@article{oai:nagoya.repo.nii.ac.jp:00031339, author = {Robin, Y and Bournet, Q and Avit, G and Pristovsek, M and André, Y and Trassoudaine, A and Amano, H}, issue = {11}, journal = {Semiconductor Science and Technology}, month = {Nov}, note = {We show evidence that tunnel junctions (TJs) in GaN grown by metal-organic vapor phase epitaxy are dominated by defect level-assisted tunneling. This is in contrast with the common belief that highly doped layers (>10^20 cm^−3) are required to narrow the TJ space charge region and promote the band-to-band tunneling. Our conclusion stems from the study and the review of the major doping limitations of carefully optimized p^++ and n^++ layers. The secondary ions mass spectroscopy profiles of GaN based TJ LEDs show a strong oxygen concentration located close to the p^++/n^++ interface, typical for three dimensional growth. In addition, considering the doping limitation asymmetry and Mg carry-over, our simulations indicate a depletion region of more than 10 nm which is buried in a rough and defective n^++ layer. However, decent electrical characteristics of the studied TJ based LEDs are obtained, with a low penalty voltage of 1.1 V and a specific differential resistance of about 10^–2 Ω.cm^2 at 20 mA. This indicates that a common TJ could be greatly optimized by using a moderate doping (~10^19 cm^−3) while intentionally introducing local defects within the TJ., ファイル公開:2021-11-01}, title = {Limitation of simple np-n tunnel junction based LEDs grown by metal-organic vapor phase epitaxy}, volume = {35}, year = {2020} }