_status": "0", "recid": "28842", "relation": {}, "relation_version_is_last": true, "title": ["An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data"], "weko_shared_id": null}
  1. A500 情報学部/情報学研究科・情報文化学部・情報科学研究科
  2. A500a 雑誌掲載論文
  3. 学術雑誌

An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data

http://hdl.handle.net/2237/00031029
7e9e5996-98fd-4157-ae2b-3086c323cbb0
名前 / ファイル ライセンス アクション
main.pdf main (2.1 MB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2019-12-20
タイトル
タイトル An improved shape optimization formulation of the Bernoulli problem by tracking the Neumann data
著者 Rabago, Julius Fergy T.

× Rabago, Julius Fergy T.

WEKO 94921

Rabago, Julius Fergy T.

Search repository
Azegami, Hideyuki

× Azegami, Hideyuki

WEKO 94922

Azegami, Hideyuki

Search repository
キーワード
主題Scheme Other
主題 Bernoulli problem
キーワード
主題Scheme Other
主題 Domain perturbation
キーワード
主題Scheme Other
主題 Free boundary
キーワード
主題Scheme Other
主題 Lagrangian method
キーワード
主題Scheme Other
主題 Minimax formulation
キーワード
主題Scheme Other
主題 Shape derivative
キーワード
主題Scheme Other
主題 Shape optimization
抄録
内容記述 We propose a new shape optimization formulation of the Bernoulli problem by tracking the Neumann data. The associated state problem is an equivalent formulation of the Bernoulli problem with a Robin condition. We devise an iterative procedure based on a Lagrangian-like approach to numerically solve the minimization problem. The proposed scheme involves the knowledge of the shape gradient which is established through the minimax formulation. We illustrate the feasibility of the proposed method and highlight its advantage over the classical setting of tracking the Neumann data through several numerical examples.
内容記述タイプ Abstract
出版者
出版者 Springer
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
DOI
関連識別子
識別子タイプ DOI
関連識別子 https://doi.org/10.1007/s10665-019-10005-x
ISSN(print)
収録物識別子タイプ ISSN
収録物識別子 0022-0833
書誌情報 Journal of Engineering Mathematics

巻 117, 号 1, p. 1-29, 発行日 2019-08-15
著者版フラグ
値 author
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 09:49:35.074420
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio