{"created":"2021-03-01T06:12:14.627176+00:00","id":5671,"links":{},"metadata":{"_buckets":{"deposit":"a98cf144-4557-4b11-a78f-287bb0578a32"},"_deposit":{"id":"5671","owners":[],"pid":{"revision_id":0,"type":"depid","value":"5671"},"status":"published"},"_oai":{"id":"oai:nagoya.repo.nii.ac.jp:00005671","sets":["320:321:322"]},"author_link":["15045","15046","15047","15048"],"item_10_biblio_info_6":{"attribute_name":"書誌情報","attribute_value_mlt":[{"bibliographicIssueDates":{"bibliographicIssueDate":"1999-08","bibliographicIssueDateType":"Issued"},"bibliographicIssueNumber":"4","bibliographicPageEnd":"809","bibliographicPageStart":"806","bibliographicVolumeNumber":"46","bibliographic_titles":[{"bibliographic_title":"IEEE Transactions on Nuclear Science","bibliographic_titleLang":"en"}]}]},"item_10_description_4":{"attribute_name":"抄録","attribute_value_mlt":[{"subitem_description":"A new pulse shape recognition method with multi-shaping amplifiers, combined with a neural network algorithm, has been developed, where four pulse heights are sampled from one signal pulse through four linear amplifiers with different shaping time constants. The four pulse heights are used as characteristic parameters to recognize the pulse shape with a neural network. This method has been applied to signal processing for a CdZnTe semiconductor detector to improve the deteriorated energy spectra caused by pulse height deficits due to the different mobilities of electrons and holes in the detector. The neural network recognizes the pulse shape patterns and provides the corrective magnification factors of the pulse heights. After the corrective procedure, the energy spectrum for 137Cs gamma-rays is improved from 9.3 keV to 7.4 keV in the energy resolution (FWHM) of the 662 keV gamma rays photopeak. The photopeak becomes a considerably symmetrical shape without a low-energy tail. It has been verified that this method is simple and useful for pulse shape analyses, which can be used for many other applications.","subitem_description_language":"en","subitem_description_type":"Abstract"}]},"item_10_identifier_60":{"attribute_name":"URI","attribute_value_mlt":[{"subitem_identifier_type":"HDL","subitem_identifier_uri":"http://hdl.handle.net/2237/7277"}]},"item_10_publisher_32":{"attribute_name":"出版者","attribute_value_mlt":[{"subitem_publisher":"IEEE","subitem_publisher_language":"en"}]},"item_10_relation_11":{"attribute_name":"DOI","attribute_value_mlt":[{"subitem_relation_type":"isVersionOf","subitem_relation_type_id":{"subitem_relation_type_id_text":"https://doi.org/10.1109/23.790682","subitem_relation_type_select":"DOI"}}]},"item_10_rights_12":{"attribute_name":"権利","attribute_value_mlt":[{"subitem_rights":"Copyright © 1999 IEEE. Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.","subitem_rights_language":"en"}]},"item_10_select_15":{"attribute_name":"著者版フラグ","attribute_value_mlt":[{"subitem_select_item":"publisher"}]},"item_10_source_id_7":{"attribute_name":"ISSN","attribute_value_mlt":[{"subitem_source_identifier":"0018-9499","subitem_source_identifier_type":"PISSN"}]},"item_10_text_14":{"attribute_name":"フォーマット","attribute_value_mlt":[{"subitem_text_value":"application/pdf"}]},"item_1615787544753":{"attribute_name":"出版タイプ","attribute_value_mlt":[{"subitem_version_resource":"http://purl.org/coar/version/c_970fb48d4fbd8a85","subitem_version_type":"VoR"}]},"item_access_right":{"attribute_name":"アクセス権","attribute_value_mlt":[{"subitem_access_right":"open access","subitem_access_right_uri":"http://purl.org/coar/access_right/c_abf2"}]},"item_creator":{"attribute_name":"著者","attribute_type":"creator","attribute_value_mlt":[{"creatorNames":[{"creatorName":"Sakai, H.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"15045","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Uritani, A.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"15046","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Mori, C.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"15047","nameIdentifierScheme":"WEKO"}]},{"creatorNames":[{"creatorName":"Iguchi, T.","creatorNameLang":"en"}],"nameIdentifiers":[{"nameIdentifier":"15048","nameIdentifierScheme":"WEKO"}]}]},"item_files":{"attribute_name":"ファイル情報","attribute_type":"file","attribute_value_mlt":[{"accessrole":"open_date","date":[{"dateType":"Available","dateValue":"2018-02-19"}],"displaytype":"detail","filename":"00790682.pdf","filesize":[{"value":"319.1 kB"}],"format":"application/pdf","licensetype":"license_note","mimetype":"application/pdf","url":{"label":"00790682.pdf","objectType":"fulltext","url":"https://nagoya.repo.nii.ac.jp/record/5671/files/00790682.pdf"},"version_id":"e80c7e64-859e-4341-a6e4-b5081adeaacc"}]},"item_language":{"attribute_name":"言語","attribute_value_mlt":[{"subitem_language":"eng"}]},"item_resource_type":{"attribute_name":"資源タイプ","attribute_value_mlt":[{"resourcetype":"journal article","resourceuri":"http://purl.org/coar/resource_type/c_6501"}]},"item_title":"Pulse Shape Recognition for CdZnTe Semiconductor Detector by using Multi-Shaping Amplifiers Method with Neural Network Algorithm","item_titles":{"attribute_name":"タイトル","attribute_value_mlt":[{"subitem_title":"Pulse Shape Recognition for CdZnTe Semiconductor Detector by using Multi-Shaping Amplifiers Method with Neural Network Algorithm","subitem_title_language":"en"}]},"item_type_id":"10","owner":"1","path":["322"],"pubdate":{"attribute_name":"PubDate","attribute_value":"2007-01-25"},"publish_date":"2007-01-25","publish_status":"0","recid":"5671","relation_version_is_last":true,"title":["Pulse Shape Recognition for CdZnTe Semiconductor Detector by using Multi-Shaping Amplifiers Method with Neural Network Algorithm"],"weko_creator_id":"1","weko_shared_id":-1},"updated":"2023-01-16T03:50:22.496124+00:00"}