WEKO3
アイテム
{"_buckets": {"deposit": "dc4439a9-0ed6-4c32-bd6f-769b74b43aae"}, "_deposit": {"id": "5642", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "5642"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00005642", "sets": ["314"]}, "author_link": ["14912", "14913", "14914", "14915", "14916", "14917"], "item_10_alternative_title_19": {"attribute_name": "その他のタイトル", "attribute_value_mlt": [{"subitem_alternative_title": "Numerical Solution for Min-Max Problem in Shape Optimization(Minimum Design of Max.Stress and Max.Displacement)", "subitem_alternative_title_language": "en"}]}, "item_10_biblio_info_6": {"attribute_name": "書誌情報", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "1997-03", "bibliographicIssueDateType": "Issued"}, "bibliographicIssueNumber": "607", "bibliographicPageEnd": "617", "bibliographicPageStart": "610", "bibliographicVolumeNumber": "63", "bibliographic_titles": [{"bibliographic_title": "日本機械学会論文集 A編", "bibliographic_titleLang": "ja"}]}]}, "item_10_description_4": {"attribute_name": "抄録", "attribute_value_mlt": [{"subitem_description": "We describe a numerical shape optimization method of continua that minimizes maximum local measure such as stress and displacement. A solution to this min-max problem subject to volume constraint is proposed. To avoid impossibility of differentiation, local functionals are transposed to global integral functionals using the Kreisselmeier -Steinhauser function. With this function, a multiple loading problem is also transposed to a single loading problem.The shape gradient functions which are applied to the traction method. Using the traction method, the optimum domain variation to decrease the objective functional is numerically and iteratively determined that maintaining the smoothness of the boundaries. The calculated results of 2D and 3D examples show the effectiveness and practical utility of the proposed method for min-max problems in shape designs.", "subitem_description_language": "en", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/7249"}]}, "item_10_publisher_32": {"attribute_name": "出版者", "attribute_value_mlt": [{"subitem_publisher": "日本機械学会", "subitem_publisher_language": "ja"}]}, "item_10_rights_12": {"attribute_name": "権利", "attribute_value_mlt": [{"subitem_rights": "日本機械学会", "subitem_rights_language": "ja"}]}, "item_10_select_15": {"attribute_name": "著者版フラグ", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "03875008", "subitem_source_identifier_type": "PISSN"}]}, "item_10_text_14": {"attribute_name": "フォーマット", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_1615787544753": {"attribute_name": "出版タイプ", "attribute_value_mlt": [{"subitem_version_resource": "http://purl.org/coar/version/c_970fb48d4fbd8a85", "subitem_version_type": "VoR"}]}, "item_access_right": {"attribute_name": "アクセス権", "attribute_value_mlt": [{"subitem_access_right": "open access", "subitem_access_right_uri": "http://purl.org/coar/access_right/c_abf2"}]}, "item_creator": {"attribute_name": "著者", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "下田, 昌利", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "14912", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Shimoda, Masatoshi", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "14913", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "畔上, 秀幸", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "14914", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Azegami, Hideyuki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "14915", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "桜井, 俊明", "creatorNameLang": "ja"}], "nameIdentifiers": [{"nameIdentifier": "14916", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "Sakurai, Toshiaki", "creatorNameLang": "en"}], "nameIdentifiers": [{"nameIdentifier": "14917", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "ファイル情報", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "JSME-A63-610.pdf", "filesize": [{"value": "766.2 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_note", "mimetype": "application/pdf", "size": 766200.0, "url": {"label": "JSME-A63-610.pdf", "objectType": "fulltext", "url": "https://nagoya.repo.nii.ac.jp/record/5642/files/JSME-A63-610.pdf"}, "version_id": "635359b3-68fa-4077-8eda-23fc3c641e01"}]}, "item_keyword": {"attribute_name": "キーワード", "attribute_value_mlt": [{"subitem_subject": "Optimum Design", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Finite-Element Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Shape Optimization", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Min-Max Problem", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Kreisselmeier-Steinhauser Function", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Traction Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Material Derivative Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Adjoint Method", "subitem_subject_scheme": "Other"}, {"subitem_subject": "Multiple Loading", "subitem_subject_scheme": "Other"}]}, "item_language": {"attribute_name": "言語", "attribute_value_mlt": [{"subitem_language": "jpn"}]}, "item_resource_type": {"attribute_name": "資源タイプ", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "形状最適化におけるミニマックス問題の数値解法(最大応力と最大変位の最小設計)", "item_titles": {"attribute_name": "タイトル", "attribute_value_mlt": [{"subitem_title": "形状最適化におけるミニマックス問題の数値解法(最大応力と最大変位の最小設計)", "subitem_title_language": "ja"}]}, "item_type_id": "10", "owner": "1", "path": ["314"], "permalink_uri": "http://hdl.handle.net/2237/7249", "pubdate": {"attribute_name": "PubDate", "attribute_value": "2007-01-15"}, "publish_date": "2007-01-15", "publish_status": "0", "recid": "5642", "relation": {}, "relation_version_is_last": true, "title": ["形状最適化におけるミニマックス問題の数値解法(最大応力と最大変位の最小設計)"], "weko_shared_id": -1}
形状最適化におけるミニマックス問題の数値解法(最大応力と最大変位の最小設計)
http://hdl.handle.net/2237/7249
http://hdl.handle.net/2237/7249a2893e31-54dc-4619-8e4f-203de2f3761b
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
|
Item type | 学術雑誌論文 / Journal Article(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2007-01-15 | |||||
タイトル | ||||||
タイトル | 形状最適化におけるミニマックス問題の数値解法(最大応力と最大変位の最小設計) | |||||
言語 | ja | |||||
その他のタイトル | ||||||
その他のタイトル | Numerical Solution for Min-Max Problem in Shape Optimization(Minimum Design of Max.Stress and Max.Displacement) | |||||
言語 | en | |||||
著者 |
下田, 昌利
× 下田, 昌利× Shimoda, Masatoshi× 畔上, 秀幸× Azegami, Hideyuki× 桜井, 俊明× Sakurai, Toshiaki |
|||||
アクセス権 | ||||||
アクセス権 | open access | |||||
アクセス権URI | http://purl.org/coar/access_right/c_abf2 | |||||
権利 | ||||||
言語 | ja | |||||
権利情報 | 日本機械学会 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Optimum Design | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Finite-Element Method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Shape Optimization | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Min-Max Problem | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Kreisselmeier-Steinhauser Function | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Traction Method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Material Derivative Method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Adjoint Method | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | Multiple Loading | |||||
抄録 | ||||||
内容記述 | We describe a numerical shape optimization method of continua that minimizes maximum local measure such as stress and displacement. A solution to this min-max problem subject to volume constraint is proposed. To avoid impossibility of differentiation, local functionals are transposed to global integral functionals using the Kreisselmeier -Steinhauser function. With this function, a multiple loading problem is also transposed to a single loading problem.The shape gradient functions which are applied to the traction method. Using the traction method, the optimum domain variation to decrease the objective functional is numerically and iteratively determined that maintaining the smoothness of the boundaries. The calculated results of 2D and 3D examples show the effectiveness and practical utility of the proposed method for min-max problems in shape designs. | |||||
言語 | en | |||||
内容記述タイプ | Abstract | |||||
出版者 | ||||||
言語 | ja | |||||
出版者 | 日本機械学会 | |||||
言語 | ||||||
言語 | jpn | |||||
資源タイプ | ||||||
資源タイプresource | http://purl.org/coar/resource_type/c_6501 | |||||
タイプ | journal article | |||||
出版タイプ | ||||||
出版タイプ | VoR | |||||
出版タイプResource | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |||||
ISSN | ||||||
収録物識別子タイプ | PISSN | |||||
収録物識別子 | 03875008 | |||||
書誌情報 |
ja : 日本機械学会論文集 A編 巻 63, 号 607, p. 610-617, 発行日 1997-03 |
|||||
フォーマット | ||||||
application/pdf | ||||||
著者版フラグ | ||||||
値 | publisher | |||||
URI | ||||||
識別子 | http://hdl.handle.net/2237/7249 | |||||
識別子タイプ | HDL |