{"created":"2021-03-01T06:38:38.550795+00:00","id":30334,"links":{},"metadata":{"_buckets":{"deposit":"dfb1161b-2f7f-423b-8ae1-cfbc0c5184e2"},"_deposit":{"id":"30334","owners":[],"pid":{"revision_id":0,"type":"depid","value":"30334"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00030334"},"item_10_biblio_info_6":{"attribute_name":"\u66f8\u8a8c\u60c5\u5831","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"2020-03-21","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"11","bibliographicPageStart":"113907","bibliographicVolumeNumber":"127","bibliographic_titles":[{"bibliographic_title":"Journal of Applied Physics"}]}]},"item_10_description_4":{"attribute_name":"\u6284\u9332","attribute_value_mlt":[{"subitem_description":"We report the growth of noncollinear antiferromagnetic (AFM) Mn3Ni0.35Cu0.65N films and the orientation-dependent anomalous Hall effect (AHE) of (001) and (111) films due to the nonzero Berry curvature. We found that post-annealing at 500\u2009\u2103 can significantly improve the AHE signals, though using the appropriate post-annealing conditions is important. The AHE and magnetization loops show sharp flipping at the coercive field in (111) films, while (001) films are hard to saturate by a magnetic field. The anomalous Hall conductivity of (111) films is an order of magnitude larger than that of (001) films. The present results provide not only a better understanding of the AHE in Mn3XN systems but also further opportunities to study the unique phenomena related to noncollinear AFM.","subitem_description_type":"Abstract"}]},"item_10_description_5":{"attribute_name":"\u5185\u5bb9\u8a18\u8ff0","attribute_value_mlt":[{"subitem_description":"\u30d5\u30a1\u30a4\u30eb\u516c\u958b\uff1a2021/03/21","subitem_description_type":"Other"}]},"item_10_publisher_32":{"attribute_name":"\u51fa\u7248\u8005","attribute_value_mlt":[{"subitem_publisher":"AIP Publishing"}]},"item_10_relation_11":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1063/1.5142250","subitem_relation_type_select":"DOI"}}]},"item_10_rights_12":{"attribute_name":"\u6a29\u5229","attribute_value_mlt":[{"subitem_rights":"Copyright 2020 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing.The following article appeared in (Journal of Applied Physics. v.127, n.11, 2020, p.113907) and may be found at (http://dx.doi.org/10.1063/1.5142250)."}]},"item_10_select_15":{"attribute_name":"\u8457\u8005\u7248\u30d5\u30e9\u30b0","attribute_value_mlt":[{"subitem_select_item":"publisher"}]},"item_10_source_id_61":{"attribute_name":"ISSN\uff08print\uff09","attribute_value_mlt":[{"subitem_source_identifier":"0021-8979","subitem_source_identifier_type":"ISSN"}]},"item_creator":{"attribute_name":"\u8457\u8005","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Miki, R."}],"nameIdentifiers":[{"nameIdentifier":"100635","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Zhao, K."}],"nameIdentifiers":[{"nameIdentifier":"100636","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Hajiri, T."}],"nameIdentifiers":[{"nameIdentifier":"100637","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Gegenwart, P."}],"nameIdentifiers":[{"nameIdentifier":"100638","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Asano, H."}],"nameIdentifiers":[{"nameIdentifier":"100639","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"\u30d5\u30a1\u30a4\u30eb\u60c5\u5831","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2021-03-21"}],"displaytype":"detail","filename":"1_5142250.pdf","filesize":[{"value":"2.6 MB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"1_5142250","url":"https://nagoya.repo.nii.ac.jp/record/30334/files/1_5142250.pdf"},"version_id":"b9f8a869-ce35-4b31-b9cc-a5f1adc660ce"}]},"item_language":{"attribute_name":"\u8a00\u8a9e","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"\u8cc7\u6e90\u30bf\u30a4\u30d7","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Epitaxial growth and orientation-dependent anomalous Hall effect of noncollinear antiferromagnetic Mn3Ni0.35Cu0.65N films","item_titles":{"attribute_name":"\u30bf\u30a4\u30c8\u30eb","attribute_value_mlt":[{"subitem_title":"Epitaxial growth and orientation-dependent anomalous Hall effect of noncollinear antiferromagnetic Mn3Ni0.35Cu0.65N films"}]},"item_type_id":"10","owner":"1","path":["320/321/322"],"pubdate":{"attribute_name":"\u516c\u958b\u65e5","attribute_value":"2020-07-16"},"publish_date":"2020-07-16","publish_status":"0","recid":"30334","relation_version_is_last":true,"title":["Epitaxial growth and orientation-dependent anomalous Hall effect of noncollinear antiferromagnetic Mn3Ni0.35Cu0.65N films"],"weko_creator_id":"1","weko_shared_id":null},"updated":"2021-03-01T08:53:38.223663+00:00"}