ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "343cf04f-2070-4dcf-be40-4cf78320406b"}, "_deposit": {"id": "5464", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "5464"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00005464"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2005-05", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "5", "bibliographicPageEnd": "052701", "bibliographicPageStart": "052701", "bibliographicVolumeNumber": "46", "bibliographic_titles": [{"bibliographic_title": "Journal of Mathematical Physics"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "We discuss commuting flows and conservation laws for Lax hierarchies on noncommutative spaces in the framework of the Sato theory. On commutative spaces, the Sato theory has revealed essential aspects of the integrability for wide class of soliton equations which are derived from the Lax hierarchies in terms of pseudodifferential operators. Noncommutative extension of the Sato theory has been already studied by the author and Toda, and the existence of various noncommutative Lax hierarchies are guaranteed. In this paper, we present conservation laws for the noncommutative Lax hierarchies with both space\u2013space and space\u2013time noncommutativities and prove the existence of infinite number of conserved densities. We also give the explicit representations of them in terms of Lax operators. Our results include noncommutative versions of KP, KdV, Boussinesq, coupled KdV, Sawada- Kotera, modified KdV equation and so on.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/7069"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "American Institute of Physics"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "http://dx.doi.org/10.1063/1.1865321", "subitem_relation_type_select": "DOI"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright (2005) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0022-2488", "subitem_source_identifier_type": "ISSN"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Hamanaka, Masashi"}], "nameIdentifiers": [{"nameIdentifier": "14076", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "JMathPhys_46_052701.pdf", "filesize": [{"value": "132.3 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 132300.0, "url": {"label": "JMathPhys_46_052701.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/5464/files/JMathPhys_46_052701.pdf"}, "version_id": "063c982a-592e-492e-b296-9670e3da72b7"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "Commuting flows and conservation laws for noncommutative Lax hierarchies", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "Commuting flows and conservation laws for noncommutative Lax hierarchies"}]}, "item_type_id": "10", "owner": "1", "path": ["697/698/699"], "permalink_uri": "http://hdl.handle.net/2237/7069", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2006-10-25"}, "publish_date": "2006-10-25", "publish_status": "0", "recid": "5464", "relation": {}, "relation_version_is_last": true, "title": ["Commuting flows and conservation laws for noncommutative Lax hierarchies"], "weko_shared_id": 3}
  1. D200 大学院多元数理科学研究科
  2. D200a 雑誌掲載論文
  3. 学術雑誌

Commuting flows and conservation laws for noncommutative Lax hierarchies

http://hdl.handle.net/2237/7069
0dec29ad-26ce-4a48-91a8-631be085ea84
名前 / ファイル ライセンス アクション
JMathPhys_46_052701.pdf JMathPhys_46_052701.pdf (132.3 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2006-10-25
タイトル
タイトル Commuting flows and conservation laws for noncommutative Lax hierarchies
著者 Hamanaka, Masashi

× Hamanaka, Masashi

WEKO 14076

Hamanaka, Masashi

Search repository
権利
権利情報 Copyright (2005) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
抄録
内容記述 We discuss commuting flows and conservation laws for Lax hierarchies on noncommutative spaces in the framework of the Sato theory. On commutative spaces, the Sato theory has revealed essential aspects of the integrability for wide class of soliton equations which are derived from the Lax hierarchies in terms of pseudodifferential operators. Noncommutative extension of the Sato theory has been already studied by the author and Toda, and the existence of various noncommutative Lax hierarchies are guaranteed. In this paper, we present conservation laws for the noncommutative Lax hierarchies with both space–space and space–time noncommutativities and prove the existence of infinite number of conserved densities. We also give the explicit representations of them in terms of Lax operators. Our results include noncommutative versions of KP, KdV, Boussinesq, coupled KdV, Sawada- Kotera, modified KdV equation and so on.
内容記述タイプ Abstract
出版者
出版者 American Institute of Physics
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
DOI
関連識別子
識別子タイプ DOI
関連識別子 http://dx.doi.org/10.1063/1.1865321
ISSN
収録物識別子タイプ ISSN
収録物識別子 0022-2488
書誌情報 Journal of Mathematical Physics

巻 46, 号 5, p. 052701-052701, 発行日 2005-05
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/7069
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 13:10:39.422190
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio