ログイン
言語:

WEKO3

  • トップ
  • コミュニティ
  • ランキング
AND
To
lat lon distance
To

Field does not validate



インデックスリンク

インデックスツリー

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

{"_buckets": {"deposit": "71f4e276-b59a-4236-87ef-a1d33dc59f9b"}, "_deposit": {"id": "7711", "owners": [], "pid": {"revision_id": 0, "type": "depid", "value": "7711"}, "status": "published"}, "_oai": {"id": "oai:nagoya.repo.nii.ac.jp:00007711"}, "item_10_biblio_info_6": {"attribute_name": "\u66f8\u8a8c\u60c5\u5831", "attribute_value_mlt": [{"bibliographicIssueDates": {"bibliographicIssueDate": "2007", "bibliographicIssueDateType": "Issued"}, "bibliographicPageEnd": "2369", "bibliographicPageStart": "2364", "bibliographic_titles": [{"bibliographic_title": "American Control Conference"}]}]}, "item_10_description_4": {"attribute_name": "\u6284\u9332", "attribute_value_mlt": [{"subitem_description": "In this paper, an analytical approximation approach for the stabilizing solution of the Hamilton-Jacobi equation using stable manifold theory is proposed. The proposed method gives approximated flows on the stable manifold of the associated Hamiltonian system and provides approximations of the stable Lagrangian submanifold. With this method, the closed loop stability is guaranteed and can be enhanced by taking higher order approximations. A numerical example shows the effectiveness of the method.", "subitem_description_type": "Abstract"}]}, "item_10_identifier_60": {"attribute_name": "URI", "attribute_value_mlt": [{"subitem_identifier_type": "HDL", "subitem_identifier_uri": "http://hdl.handle.net/2237/9430"}]}, "item_10_publisher_32": {"attribute_name": "\u51fa\u7248\u8005", "attribute_value_mlt": [{"subitem_publisher": "IEEE"}]}, "item_10_relation_11": {"attribute_name": "DOI", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "http://dx.doi.org/10.1109/ACC.2007.4282581", "subitem_relation_type_select": "DOI"}}]}, "item_10_relation_8": {"attribute_name": "ISBN", "attribute_value_mlt": [{"subitem_relation_type_id": {"subitem_relation_type_id_text": "1-4244-0989-6", "subitem_relation_type_select": "ISBN"}}]}, "item_10_rights_12": {"attribute_name": "\u6a29\u5229", "attribute_value_mlt": [{"subitem_rights": "Copyright \u00a9 2007 IEEE. Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University\u2019s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org."}]}, "item_10_select_15": {"attribute_name": "\u8457\u8005\u7248\u30d5\u30e9\u30b0", "attribute_value_mlt": [{"subitem_select_item": "publisher"}]}, "item_10_source_id_7": {"attribute_name": "ISSN", "attribute_value_mlt": [{"subitem_source_identifier": "0743-1619", "subitem_source_identifier_type": "ISSN"}]}, "item_10_text_14": {"attribute_name": "\u30d5\u30a9\u30fc\u30de\u30c3\u30c8", "attribute_value_mlt": [{"subitem_text_value": "application/pdf"}]}, "item_creator": {"attribute_name": "\u8457\u8005", "attribute_type": "creator", "attribute_value_mlt": [{"creatorNames": [{"creatorName": "Sakamoto, Noboru"}], "nameIdentifiers": [{"nameIdentifier": "21858", "nameIdentifierScheme": "WEKO"}]}, {"creatorNames": [{"creatorName": "van, der Schaft  Arjan J."}], "nameIdentifiers": [{"nameIdentifier": "21859", "nameIdentifierScheme": "WEKO"}]}]}, "item_files": {"attribute_name": "\u30d5\u30a1\u30a4\u30eb\u60c5\u5831", "attribute_type": "file", "attribute_value_mlt": [{"accessrole": "open_date", "date": [{"dateType": "Available", "dateValue": "2018-02-19"}], "displaytype": "detail", "download_preview_message": "", "file_order": 0, "filename": "sakamoto.pdf", "filesize": [{"value": "224.2 kB"}], "format": "application/pdf", "future_date_message": "", "is_thumbnail": false, "licensetype": "license_free", "mimetype": "application/pdf", "size": 224200.0, "url": {"label": "sakamoto.pdf", "url": "https://nagoya.repo.nii.ac.jp/record/7711/files/sakamoto.pdf"}, "version_id": "d4aa1e3e-9b59-4f71-a90f-7d0c9c927ab4"}]}, "item_language": {"attribute_name": "\u8a00\u8a9e", "attribute_value_mlt": [{"subitem_language": "eng"}]}, "item_resource_type": {"attribute_name": "\u8cc7\u6e90\u30bf\u30a4\u30d7", "attribute_value_mlt": [{"resourcetype": "journal article", "resourceuri": "http://purl.org/coar/resource_type/c_6501"}]}, "item_title": "An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory", "item_titles": {"attribute_name": "\u30bf\u30a4\u30c8\u30eb", "attribute_value_mlt": [{"subitem_title": "An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory"}]}, "item_type_id": "10", "owner": "1", "path": ["320/321/322"], "permalink_uri": "http://hdl.handle.net/2237/9430", "pubdate": {"attribute_name": "\u516c\u958b\u65e5", "attribute_value": "2008-02-20"}, "publish_date": "2008-02-20", "publish_status": "0", "recid": "7711", "relation": {}, "relation_version_is_last": true, "title": ["An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory"], "weko_shared_id": 3}
  1. B200 工学部/工学研究科
  2. B200a 雑誌掲載論文
  3. 学術雑誌

An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory

http://hdl.handle.net/2237/9430
18f94217-c33c-4ff5-b0b1-7b184aa40b97
名前 / ファイル ライセンス アクション
sakamoto.pdf sakamoto.pdf (224.2 kB)
Item type 学術雑誌論文 / Journal Article(1)
公開日 2008-02-20
タイトル
タイトル An analytical approximation method for the stabilizing solution of the Hamilton-Jacobi equation based on stable manifold theory
著者 Sakamoto, Noboru

× Sakamoto, Noboru

WEKO 21858

Sakamoto, Noboru

Search repository
van, der Schaft Arjan J.

× van, der Schaft Arjan J.

WEKO 21859

van, der Schaft Arjan J.

Search repository
権利
権利情報 Copyright © 2007 IEEE. Reprinted from (relevant publication info). This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Nagoya University’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.
抄録
内容記述 In this paper, an analytical approximation approach for the stabilizing solution of the Hamilton-Jacobi equation using stable manifold theory is proposed. The proposed method gives approximated flows on the stable manifold of the associated Hamiltonian system and provides approximations of the stable Lagrangian submanifold. With this method, the closed loop stability is guaranteed and can be enhanced by taking higher order approximations. A numerical example shows the effectiveness of the method.
内容記述タイプ Abstract
出版者
出版者 IEEE
言語
言語 eng
資源タイプ
資源タイプresource http://purl.org/coar/resource_type/c_6501
タイプ journal article
DOI
関連識別子
識別子タイプ DOI
関連識別子 http://dx.doi.org/10.1109/ACC.2007.4282581
ISBN
関連識別子
識別子タイプ ISBN
関連識別子 1-4244-0989-6
ISSN
収録物識別子タイプ ISSN
収録物識別子 0743-1619
書誌情報 American Control Conference

p. 2364-2369, 発行日 2007
フォーマット
application/pdf
著者版フラグ
値 publisher
URI
識別子 http://hdl.handle.net/2237/9430
識別子タイプ HDL
戻る
0
views
See details
Views

Versions

Ver.1 2021-03-01 12:16:47.765630
Show All versions

Share

Mendeley CiteULike Twitter Facebook Print Addthis

Cite as

Export

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by CERN Data Centre & Invenio


Powered by CERN Data Centre & Invenio